

0659

FCC Radio Test Report

FCC ID: 2ATYCHMX01

Report No. : BTL-FCCP-3-2101T112

Equipment : HIPCAM

Model Name : Video Doorbell Camera Max

: HIPCAM **Brand Name**

: Hipcam Global LLC Applicant

: 112 Capitol Trail, Newark, Delaware, 19711 United States Address

: Goldtek Technology Co., Ltd. Manufacturer

: 16F., No.166, Jian 1st Rd., Zhonghe Dist., New Taipei City 235, Taiwan Address

(R.O.C.)

Radio Function : WLAN 2.4 GHz

FCC Rule Part(s) : FCC Part15, Subpart C (15.247) : ANSI C63.10-2013

Measurement

Procedure(s)

Date of Receipt : 2021/2/2

Date of Test **:** 2021/2/2 ~ 2021/3/30

Issued Date : 2021/5/14

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Scott Hsu, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2101T112 Page 1 of 72 Report Version: R02

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2101T112 Page 2 of 72 Report Version: R02

CONTENTS REVISON HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 TEST ENVIRONMENT CONDITIONS 7 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 DUTY CYCLE 8 **GENERAL INFORMATION** 2 9 2.1 **DESCRIPTION OF EUT** 9 2.2 **TEST MODES** 10 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 11 2.4 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 13 3.1 LIMIT 3.2 TEST PROCEDURE 13 3.3 **DEVIATION FROM TEST STANDARD** 13 3.4 TEST SETUP 14 14 3.5 **TEST RESULT** 4 RADIATED EMISSIONS TEST 15 4.1 LIMIT 15 4.2 TEST PROCEDURE 16 **DEVIATION FROM TEST STANDARD** 4.3 16 **TEST SETUP** 4.4 16 4.5 **EUT OPERATING CONDITIONS** 17 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.7 TEST RESULT – ABOVE 1 GHZ 18 5 **BANDWIDTH TEST** 19 5.1 LIMIT 19 5.2 **TEST PROCEDURE** 19 **DEVIATION FROM TEST STANDARD** 19 5.3 5.4 **TEST SETUP** 19 5.5 **EUT OPERATING CONDITIONS** 19 **TEST RESULT** 5.6 19 **OUTPUT POWER TEST** 6 20 LIMIT 20 6.1 **TEST PROCEDURE** 20 6.2 6.3 **DEVIATION FROM TEST STANDARD** 20 6.4 **TEST SETUP** 20 **EUT OPERATING CONDITIONS** 6.5 20 6.6 **TEST RESULT** 20 7 POWER SPECTRAL DENSITY 21 7.1 LIMIT 21 7.2 TEST PROCEDURE 21 7.3 **DEVIATION FROM TEST STANDARD** 21 7.4 **TEST SETUP** 21 7.5 **EUT OPERATING CONDITIONS** 21 7.6 TEST RESULT 21 8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST 22

8.1	LIMIT		22
8.2	TEST	PROCEDURE	22
8.3	DEVIA	TION FROM TEST STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT C	PERATING CONDITIONS	22
8.6	TEST	RESULT	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TES	ST PHOTO	25
11	EUT PHO	DTOS	25
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	26
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	31
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	34
APPEND	IX D	BANDWIDTH	59
APPEND	IX E	OUTPUT POWER	63
APPEND	IX F	POWER SPECTRAL DENSITY	65
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS	69

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-3-2101T112	R00	Original Report.	2021/4/9
BTL-FCCP-3-2101T110	R01	Revised report to address TCB's comments.	2021/4/22
BTL-FCCP-3-2101T110	R02	Revised report to address TCB's comments.	2021/5/14

Project No.: 2101T112 Page 5 of 72 Report Version: R02

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)							
Standard(s) Section	Description Test Result		Judgement	Remark			
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass				
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass				
15.247(a)	Bandwidth	APPENDIX D	Pass				
15.247(b)	Output Power	APPENDIX E	Pass				
15.247(e)	Power Spectral Density	APPENDIX F	Pass				
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass				
15.203	Antenna Requirement		Pass				

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2101T112 Page 6 of 72 Report Version: R02

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ CB08 □ CB11 □ CB15 □ CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cisor} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

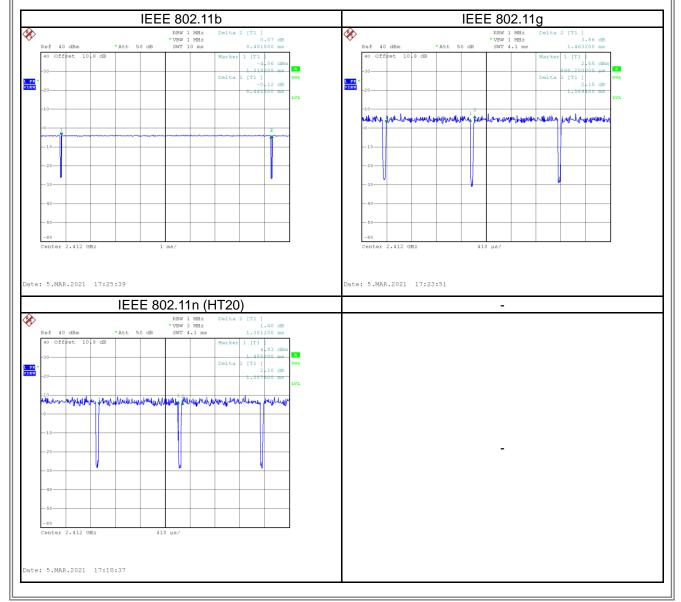
Test Item	U,(dB)
Bandwidth	1.13
Output power	1.06
Power Spectral Density	1.20
Conducted Spurious emissions	1.14
Conducted Band edges	1.13

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21 °C, 70 %	AC 120V	Vincent Lee
Radiated emissions below 1 GHz	22 °C, 67 %	AC 120V	Jay Kao
Radiated emissions above 1 GHz	21 °C, 68 %	AC 120V	Jay Kao
Bandwidth	23.2 °C, 54 %	AC 120V	Vincent Lee
Output Power	23.2 °C, 54 %	AC 120V	Vincent Lee
Power Spectral Density	23.2 °C, 54 %	AC 120V	Vincent Lee
Antenna conducted Spurious Emission	23.2 °C, 54 %	AC 120V	Vincent Lee


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	Ampak RFTestTool v7.0					
Mode	2412 MHz	2437 MHz	2462 MHz	Data Rate		
IEEE 802.11b	DEF	DEF	DEF	1 Mbps		
IEEE 802.11g	DEF	DEF	DEF	6 Mbps		
IEEE 802.11n (HT20)	DEF	DEF	DEF	MCS 0		

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
IEEE 802.11b	8.442	1	8.44	8.482	99.53%	0.02
IEEE 802.11g	1.389	1	1.389	1.463	94.96%	0.22
IEEE 802.11n (HT20)	1.307	1	1.307	1.381	94.66%	0.24

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	HIPCAM	
Model Name	Video Doorbell Camera Max	
Brand Name	HIPCAM	
Model Difference	N/A	
Power Source	#1 DC Voltage supplied from AC/DC adapter. #2 DC voltage from Chime (support unit)	
Power Rating	#1 SIMSUKIAN / SK03T-1200200Z I/P:100-240V~50/60Hz 0.6A MAX O/P:12.0Vdc 2.0A 24.0W #2 I/P: 24Vdc 0.5A	
Products Covered	1 * Adapter: SIMSUKIAN / SK03T-1200200Z 1 * Power Cable 3 * Base	
Operation Band	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2412 MHz ~ 2462 MHz	
Modulation Technology	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM	
Transfer Rate	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 72.2 Mbps	
Output Power Max.	IEEE 802.11b: 17.91 dBm (0.0618 W) IEEE 802.11g: 20.85 dBm (0.1216W) IEEE 802.11n (HT20): 22.16 dBm (0.1644 W)	
Test Model	Video Doorbell Camera Max	
Sample Status	Engineering Sample	
EUT Modification(s)	N/A	

NOTE

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

(3) Table for Filed Antenna:

Ant.	Manufacture	Product	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
1	PSA	Wi-Fi Ant.	РСВ	N/A	2400-2500	3.39

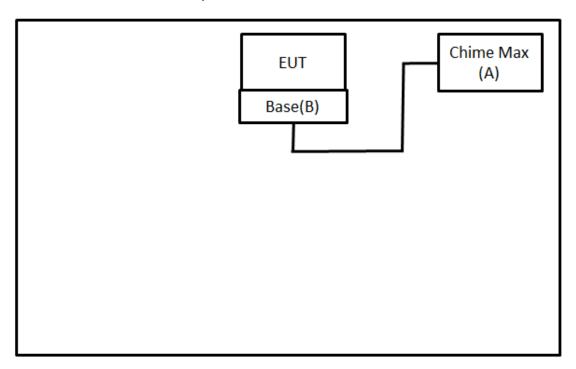
Project No.: 2101T112 Page 9 of 72 Report Version: R02

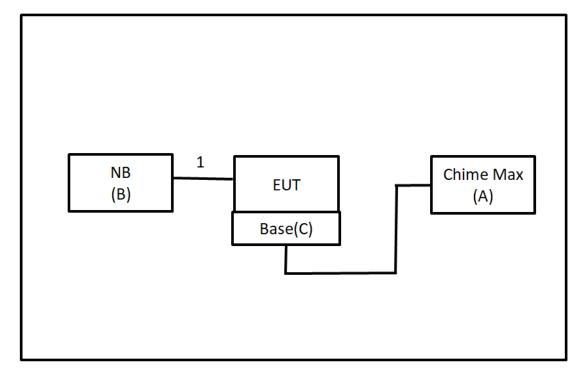
2.2 **TEST MODES**

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11n (HT20)	11	-
	TX Mode_IEEE 802.11b		
	TX Mode_IEEE 802.11g	01/11	Bandedge
Transmitter Radiated Emissions	TX Mode_IEEE 802.11n (HT20)		
(above 1GHz)	TX Mode_IEEE 802.11b		
	TX Mode_IEEE 802.11g	01/06/11	Harmonic
	TX Mode_IEEE 802.11n (HT20)		
Bandwidth &	TX Mode_IEEE 802.11b		
Power Spectral Density &	TX Mode_IEEE 802.11g	01/06/11	-
Antenna conducted Spurious Emission	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Output Power	TX Mode_IEEE 802.11g 01/06/11		-
	TX Mode_IEEE 802.11n (HT20)		

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
 (3) There were no emissions found below 30 MHz within 20 dB of the limit.
- (4) All adapter are evaluated, AC power line conducted emissions and Transmitter Radiated Emissions (below 1GHz) the HIPCAM / Chime Max is the worst and others test items the SIMSUKIAN / SK03T-1200200Z is the worst and recorded as below test data.
- (5) All voltage are evaluated, the AC 120V is the worst and recorded as below test data.


Project No.: 2101T112 Page 10 of 72 Report Version: R02


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Chime Max	HIPCAM	Chime Max	N/A	Supplied by test requester.
В	NB	hp	TPN-I119	N/A	Furnished by test lab.
С	Base	SIMSUKIAN	N/A	N/A	Supplied by test requester.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	USB Cable	Furnished by test lab.

Project No.: 2101T112 Page 12 of 72 Report Version: R02

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

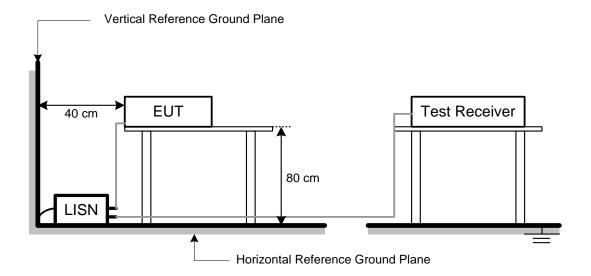
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2101T112 Page 13 of 72 Report Version: R02

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated Emissions (dBuV/m)		Measurement Distance	
(IVIHZ)	Peak	Average	(meters)	
Above 1000	74	54	3	

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

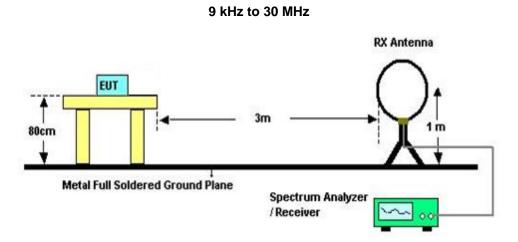
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11		21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

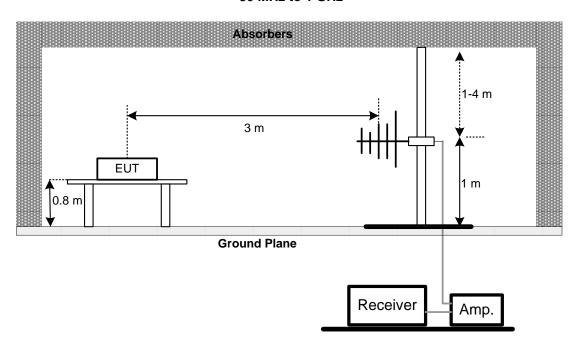
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2101T112 Page 15 of 72 Report Version: R02

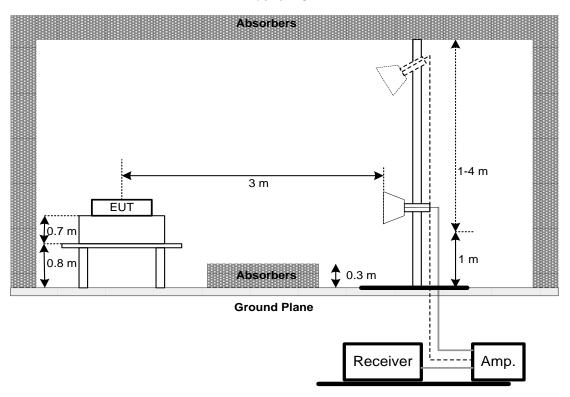

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

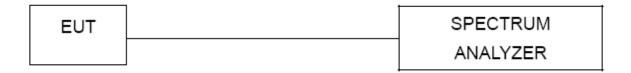
	Re	port No.: BTL-FCCP-3-2101T112				
4.6	TEST RESULT – 30 MHZ TO 1 GHZ					
Plea	e refer to the APPENDIX B.					
4.7	4.7 TEST RESULT – ABOVE 1 GHZ					
Plea	Please refer to the APPENDIX C.					
NOT	NOTE: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.					

Project No.: 2101T112 Page 18 of 72 Report Version: R02

5 BANDWIDTH TEST

5.1 LIMIT

FCC Part15, Subpart C (15.247)			
Section Test Item Limit			
15.247(a)	6 dB Bandwidth	500 kHz	


5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section Test Item Limit				
15.247(b)	Maximum Output Power	1 Watt or 30dBm		

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9.1.2 of FCC KDB 558074 D01 DTS Meas Guidance.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY

7.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section	Test Item	Limit		
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)		

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULT

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

EUT SPECTRUM ANALYZER

8.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULT

Please refer to the APPENDIX G.

Project No.: 2101T112 Page 22 of 72 Report Version: R02

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10	
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7	
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9		
2	Preamplifier	EMCI	EMC012645B	980267	2020/4/10	2021/4/9		
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9		
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9		
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9		
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9		
7	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24		
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11		
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8		
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23		
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23		
12	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Bandwidth						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14	

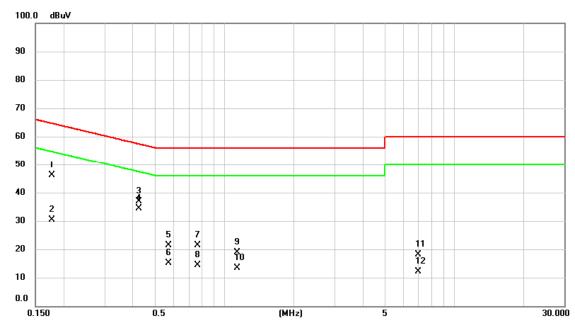
	Output Power						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Power Meter	Anritsu	ML2495A	1128008	2020/6/11	2021/6/10	
2	Power Sensor	Anritsu	MA2411B	1126001	2020/6/11	2021/6/10	

	Power Spectral Density						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14	

Antenna conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

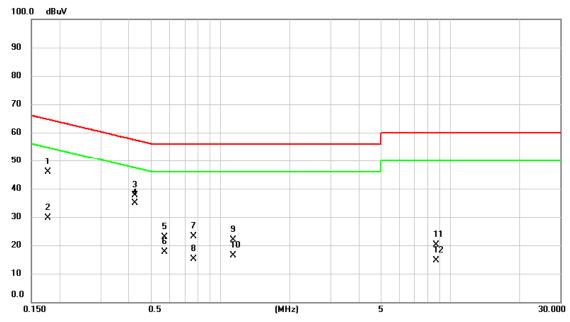
Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

10 EUT TEST PHOTO								
Please refer to document Appendix No.: TP-2101T112-FCCP-1 (APPENDIX-TEST PHOTOS).								
11 EUT PHOTOS								
Please refer to document Appendix No.: EP-2101T112-2 (APPENDIX-EUT PHOTOS).								


Project No.: 2101T112 Page 25 of 72 Report Version: R02

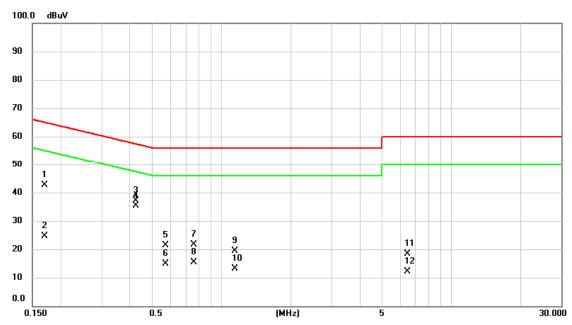
APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2101T112 Page 26 of 72 Report Version: R02


Test Mode	Normal	Tested Date	2021/3/10
Test Frequency	-	Phase	Line

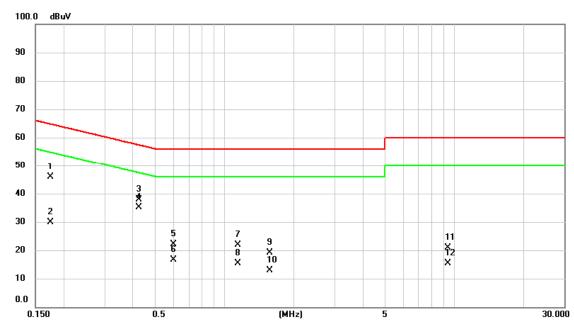
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1770	36.35	9.67	46.02	64.63	-18.61	QP	
2	0.1770	20.70	9.67	30.37	54.63	-24.26	AVG	
3	0.4244	27.29	9.68	36.97	57.36	-20.39	QP	
4 *	0.4244	24.66	9.68	34.34	47.36	-13.02	AVG	
5	0.5730	11.65	9.68	21.33	56.00	-34.67	QP	
6	0.5730	5.34	9.68	15.02	46.00	-30.98	AVG	
7	0.7642	11.71	9.69	21.40	56.00	-34.60	QP	
8	0.7642	4.60	9.69	14.29	46.00	-31.71	AVG	
9	1.1354	9.26	9.70	18.96	56.00	-37.04	QP	
10	1.1354	3.76	9.70	13.46	46.00	-32.54	AVG	
11	6.9855	8.20	9.87	18.07	60.00	-41.93	QP	
12	6.9855	2.28	9.87	12.15	50.00	-37.85	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Test Mode	Normal	Tested Date	2021/3/10
Test Frequency	-	Phase	Neutral

No. N	Лk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1770	36.21	9.67	45.88	64.63	-18.75	QP	
2		0.1770	20.03	9.67	29.70	54.63	-24.93	AVG	
3		0.4245	28.07	9.68	37.75	57.36	-19.61	QP	
4 *	+	0.4245	25.24	9.68	34.92	47.36	-12.44	AVG	
5		0.5730	13.27	9.68	22.95	56.00	-33.05	QP	
6		0.5730	8.02	9.68	17.70	46.00	-28.30	AVG	
7		0.7642	13.44	9.69	23.13	56.00	-32.87	QP	
8		0.7642	5.52	9.69	15.21	46.00	-30.79	AVG	
9		1.1355	12.26	9.70	21.96	56.00	-34.04	QP	
10		1.1355	6.57	9.70	16.27	46.00	-29.73	AVG	
11		8.6955	10.18	9.90	20.08	60.00	-39.92	QP	
12		8.6955	4.77	9.90	14.67	50.00	-35.33	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Test Mode	Idle	Tested Date	2021/3/10	
Test Frequency	-	Phase	Line	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1702	32.97	9.68	42.65	64.95	-22.30	QP	
2		0.1702	14.90	9.68	24.58	54.95	-30.37	AVG	
3		0.4267	27.42	9.68	37.10	57.32	-20.22	QP	
4	*	0.4267	25.64	9.68	35.32	47.32	-12.00	AVG	
5		0.5730	11.66	9.68	21.34	56.00	-34.66	QP	
6		0.5730	5.18	9.68	14.86	46.00	-31.14	AVG	
7		0.7597	11.91	9.69	21.60	56.00	-34.40	QΡ	
8		0.7597	5.64	9.69	15.33	46.00	-30.67	AVG	
9		1.1422	9.75	9.70	19.45	56.00	-36.55	QP	
10		1.1422	3.52	9.70	13.22	46.00	-32.78	AVG	
11		6.4680	8.49	9.86	18.35	60.00	-41.65	QP	
12		6.4680	2.23	9.86	12.09	50.00	-37.91	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/3/10
Test Frequency	-	Phase	Neutral

No. M	1k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	(0.1747	36.10	9.68	45.78	64.73	-18.95	QP	
2	(0.1747	20.22	9.68	29.90	54.73	-24.83	AVG	
3	(0.4244	28.13	9.68	37.81	57.36	-19.55	QP	
4 *	(0.4244	25.42	9.68	35.10	47.36	-12.26	AVG	
5	(0.6000	12.36	9.68	22.04	56.00	-33.96	QP	
6	(0.6000	6.84	9.68	16.52	46.00	-29.48	AVG	
7		1.1467	12.14	9.70	21.84	56.00	-34.16	QP	
8	,	1.1467	5.61	9.70	15.31	46.00	-30.69	AVG	
9	,	1.5697	9.30	9.72	19.02	56.00	-36.98	QP	
10	,	1.5697	3.22	9.72	12.94	46.00	-33.06	AVG	
11	(9.3682	10.99	9.92	20.91	60.00	-39.09	QP	
12	(9.3682	5.54	9.92	15.46	50.00	-34.54	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2101T112 Page 30 of 72 Report Version: R02

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2101T112 Page 31 of 72 Report Version: R02

•	Test Mo	de	IEEE802	2.11n (HT20	0)	Test Date		202	1/3/27	
Tes	st Frequ	ency		62MHz		Polarizatio	n	Vertical		
	Temp		- 2	22°C		Hum.		6	7%	
80.0 dB	BuV/m									_
70										
50										
50										
40			1 X		3 ×		5 X			
30			×	2 X	^				× ×	
20										
10										
0.0										
30.000	127.00		321.00	418.00			9.00 806	.00	1000.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1		352.0400	41.90	-6.09	35.81	46.00	-10.19	peak	Commi	J. 11
2		418.0000	32.01	-4.42	27.59	46.00	-18.41	peak		
3		482.9900	39.65	-3.07	36.58	46.00	-9.42	peak		
4	*	531.4900	40.51	-2.15	38.36	46.00	-7.64	peak		
5		711.9100	36.87	1.07	37.94	46.00	-8.06	peak		
6		932.1000	27.19	4.75	31.94	46.00	-14.06	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode			IEEE802	.11n (HT20	0)	Test Date Polarization			2021/3/27 Horizontal		
Test Frequency Temp		246	62MHz	,							
		2	2°C	Hum.			67%				
80.0 dB	uV/m									٦	
70											
60											
50										-	
40			2 X		*		5 X				
30	_	½		3 X			×	6 X			
20											
10											
0.0											
30.000	127.00	224.00	321.00	418.00	515.00 61	2.00 709	0.00 806	5.00	1000.00	_мн	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent	
1		216.2400	43.60	-10.81	32.79	46.00	-13.21	peak			
2	*	352.0400	44.82	-6.09	38.73	46.00	-7.27	QP			
3		418.9700	35.07	-4.39	30.68	46.00	-15.32	peak			
4		533.4300	39.72	-2.11	37.61	46.00	-8.39	peak			
5		711.9100	32.98	1.07	34.05	46.00	-11.95	peak			
6		863.2300	27.57	3.60	31.17	46.00	-14.83	peak			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Report No.: BTE 1 Ool 3 21011112
APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2101T112 Page 34 of 72 Report Version: R02

Test Mode				802.11b		Test Date Polarization			2021/3/8	
Test Frequency Temp			2MHz		Vertical					
		21°C			Hum.			68%		
130.0 d	BuV/m									
120										
110					*					
100					+					
90										
80										
70				N		\				
60		nagener/decological/deal-andrean	1	- Janobala Maria		Manager of add	a an and a sale of the control of	nament the	AL ALLEGA AL AL	
50	Land and Parties	and the hand the second of the	2				and to alter the environmental	d Austra Caterbased Long 184	on Different Angles Annual .	
40			X					6 X		
30										
20										
10.0	00 2332.0	0 2352.00	2372.00	2392.00	2412.00	2432.00 24	52.00 2 4 7	2.00	2512.00 MI	
No.	Mk.	Freq.	Reading	Correct	Measure-		Over	2.00	2312.00 MI	
110.	IVIIX.	1 104.	Level	Factor	ment	Liiiii	0.101			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2380.400	27.92	30.75	58.67	74.00	-15.33	peak		
2		2380.400	12.46	30.75	43.21	54.00	-10.79	AVG		
3	Χ	2412.000	79.71	30.88	110.59	74.00	36.59	peak	NoLimit	
4	*	2412.000	76.69	30.88	107.57	54.00	53.57	AVG	NoLimit	
5		2489.000	27.23	31.18	58.41	74.00	-15.59	peak		
6		2489.000	7.66	31.18	38.84	54.00	-15.16	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode			IEEE	802.11b		Test Date			2021/3/8	
Test Frequency Temp		2462MHz 21°C			Polarization Hum.			Vertical 68%		
130.0 dB	ıV/m									
120										
110					3 X					
100					$\uparrow\uparrow$					
30										
30										
70				\neg	h					
50	1			کار نما د)	5 X		marage are marage as a file		
50	happy free free should be self	Construction of the second of the	althopharmodelpharmonaumodelpha	ALMON'N		6	Disagramptarmy year	and the state of t	en and an all and an all an	
40	2 X					×				
30										
20										
10.0										
2362.000			2422.00	2442.00				2.00	2562.00 MF	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2385.600	27.17	30.77	57.94	74.00	-16.06	peak		
2		2385.600	8.71	30.77	39.48	54.00	-14.52	AVG		
3	Χ	2462.000	77.71	31.08	108.79	74.00	34.79	peak	NoLimit	
4	*	2462.000	74.60	31.08	105.68	54.00	51.68	AVG	NoLimit	
5		2485.600	27.52	31.17	58.69	74.00	-15.31	peak		
6		2485.600	16.15	31.17	47.32	54.00	-6.68	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE	802.11g		Test Date		202	1/3/8	
Te	st Frequ	iency		2MHz		Polarizatio	n	Ver	tical	
	Temp		2	1°C		Hum.		68	3%	
130.0 dE	luV/m									7
120										
110					3					
100					/ * \					1
90				-						-
80				and a						
70				1	Th.	m				1
60	1	Middle makadawa (1944)	wanter water flater for the state of the sta	<i>∆</i> /(***		MA HAMALIMANA AND	harmon a regionaria	walesandown was	man s	
50	Newspanish (Alberta)	scraftschirwed Statement, has	Marion	2 X						1
40									6 X	
30										1
20										1
2212.00	0 2332.0	0 2352.00	2372.00	2392.00	2412.00 24	32.00 245	52.00 247	2.00	2512.00	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	2.00	2312.00	MII
1101		1 1041	Level	Factor	ment		0.00			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		2389.800	37.38	30.79	68.17	74.00	-5.83	peak		
2		2389.800	19.12	30.79	49.91	54.00	-4.09	AVG		
3	Χ	2412.000	79.98	30.88	110.86	74.00	36.86	peak	NoLim	
4	*	2412.000	70.72	30.88	101.60	54.00	47.60	AVG	NoLim	it
5		2508.600	26.73	31.27	58.00	74.00	-16.00	peak		
6		2508.600	5.54	31.27	36.81	54.00	-17.19	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE	802.11g		Test Date		202	1/3/8	
Tes	t Frequ	iency	246	2MHz		Polarizatio	n	Ver	tical	
	Temp)	2	1°C		Hum.		68	3%	
130.0 dB	uV/m									_
120										
110					3					-
100					(×)					-
90				/						-
80										-
70				MM	94	5				1
60	1			\mathcal{N}^{m}		Y Marie				
50 ////////	id day day dig	Martin martin representation	managhan managan.			S X	the the control of th	Andrew Managery Lan	Arkerske Mandelske	
40	2 X									
30										-
20										-
10.0										
	0 2382.0		2422.00	2442.00				2.00	2562.00	МН
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		2384.000	26.92	30.77	57.69	74.00	-16.31	peak		
2		2384.000	6.40	30.77	37.17	54.00	-16.83	AVG		
3	Χ	2462.000	79.96	31.08	111.04	74.00	37.04	peak	NoLim	
4	*	2462.000	70.70	31.08	101.78	54.00	47.78	AVG	NoLim	it
5		2484.000	37.91	31.17	69.08	74.00	-4.92	peak		
6		2484.000	19.04	31.17	50.21	54.00	-3.79	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Т	est Mo	de	IEEE	802.	11n (HT2	(0)		Test	Date		202	1/3/8	
Tes	t Frequ	iency			2MHz			Polar	izatior	า	Vei	rtical	
	Temp			21	I°C			H	um.		6	8%	
30.0 dBu	ıV/m												_
120													
10						4	N.						
00						/ ×							-
0						1	-						-
0					$\perp \perp 1$								
					MINN -		W						4
'O					. magnetic services			" W					1
o		dadar Artificture		Alask Justin	JAP .			YU.	Harri		o Personal and a second of the	- 5	-
10 hardes	emotil version hab	day and photos	harafel april 60°44	<i>~</i> ·	2				" THE WAY THE	Martin Martin Marie Mari	en grante de Transferient de methodografieren	ne and the speech	**
					×								
10 H												6 X	1
:0													-
:0													
0.0													
2312.000	2332.0	0 2352.00	2372.	00	2392.00	2412	.00 2	432.00	245	2.00 247	2.00	2512.00	MH
No.	Mk.	Freq.	Read Lev		Correct Factor		easure- ment	Li	mit	Over			
		MHz	dBu		dB		3uV/m	dΒι	ıV/m	dB	Detector	Commo	ent
1		2389.600	37.7	72	30.78	6	8.50	74	.00	-5.50	peak		
2		2389.600	18.0)2	30.78	4	8.80	54	.00	-5.20	AVG		
3	Χ	2412.000	79.3	30	30.88	1	10.18	74	.00	36.18	peak	NoLin	nit
4	*	2412.000			30.88		00.82		.00	46.82	AVG	NoLin	nit
5		2500.000			31.23		8.14	74	.00	-15.86	peak		
6		2500.000	6.1	2	31.23	3	37.35	54	.00	-16.65	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

7	est Mo	de	IEEE802	2.11n (HT20	0)	Test Date		202	1/3/8	
Tes	t Frequ	ency		62MHz		Polarizatio	n	Ver	rtical	
	Temp		2	21°C		Hum.		68	8%	
130.0 dB	ıV/m									7
120										
110					3					1
100					* *					-
90										-
80				John J.	\ _{\\\\\}	<u>ա</u> 5				-
70				March of the Park		W(3				1
60	1	l Kurangan	and the second and the	MAN TO THE TOTAL PROPERTY OF THE TOTAL PROPE		Modern	Mary area who have	Name of the second	الإدارة المساورة المس	
50	V1100 W y - V-					×				1
40	- 2	2								-
30	•	•								-
20										1
10.0	2382.0	0 2402.00	2422.00	2442.00	2462.00 24	182.00 250	02.00 252	2.00	2562.00	<u> </u>
No.	Mk.	Freq.	Reading		Measure-	Limit	02.00 292 Over	2.00	2362.00	МН
140.	IVIIX.	1104.	Level	Factor	ment	Liiiik	0 701			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		2386.400	27.32	30.77	58.09	74.00	-15.91	peak		
2		2386.400	6.10	30.77	36.87	54.00	-17.13	AVG		
3	Χ	2462.000	79.47	31.08	110.55	74.00	36.55	peak	NoLim	it
4	*	2462.000	69.78	31.08	100.86	54.00	46.86	AVG	NoLim	it
5		2485.800	40.61	31.17	71.78	74.00	-2.22	peak		
6		2485.800	18.21	31.17	49.38	54.00	-4.62	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			802.11b		Test Date			1/3/10
Te	st Frequ			2MHz		Polarizatio	n		rtical
	Temp		2	1°C		Hum.		6	8%
130.0 dE	BuV/m								
20									
110									
100									
10									
30									
70									
50									
50		ž Ž							
		ž X							
10									
30									
20									
10.0									
1000.00	0 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	- Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	58.07	-9.96	48.11	74.00	-25.89	peak	
2	*	4824.000	52.38	-9.96	42.42	54.00	-11.58	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo					302.11b 2MHz				Test Dolariza					1/3/10 zontal
ies	t Frequ Temp					<u>гинг</u> 1°С			٢	olariza Hum					2011(a) 8%
130.0 dBu	iV/m					1 0				Hull	1.			00	J 70
20															
10															
10															
00															
o															
0															
0															
o															
·															
0		1 X													
o															
		2 X													
io															
:0															
0.0															
1000.000	3550.0	0 6100	.00	8650.00	ı	11200.00	13750	0.00	163	00.00	188	50.00	2140	0.00	26500.00 MH
No.	Mk.	Freq		Readir		Correct	Me	asure	-	Limit	t	Ove	er		
				Leve		Factor		nent							
		MHz		dBu√		dB		BuV/m		dBuV/		dE			Comment
1		4824.0		54.83		-9.96		4.87		74.00		-29.		peak	
2	*	4824.0	00	44.02	2	-9.96	3	4.06		54.00)	-19.	94	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod t Freque				E802. 137MF					Test D					1/3/10 rtical
162	Temp				21°C	IZ				Hum					8%
30.0 dBu					210					Han				0.	570
20															
10															
10															
00															
o															
_															
0															
0															
0															
			1 X												
0			2 X												
0															
10															
:O															
0.0															
	3550.00			8650.00		00.00	1375			00.00		50.00	2140	0.00	26500.00 MI
No.	Mk.	Freq.		Reading Level		orrect		easure ment	-	Limi	t	Ove	er		
		MHz		dBuV		dB		3uV/m		dBuV/	m	dE	}	Detector	Comment
1		7311.00	00	56.45	-2	2.43	5	54.02		74.00	0	-19.	98	peak	
2	*	7311.00	00	48.43	-:	2.43		16.00		54.00	n	-8.0	00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod					302.11b 7MHz				Test D Polariza					1/3/10 zontal
ies	t Freque Temp	епсу				71VIHZ 1°C			-	olariza Hum					2011ai 8%
30.0 dBu	.V/m □ Tellip					1 0				Hun	1.			U	0 /0
20															
10															
00															
0															
o 📖															
·															
0															
0			1												
0			1 X 2												
			×												
0															
0															
o															
0.0															
1000.000	3550.00	6100.	00	8650.0	0	11200.00	137	50.00	163	300.00	1885	50.00	21400	.00	26500.00 MI
No.	Mk.	Freq.		Readi Leve		Correc Factor		easure ment) -	Limi	t	Ove	er		
		MHz		dBu\		dB		BuV/m)	dBuV/	m 'm	dB		Detector	Comment
1		7311.00		56.5		-2.43		54.07		74.00		-19.9		peak	
2	*	7311.00	00	48.1	7	-2.43		45.74		54.00	<u>n</u>	-8.2	6	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mod			802.11b		Test Date			1/3/10
Tes	st Freque	ency		62MHz		Polarizatio	n		rtical
	Temp		2	21°C		Hum.		6	8%
30.0 dB	uV/m								
20									
20									
10									
00									
_									
10									
:0									
ю 🗀									
io									
_			2						
50			2 X						
0									
:0									
20									
1000.00	0 3550.00	6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MH
No.	Mk.	Freq.	Reading		Measure-		Over	.00.00	20300.00 MI
140.	IVIIX.	1 104.	Level	Factor	ment	Liiiil	Ovci		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7386.000	55.84	-2.09	53.75	74.00	-20.25	peak	
2	*	7386.000	48.16	-2.09	46.07	54.00	-7.93	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod				802.11b 2MHz			Test D				1/3/10 zontal
ies	t Freque Temp	ency			1°C			Hum				2011(a) 8%
30.0 dBu	iV/m				1 0			Hull	1.		0.	0 70
JO.O GDG												
20												
10												
00												
o												
0												
0												
o												
			1 2									
			X									
0												
o												
0												
0.0												
	3550.00	6100.0	0 8	650.00	11200.00	13750.0	00 16	6300.00	1885	50.00 21-	400.00	26500.00 MH
No.	Mk.	Freq.		eading	Correct		sure-	Limi		Over		
		'		Level	Factor		ent					
		MHz		dBuV	dB	dBu	ıV/m	dBuV	/m	dB	Detector	Comment
1		7386.00		55.36	-2.09		.27	74.0		-20.73	peak	
2	*	7386.00	0 4	48.03	-2.09	45	.94	54.0	0	-8.06	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				802.11g		Test Dat			1/3/10
Te	st Frequ				2MHz		Polarizati	on		rtical
	Temp)		2	1°C		Hum.		6	8%
30.0 d	BuV/m									
20										
10										
100										
10										
,,										
30										
'o 🗀										
50										
50										
		1 X								
to		2 X								
30		×								
20										
0.0										
1000.00	00 3550.0	0 6100.	00	8650.00	11200.00	13750.00	16300.00 1	8850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measure	- Limit	Over		
				Level	Factor	ment				
		MHz		dBuV	dB	dBuV/m			Detector	Comment
1		4824.00		54.74	-9.96	44.78	74.00	-29.22	peak	
2	*	4824.00	00	43.49	-9.96	33.53	54.00	-20.47	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo				802.11g		Test Da				1/3/10
ies	t Frequ				2MHz 1°C		Polariza Hum				zontal 8%
30.0 dBu	Temp v/m)			 1-0		Hum	•		О	8%
30.0 ubt	147111										
20											
10											
00											
o											
0											
0											
0											
0		1									
o		1 X									
o 📖		2 X									
0											
0.0											
1000.000				8650.	11200.00	750.00	300.00	18850		400.00	26500.00 MH
No.	Mk.	Fred	.	Read Lev	Correct Facto	/leasur	Limit		Over		
		MHz	7	dBu	dB	ment dBuV/r	dBuV/i	m	dB	Detector	Comment
1		4824.0		52.	-9.96	42.17	74.00		-31.83	peak	Johnnerit
2	*	4824.0		42.3	-9.96	32.34	54.00		-21.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			802.11g		Test Date			1/3/10
Tes	t Frequ			37MHz		Polarizatio	n		rtical
	Temp		2	1°C		Hum.		6	8%
30.0 dB	ıV/m								
20									
10									
00									
10									
30									
70									
50									
50			1 X						
10			2 X						
Ю			^						
30									
20									
0.0									
1000.000	3550.00	6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	7311.000	53.91	-2.43	51.48	74.00	-22.52	peak	
2	*	7311.000	43.31	-2.43	40.88	54.00	-13.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			802.11g		Test Date			1/3/10
Tes	t Frequ			37MHz		Polarizatio	n		zontal
	Temp		2	1°C		Hum.		6	8%
130.0 dB	uV/m								
120									
20									
10									
00									
90									
30									
·o 💳									
Ů									
50			_						
50			1 X						
10			2 X						
10			^						
30									
20									
10.0									
	3550.00	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 21 4	00.00	26500.00 MH:
No.	Mk.	Freq.	Reading	Correct	Measure-	- Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7311.000	54.02	-2.43	51.59	74.00	-22.41	peak	
2	*	7311.000	43.16	-2.43	40.73	54.00	-13.27	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod			802.11g		Test Dat			1/3/10
Tes	t Freque	ency		2MHz		Polarizati	on		rtical
	Temp		2	1°C		Hum.		6	8%
130.0 dB	ıV/m								
20									
10									
00									
10									
o									
o 💳									
u									
50									
io			i X						
			2						
ł0			×						
30									
20									
10.0									
	3550.00	6100.00	8650.00	11200.00	13750.00	16300.00 1	8850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure		Over		_0000.00 PH
			Level	Factor	ment	2	0.01		
		MHz	dBuV	dB	dBuV/m	dBuV/m	n dB	Detector	Comment
1		7386.000	53.24	-2.09	51.15	74.00	-22.85	peak	
2	*	7386.000	42.68	-2.09	40.59	54.00	-13.41	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			802.11g		Test Date			1/3/10
les	st Frequ	ency		62MHz		Polarizatio	n		zontal
30.0 dB	Temp			21°C		Hum.		6	8%
130.0 UB	uv/III								
20									
120									
110									
100									
.									
30									
30									
o 🗀									
50									
			1 X						
50									
ю			2 X						
30									
20									
1000.00	0 3550.00	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 21 4	00.00	26500.00 MH:
No.	Mk.	Freq.	Reading		Measure		Over	00.00	20000.00 MI
INO.	IVIIX.	1 164.	Level	Factor	ment	LIIIII	0.001		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7386.000	53.69	-2.09	51.60	74.00	-22.40	peak	
2	*	7386.000	42.67	-2.09	40.58	54.00	-13.42	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo t Frequ				.11n (HT20 2MHz	0)	Test Date Polarizatio			1/3/10 rtical
163	Temp				1°C		Hum.	11		8%
30.0 dBu	.∨/m				. •					<u> </u>
20										
10										
00										
0										
:0										
0										
0										
0		1 X								
0		2 X								
0										
0.0										
1000.000	3550.0	D 6100.	00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.00	00	54.34	-9.96	44.38	74.00	-29.62	peak	
2	*	4824.00	00	43.81	-9.96	33.85	54.00	-20.15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo		IEEE		11n (HT20))		Test Da				1/3/10
Tes	t Frequ				2MHz			Polariza				zontal
	Temp)		21	°C			Hum	١.		6	8%
130.0 dB	ıV/m											
20												
10												
00												
00												
0												
o												
0												
0												
0												
0		1 ×										
0		2										
o 📖		X										
20												
0.0												
1000.000					11200.00	13750.00		300.00	18850.0		00.00	26500.00 MH
No.	Mk.	Freq.	Read		Correct	Meas		Limit	: (Over		
		NALI-	Lev		Factor	mer		4D\ //		٩D	Detector	Commons
1		MHz	dBu		dB 0.06	dBu\		dBuV/i		dB	Detector	Comment
2	*	4824.00			-9.96	42.9		74.00		31.02	peak	
_		4824.00	0 42.2		-9.96	32.2	.O	54.00	<i>,</i> −⊿	21.74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod t Freque		IEI		.11n (HT2 7MHz	0)		Test I		1			1/3/10 rtical
163	Temp	энсу			1°C			Hu		<u>'</u>			8%
130.0 dBu	V/m				. •			110					370
120													
10													
00													
10													
30													
'o													
0			1										
50			X										
10			2 X										
30													
20													
0.0													
	3550.00			0.00	11200.00	13750.		6300.00		50.00	2140	0.00	26500.00 MH
No.	Mk.	Freq.		ading evel	Correct Factor		asure- nent	Lim	1IT	Ov	er 		
		MHz		BuV	dB	dBı	uV/m	dBu\	//m	dE	3	Detector	Comment
1		7311.000		3.68	-2.43		1.25	74.0		-22.		peak	
2	*	7311.000) 4:	3.38	-2.43	40	0.95	54.0	00	-13.	05	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

					1				
	est Mod			2.11n (HT20	0)	Test Da			1/3/10
ies	t Freque	ency		37MHz		Polarizat			zontal
130.0 dB	Temp JV/m			21°C		Hum.	•	Ь	8%
130.0 ub	4 7 III								
120									
.10									
110									
100									
30									
80									
30									
70									
60									
50			i X						
40			2 X						
+0			^						
30									
20									
10.0									
1000.000	3550.00	6100.00	8650.00	11200.00	13750.00	16300.00	18850.00 21	400.00	26500.00 MH:
No.	Mk.	Freq.	Reading		Measure	- Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m			Detector	Comment
1		7311.000		-2.43	51.25	74.00		peak	
2	*	7311.000	43.46	-2.43	41.03	54.00	-12.97	AVG	

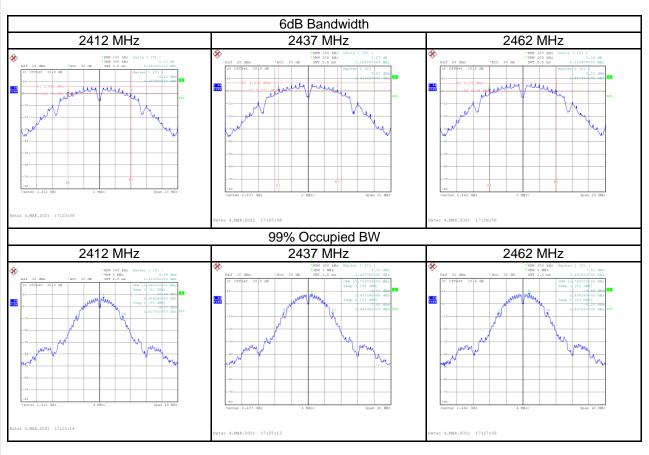
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod		IEE		.11n (HT2	0)			Date			1/3/10
les	t Frequ	ency			2MHz			Polari		n		rtical
	Temp			2	1°C			Ηι	ım.		6	8%
130.0 dB	JV/m											
120												
110												
100												
90												
BO												
70												
60												
50			1 X 2									
40			X									
30												
20												
10.0	2550.00			20.00	11000 00	1075		2222 22		250.00	04 400 00	20500 00 1111
	3550.00			0.00	11200.00	13750		6300.00 Lir		350.00	21400.00	26500.00 MH
No.	Mk.	Freq.		ading evel	Correct Factor		asure- nent	LII	HIL	Ove	;i	
		MHz	dl	3uV	dB	dB	uV/m	dBu	V/m	dB	Detector	Comment
1		7386.000		3.77	-2.09		1.68	74.		-22.3		
2	*	7386.000) 43	3.39	-2.09	4	1.30	54.	.00	-12.7	70 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

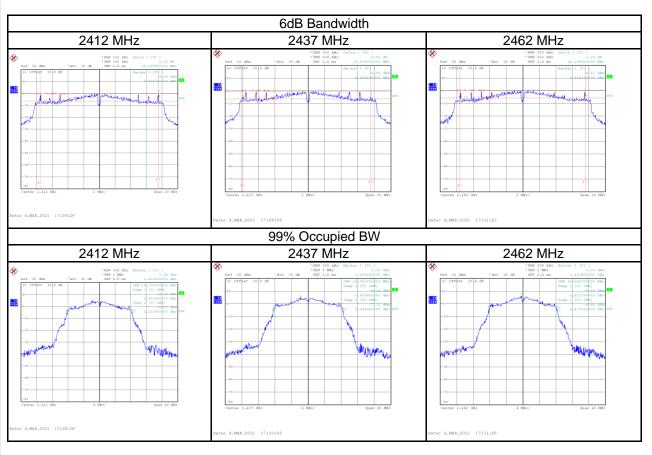
	est Mod t Freque		IEE		.11n (HT20 2MHz	0)		Test D				1/3/10 zontal
162	Temp	епсу			1°C			Hun		•		8%
30.0 dBu	10111 <u>p</u> 1V/m				. 0			i idii				070
20												
10												
00												
o												
:0												
·												
0												
:0			_									
io			X									
.0			2 X									
10												
20												
0.0												
1000.000	3550.00	6100.00	865	0.00	11200.00	13750.	.00 1	6300.00	188	50.00	21400.00	26500.00 MH
No.	Mk.	Freq.		ading evel	Correct Factor		sure- ent	Lim	it	Ove	er	
		MHz		BuV	dB		uV/m	dBuV	/m	dB	Detector	Comment
1		7386.000		3.94	-2.09		.85	74.0		-22.		
2	*	7386.000) 43	3.24	-2.09	41	.15	54.0	0	-12.8	35 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

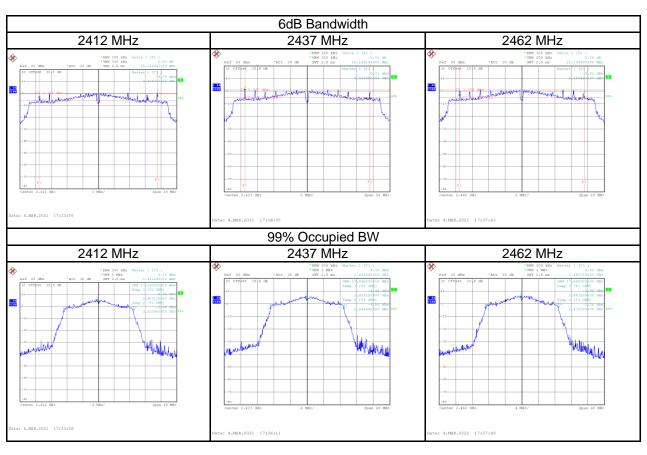

Report No.: BTL-FCCP-3-2101T112 APPENDIX D BANDWIDTH

Project No.: 2101T112 Page 59 of 72 Report Version: R02

Test Mode IEEE 802.11b


Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	8.06	11.68	≥ 500	Pass
2437	7.15	11.76	≥ 500	Pass
2462	8.10	11.76	≥ 500	Pass

Test Mode IEEE 802.11g


Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	15.20	16.72	≥ 500	Pass
2437	15.52	16.88	≥ 500	Pass
2462	15.20	16.56	≥ 500	Pass

Test Mode	IEEE 802.11n (HT20)
-----------	---------------------

Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	15.16	17.84	≥ 500	Pass
2437	15.16	17.84	≥ 500	Pass
2462	15.15	17.68	≥ 500	Pass

	report No	DILION SZIOTITIZ
ADDENDLY F	OUTDUT DOWED	
APPENDIX E	OUTPUT POWER	

Project No.: 2101T112 Page 63 of 72 Report Version: R02

Test Mode IEEE 802.11b	Tested Date	2021/3/5
------------------------	-------------	----------

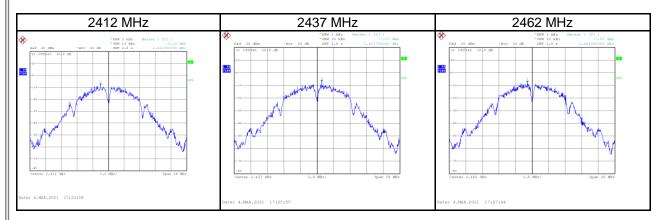
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	17.14	0.0518	30.00	1.0000	Complies
2437	17.49	0.0561	30.00	1.0000	Complies
2462	17.91	0.0618	30.00	1.0000	Complies

To at NA and a	IEEE 000 44 -	Tarta I Data	0004/0/5
Test Mode	IEEE 802.11g	Tested Date	2021/3/5

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	20.01	0.1002	30.00	1.0000	Complies
2437	20.27	0.1064	30.00	1.0000	Complies
2462	20.85	0.1216	30.00	1.0000	Complies

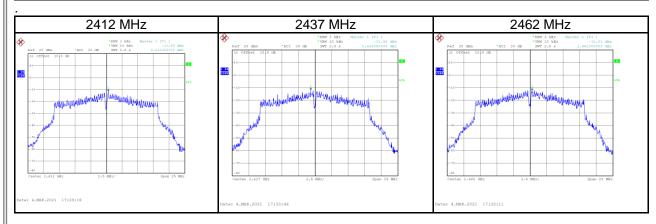
Test Mode	IEEE 802.11n (HT20)	Tested Date	2021/3/5
-----------	---------------------	-------------	----------

Frequency	Conducted Power	Conducted Power (W)	Limit	Limit	Result
(MHz)	(dBm)		(dBm)	(W)	
2412	21.41	0.1384	30.00	1.0000	Complies
2437	21.80	0.1514	30.00	1.0000	Complies
2462	22.16	0.1644	30.00	1.0000	Complies

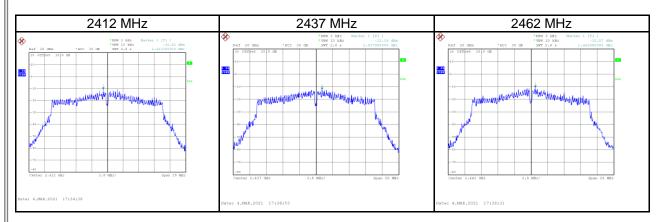

APPENDIX F	POWER SPECTRAL DENSITY

Project No.: 2101T112 Page 65 of 72 Report Version: R02

Test Mode IEEE 802.11b

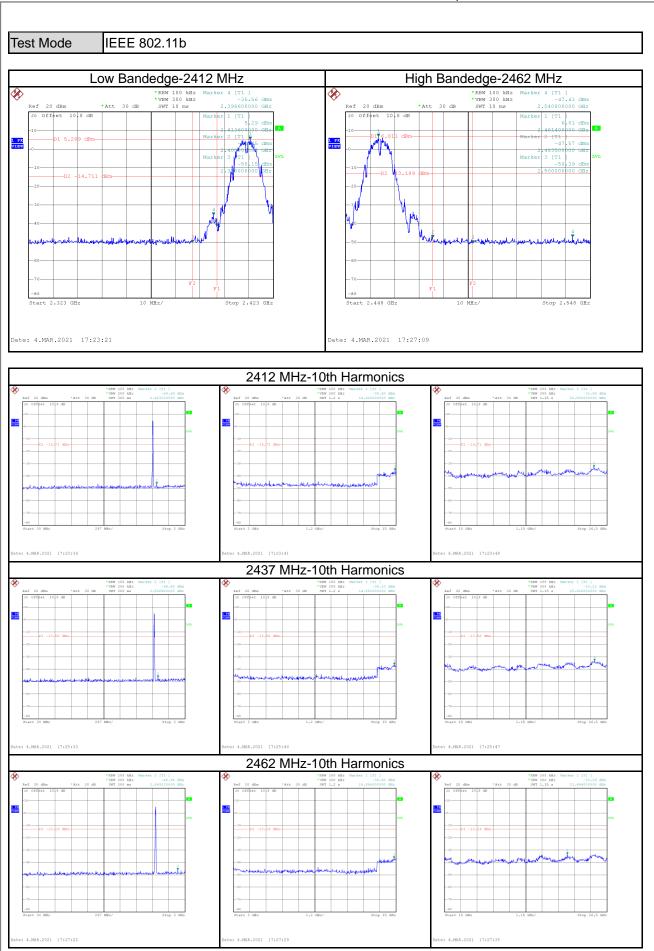

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-8.24	8.00	Pass
2437	-7.27	8.00	Pass
2462	-7.97	8.00	Pass

TIEST MODE TIEFE OUZ. ITC	Test Mode	IEEE 802.11g
---------------------------	-----------	--------------

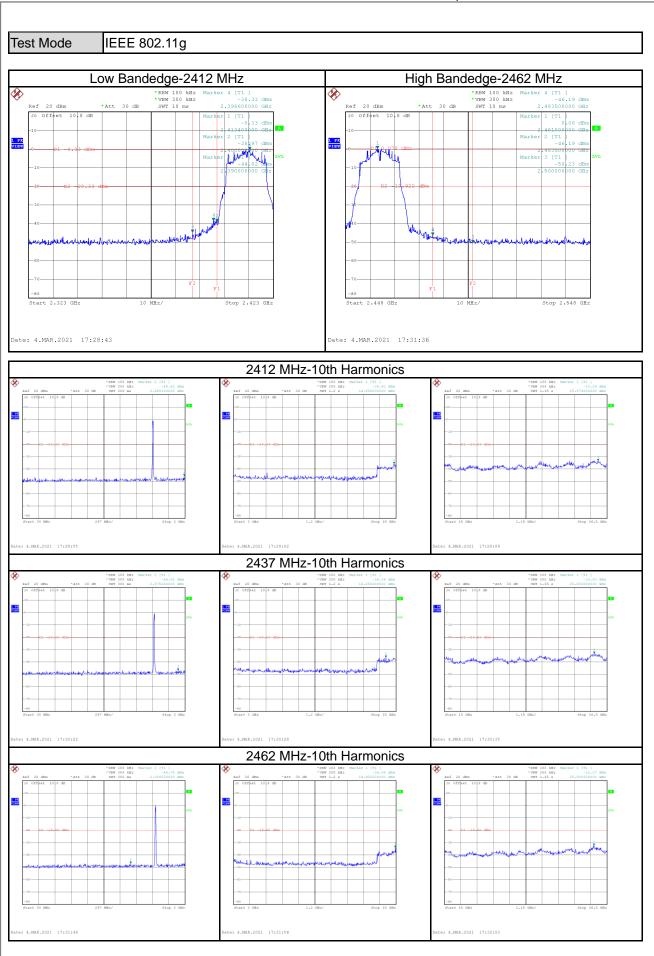

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-11.68	8.00	Pass
2437	-11.95	8.00	Pass
2462	-12.03	8.00	Pass

Test Mode	IEEE 802.11n (HT20)
-----------	---------------------

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-10.62	8.00	Pass
2437	-12.19	8.00	Pass
2462	-10.57	8.00	Pass



APPENDIX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS


Project No.: 2101T112 Page 69 of 72 Report Version: R02

