

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

BioXam Capsule

MODEL NUMBER: AKEM-31SW

FCC ID: 2ATXZ-AKEM31SW

PROJECT NUMBER: 4790785577

REPORT NUMBER: 4790785577-1

ISSUE DATE: Jan. 22, 2024

Prepared for

AnX Robotica Corp.

Prepared by

UL-CCIC COMPANY LIMITED No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, China Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	01/22/2024	Initial Issue	

	Summary of Test Results				
Clause	Test Items	FCC Rules	Test Results		
1	6dB Bandwidth	FCC Part 15.247 (a) (2)	Pass		
2	Conducted Output Power	FCC Part 15.247 (b) (3)	Pass		
3	Power Spectral Density	FCC Part 15.247 (e)	Pass		
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d)	Pass		
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205	Pass		
6 Conducted Emission Test for AC Power Port		FCC Part 15.207	N/A (See Note 1)		
7 Antenna Requirement		FCC Part 15.203	Pass		
Note: The	Note: The EUT is powered by battery.				

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	5
2.	TE	ST METHODOLOGY	6
3.	FA	CILITIES AND ACCREDITATION	
4.	CA	LIBRATION AND UNCERTAINTY	7
4	.1.	MEASURING INSTRUMENT CALIBRATION	7
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EQ	UIPMENT UNDER TEST	
5	.1.	DESCRIPTION OF EUT	
5	.2.	MAXIMUM OUTPUT POWER	
5	.3.	CHANNEL LIST	
5	.4.	TEST CHANNEL CONFIGURATION	10
5	.5.	THE WORSE CASE CONFIGURATIONS	10
5	.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5	.7.	THE WORSE CASE CONFIGURATIONS	10
5	.8.	DESCRIPTION OF TEST SETUP	11
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	12
7.	ME	ASUREMENT METHODS	13
8.	AN	TENNA PORT TEST RESULTS	14
8	.1.	ON TIME AND DUTY CYCLE	14
8	.2.	6 dB DTS BANDWIDTH	16
8	.3.	CONDUCTED OUTPUT POWER	
8	.4.	POWER SPECTRAL DENSITY	20
8	.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	23
9.	RA	DIATED TEST RESULTS	32
9	.1.	LIMITS AND PROCEDURE	
9	.2.	RESTRICTED BANDEDGE	
9	.3.	SPURIOUS EMISSIONS (1~18GHz)	43

TEST RESULTS PASS

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	AnX Robotica Corp.
Address:	6010 W. Spring Creek Pkwy, Plano, TX 75024, USA
Manufacturer Information	
Company Name:	AnX Robotica Corp.
Address:	6010 W. Spring Creek Pkwy, Plano, TX 75024, USA
Factory Information	
Company Name:	ANKON MEDICAL TECHNOLOGIES (SHANGHAI) CO., LTD.
Address:	1/F, No. 2218, Jinsui Road, China (Shanghai) Pilot Free Trade
	Zone, Pudong New District, Shanghai, China
EUT Description	
EUT Name:	BioXam Capsule
Model:	AKEM-31SW
Sample Number:	6172314
Sample Received Date:	Jun. 13, 2023
Date of Tested:	Jun. 13, 2023~ Jan. 22, 2024

APPLICABLE STANDARDS

CFR 47 FCC PART 15 SUBPART C

STANDARD

Prepared By:

Tom Tang

Tom Tang

Reviewed By:

Kenn. Shen

Kevin Shen

Authorized By:

Leon Wu

Leon Wu

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056 CAB No.: CN0073) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	--

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.1dB		
Maximum Conduct Output Power	± 1.3dB		
DTS Bandwidth	±1.9 %		
Maximum Conducted Output Power	± 0.69dB		
Maximum Power Spectral Density Level	±1.5 dB		
Band-edge Compliance	± 1.9%		
Unwanted Emissions in Non-restricted Freq Bands	9kHz-30MHz: ±0.90dB 30MHz-1GHz: ±1.5 dB 1GHz-12.75GHz: ±1.9dB 12.75GHz-26.5GHz: ±2.1dB		
Radiation Emission test (include Fundamental emission) (9kHz-30MHz)	3.4dB		
Radiation Emission test (include Fundamental emission) (30MHz-1GHz)	3.4dB		
Radiation Emission test (1GHz to 26GHz) (include Fundamental emission)	3.5dB (1GHz-18GHz)		
	3.9dB (18GHz-26.5GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	BioXam Capsule
Model	AKEM-31SW
Radio Technology	2.4GHz RF
Operation frequency	2403MHz ~ 2480MHz
Modulation	GFSK
Antenna Type:	FPC Antenna
	2.63 dBi
Antenna Gain:	Note: This data is provided by customer and our lab isn't responsible for this data.
Power Supply	DC 3V

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains	Frequency	Channel Number	Max AV Conducted Power	
(NTX)	(MHz)		(dBm)	
1	2403-2480	1-78[78]	5.73	

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		
20	2422	40	2442	60	2462		

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency	
TX	CH 1, CH 39, CH 78	2403MHz, 2441MHz, 2480MHz	

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band			
Test Software	DAQ-Mobile		
— — — —	Test Channel		
Transmit Antenna Number	NCB: 2MHz		
Number	CH 1	CH 39	CH 78
1	2403	2441	2480

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2403-2480	FPC	2.63

Note: This data is provided by customer and our lab isn't responsible for this data.

Transmit and Receive Mode	Description
1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there is only one transmission antenna, so only the worst data for the antenna is recorded in this report.

The product supports three kinds of data rate (250kbps, 1Mbps, 2Mbps), both of them have been tested and the 2Mbps was the worst case and recorded in this report.

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	E590	/
2	Data Recorder	AnX Robotica Corp.	/	/

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	USB	USB Cable	1	/

ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING INSTRUMENT AND SOFTWARE USED

Conducted Emissions (Instrument)									
Used	Equipment	Manufacturer	Mode			al No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	EMI Test Receiver	R&S	ESF	२३	12	6700	2022-11-26	2023-11-25	2024-11-24
\checkmark	Two-Line V-Network	R&S	ENV	216	12	6701	2022-11-26	2023-11-25	2024-11-24
	Artificial Mains Networks	R&S	ENY	81	12	6712	2022-09-27	2023-09-26	2024-09-25
	Software								
Used	Des	cription		Ма	nufac	turer	Name	Version	
\checkmark	Test Software for (Conducted distur	bance		R&S		EMC32	Ver. 9.25	
		Ra	diated	Emissi	ions (Instrum	nent)		
Used	Equipment	Manufacturer	Mode	l No.	Seri	al No.	Upper Last Cal.	Last Cal.	Next Cal.
	EMI test receiver	R&S	ESF	۲7	22	2993	2022-05-20	2023-04-08	2024-04-07
\checkmark	EMI test receiver	R&S	ESR		12	6703	2022-11-26	2023-11-25	2024-11-24
\checkmark	Spectrum Analyzer	R&S	FSV3	044	22	2992	2022-05-20	2023-04-08	2024-04-07
	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZB	1513	15	5456	2018-06-04	2021-06-03	2024-06-02
\checkmark	Receiver Antenna (30MHz-1GHz)	Schwarzbeck	VULB 9163		12	6704	2019-01-28	2022-01-18	2025-01-17
	Receiver Antenna (1GHz-18GHz)	R&S	HF907		12	6705	2019-01-27	2022-02-28	2025-02-27
	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBHA9170		12	6706	2019-02-29	2022-02-28	2025-02-27
	Pre-amplification (To 18GHz)	Tonscned	TAP01018050		22	4539	2022-10-11	2023-10-10	2024-10-09
	Pre-amplification (To 18GHz)	R&S	SCU-	18D	13	4667	2022-11-26	2023-11-25	2024-11-24
	Pre-amplification (To 26.5GHz)	R&S	SCU-	26D	13	5391	2022-11-26	2023-11-25	2024-11-24
	Band Reject Filter	Wainwright	2375-2	2485-2510-		1	2022-12-19	2023-12-18	2024-12-17
	High Pass Filter	COM-MW	ZBF13-3 01			2	2022-12-19	2023-12-18	2024-12-17
			<u>.</u>	Soft	ware				
Used	Desci	ription	Μ	anufac	turer		Name	Version	
\checkmark	Test Software for R	adiated disturbar	nce	Tonsce	end		TS+	Ver. 2.5	
\checkmark	Test Software for R	adiated disturbar	nce C	hinese-	EMC	R	RE_RSE	Ver. 3.03	
			Oth	ner ins	trume	ents			
Used	Equipment	Manufacturer	Mode	l No.	Seri	al No.	Upper Last Cal.	Last Cal.	Next Cal.
\checkmark	Spectrum Analyzer	Keysight	N901	0B	15	5368	2022-05-20	2023-04-08	2024-04-07
	Power Meter	MWT	MW100-	RFCB	22	1694	2022-05-23	2023-04-08	2024-04-07
\checkmark	Attenuator	PASTERNACK	PE70	87-6	1	624	2022-05-23	2023-04-08	2024-04-07

Form-ULID-008536-9 V3.0

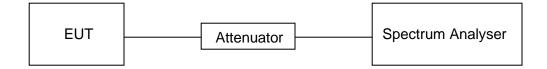
UL-CCIC COMPANY LIMITED This report shall not be reproduced except in full, without the written approval of UL-CCIC COMPANY LIMITED.

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.2.3 (Method PM)
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4 (Method PKPSD)
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	Conducted Emission Test for AC Power Port	ANSI C63.10-2013	6.2

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULTS

On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
100.3	100.3	1	100%	0	0.01	0.01

Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle (Linear)

3) Where: T is On Time (transmit duration)

4) If the duty cycle is above 98%, the Final VBW is 10Hz.

TEST GRAPHS

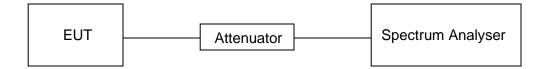
Spectrum Analyzer 1	t			Frequency	一邊
KEYSIGHT Input: RF RL ++ Coupling: DC Align: Auto	Input Z: 50 Ω #Atten: 30 dB Corrections: Off Preamp: Off Freq Ref: Int (S)	PNO: Fast #Avg Type: Po Gate: Off Trig: Free Run IF Gain: Low Sig Track: Off	W ************************************	2.441000000 0112	Settings
1 Spectrum v Scale/Div 10 dB	Ref LvI Offset 8.2 Ref Level 20.00 di			Span 0.00000000 Hz Swept Span	
10.0				Zero Span Full Span	
-10.0				Start Freq 2.441000000 GHz	
-20.0				Stop Freq 2.441000000 GHz	
-30.0				AUTO TUNE CF Step	
-50.0				8.000000 MHz Auto Man	
-60.0				Freq Offset 0 Hz	
Center 2.441000000 GHz Res BW 8 MHz	#Video BW 8.0 M		Span 0 Hz 5 100.0 ms (1001 pts)	X Axis Scale Log Lin	

8.2. 6 dB DTS BANDWIDTH

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C						
Section Test Item Limit Frequency Range (MHz)						
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500KHz	2400-2483.5			

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

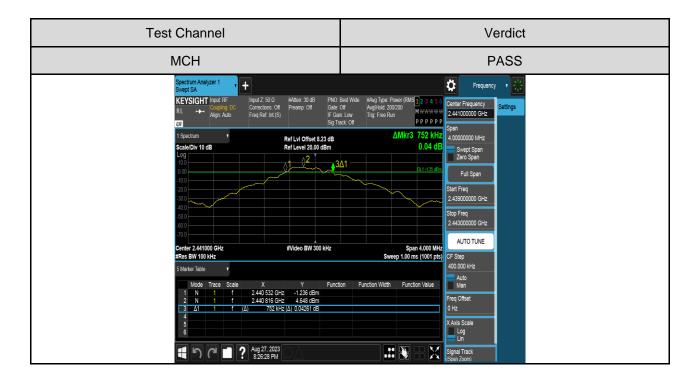
Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6 dB Bandwidth :100K
VBW	For 6dB Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

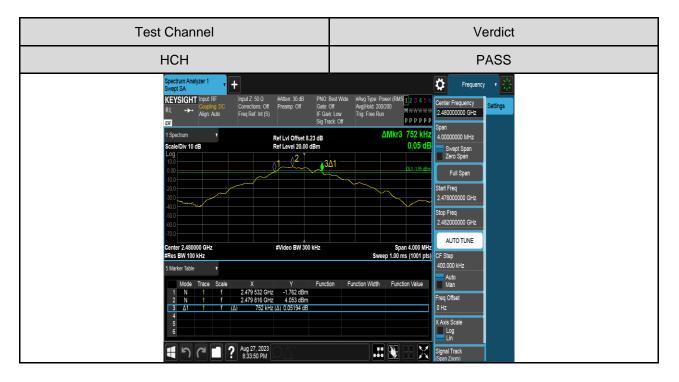
Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V


RESULTS


Channel	6dB bandwidth (MHz)	Limit (kHz)	Result
LCH	0.752	≥500	Pass
MCH	0.752	≥500	Pass
НСН	0.752	≥500	Pass

TEST GRAPHS

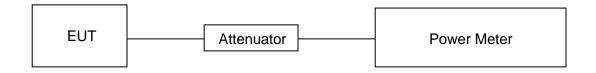
Test Channel	Verdict
LCH	PASS
Spectrum Analyzer 1 v	Frequency Frequency total Angihad: 200200 MWWWWW Setings ΔMkr3 752 kHz 40000000 GHz Setings ΔMkr3 752 kHz Sysept Span Full Span 1 VI 19260 Full Span Stat Freq 2 40000000 GHz Stat Freq 2 40000000 GHz Stat Freq 2 40000000 GHz Stat Freq 2 40000000 GHz AUTO TUNE Stat Freq 2 40000000 GHz Sweep 1.00 ms (1001 pts) OF Step 4000000 KHz OF Step 4000000 GHz AUTO TUNE
	0 Hz X Avis Scale Lo

8.3. AVERAGE CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3)Conducted Output Power1 watt or 30dBm (See note1)2400-2483.5			
Note: If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.			

TEST PROCEDURE


Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

Average detector used for average result.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULT

Test Channel	Maximum Conducted Output Power (AV) (dBm)	LIMIT (dBm)
LCH	5.73	30
MCH	5.67	30
НСН	5.00	30

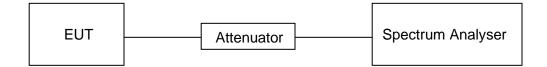
8.4. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC §15.247 (e)Power Spectral Density8 dBm/3 kHz (See note1)2400-2483.5			
Note:			

1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE


Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

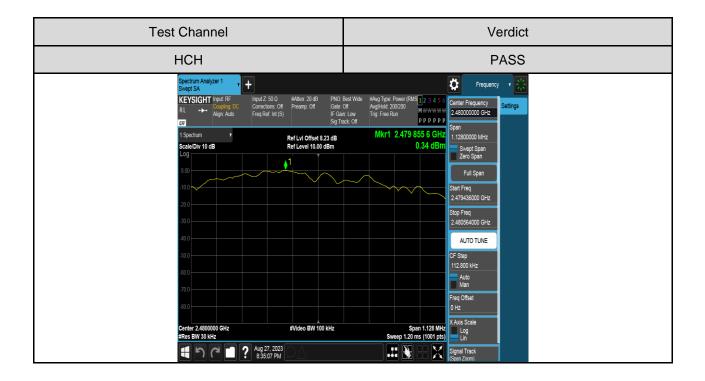
If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

RESULTS


Test Channel	Power Spectral Density (dBm/30kHz)	Limit (dBm/3kHz)	Result
LCH	1.18	8	PASS
MCH	0.88	8	PASS
НСН	0.34	8	PASS

TEST GRAPHS

Test Channel		Verdict
LCH		PASS
Spectrum Analyzer 1 + Swept SA + KEYSIGHT Input RF Control 2: 50.0 RL + Align Auto Control 2: 50.0 I Spectrum - ScaleDiv 10 dB R ScaleDiv 10 dB R Log - 000 - - - <tr< td=""><td>Mitter Fight Run Mitter 240300 Mitter 240300 P P P P P Z Z Z</td><td>Frequency Settings Settings 2000 MHz etf Span as set Source Hz PAZ back Set Set Set Set Set Set Set Set Set Set</td></tr<>	Mitter Fight Run Mitter 240300 Mitter 240300 P P P P P Z Z Z	Frequency Settings Settings 2000 MHz etf Span as set Source Hz PAZ back Set Set Set Set Set Set Set Set Set Set
📲 🕤 C 🗖 ? Aug 27. 2023 8:16:23 PM	DA 📑 🔀 🖶 🔀 Signal Tr	om)

Test Channel	Verdict
МСН	PASS
Spectrum Analyzer 1 Swept CA KEYSIGHT Input RF RL RL StateDV 10 dB ScaleDV 10 dB Control of B Control of B Control of B Control of B Control of Control of Contro	IBm 0.88 dBm Swept Span Zero Span Full Span Start Freq 2.44038000 GHz Stop Freq 2.441564000 GHz Z41564000 GHz Stop Freq Z41564000 GHz Stop Freq Z41564000 GHz Auto UNE GF Step Auto Man Freq Ciffset 0 Hz Auto Scale Log Ling Ling
📢 🗂 🖻 🎴 🕺 🖉 🔙	👪 💽 🕒 🔀 Iggal Track Ispan Zoom

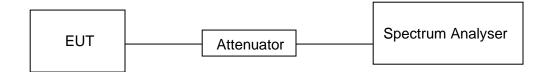
8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) Spurious Emissions CFR 47 FCC §15.247 (d) CFR 47 FCC §15.247 (d) CFR 47 FCC §15.247 (d) CFR 47 FCC §15.247 (d) Spurious Emissions CFR 47 FCC §15.247 (d) CFR 47			

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:


Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	100K	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

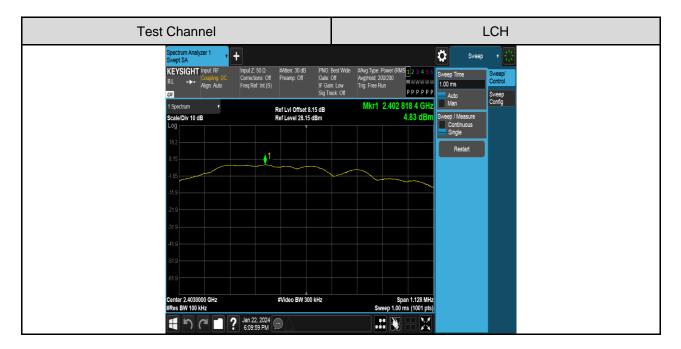
Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 x RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.
I las the master and an few	estimate determines the measurement of trade level

Use the peak marker function to determine the maximum amplitude level.

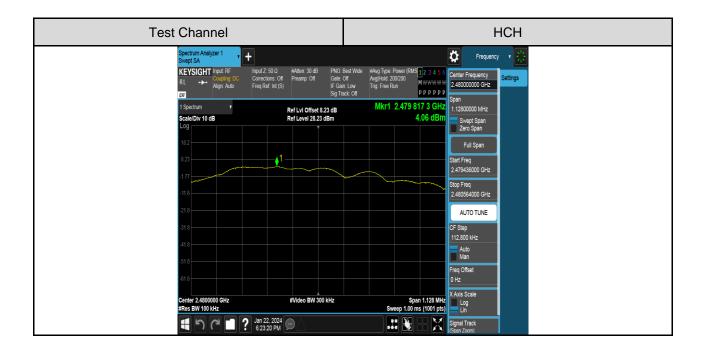
TEST SETUP

TEST ENVIRONMENT


Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V

PART 1: REFERENCE LEVEL MEASUREMENT

TEST RESULTS TABLE


Channel	Result
LCH	Refer to the Test Graph
MCH	Refer to the Test Graph
НСН	Refer to the Test Graph

TEST GRAPHS

Test Channel		Ν	ИСН
Spectrum Analyzer 1 Swept SA KEYSIGHT Input RF RL → Googing DC Align Auto	Corrections: Off Preamp: Off Gate: Freq Ref: Int (S) IF Gai	in:Low Trig: Free Run MWWWWW 2.441000000 GHz ack:Off PPPPPP	Settings
1 Spectrum v Scale/Div 10 dB Log	Ref Lvl Offset 8.23 dB Ref Level 28.23 dBm	Mkr1 2.440 820 6 GHz 4.76 dBm Zero Span Full Span	
823 -177 -118	↓1	2 44036000 GHz 2 44156000 GHz 2 441564000 GHz	
-218 -318 -418		AUTO TUNE CF Step 112.800 kHz Auto	
-51.8 -51.8		Man Freq Offset 0 Hz X Avis Scale	
Center 2.4410000 GHz #Res BW 100 kHz 특 5 군 1	#Video BW 300 kHz Jan 22, 2024 6:16:52 PM	Span 1.128 MHz Sweep 1.00 ms (1001 pts)	

PART 2: CONDUCTED BANDEDGE

TEST RESULTS TABLE

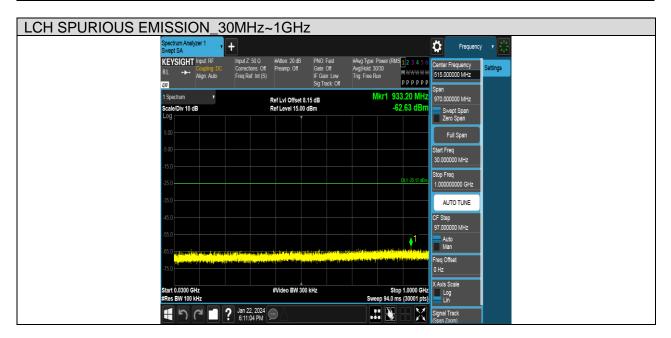
Channel	Result	Verdict
LCH	Refer to the Test Graph	PASS
НСН	Refer to the Test Graph	PASS

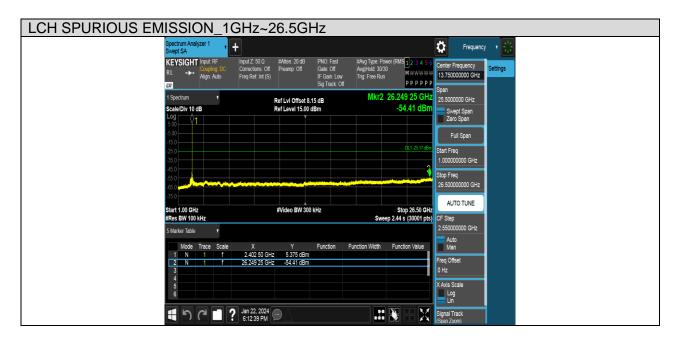
TEST GRAPHS

Test Channel	Verdict
LCH	PASS
Spectrum Analyzer 1 Swept SA Imput Z: 50.0 Complex 00 Freq Ref Int (S) #Atten: 30.dB PNO.1 Gate KEYSIGHT Imput RF Align: Auto Imput Z: 50.0 Freq Ref Int (S) #Atten: 30.dB PNO.1 Gate ISpectrum Imput RF Align: Auto Preat Ref Int (S) #Atten: 30.dB PNO.1 Gate 1Spectrum Imput RF Ref Level 20.00 dBm Ref Level 20.00 dBm Gate 100 Imput RF Imput RF Imput RF Imput RF 000 Imput RF Imput RF Imput RF 000	Frequency Frequency Fast #Aug Type Power (RMS] 12 3 4 5 6 Mag Hold 200200 Center Frequency Setings bck Off P P P P OF GHZ 382500000 GHZ Setings bck Off Set off Set off Set off Stat Freq 2.3000000 GHZ Stat Freq 2.30000000 GHZ Stat Freq 2.3000000 GHZ Stop 240500 GHZ Stop 240500 GHZ Stop Freq Stop 240500 GHZ Stop 26 Freq AUTO TUNE
5 Marter Table Mode Trace Scale X Y Functi 1 N 1 f 2.400 000 GHz 45.59 dBm 3 N 1 f 2.390 000 GHz 45.59 dBm 4 N 1 f 2.390 000 GHz 45.43 dBm 5 N 1 f 2.390 000 GHz 44.33 dBm 6 1 f 2.395 025 GHz 44.43 dBm 6 1 f 2.395 025 GHz 44.43 dBm 6 1 f 2.395 025 GHz 44.43 dBm	on Function Width Function Value I 0.500000 MHz Auto Auto Auto Freq Offset O Hz Lg

Test Channel	Verdict
НСН	PASS
Spectrum Analyzer 1 Swept SA Imput 2: 50.0 #Atten: 30.dB PND.0 RL → Align: Auto Corrections: 0ft Preamp.0ft Off. 1 Spectrum Ref Lvi Offset 8.23 dB Ref Lvi Offset 8.23 dB Ref Lvi Offset 8.23 dB 0 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>Dff AugHold 200200 Verker rrequency Settings</td>	Dff AugHold 200200 Verker rrequency Settings
5 Marker Table v Mode Trace Scale X Y Function 1 1 f 2.483.50 GHz -49.70 dBm -49.70 dBm 3 N 1 f 2.500.00 GHz -54.08 dBm 4 N 1 f 2.497.76 GHz -45.57 dBm 5 6 6 6 6 6 6	son Function Width Function Value Freq Offset 0 Hz VAVis Scale Lin
📢 h P 122,2024 🗩 🛆	Signal Track Signal Zoom

PART 3: CONDUCTED SPURIOUS EMISSION


TEST RESULTS TABLE


Channel	Result	Verdict
LCH	Refer to the Test Graph	PASS
MCH	Refer to the Test Graph	PASS
НСН	Refer to the Test Graph	PASS

TEST GRAPHS

Channel	Verdict
LCH	PASS

Channel	Verdict
MCH	PASS

LCH SPURIOUS EMISSION_30MHz~1GHz

Spectrum Analyzer 1 Swept SA	+	Frequency 🔹 🔀
KEYSIGHT Input: RF RL →→ Coupling DC Align: Auto	Input Z: 50 Ω #Atten: 20 dB PNO: Fast Corrections: Off Preamp: Off Gate: Off Freq Ref. Int (S) IF Gain: Low Sig Track: Off	#Avg Type. Power (RMS 1 2 3 4 5 6 AvgHold: 30/30 Trig. Free Run P P P P P P P P P P P
1 Spectrum V	Ref LvI Offset 8.23 dB	Mkr1 857.73 MHz 970.000000 MHz
Scale/Div 10 dB	Ref Level 15.00 dBm	-62.45 dBm Swept Span Zero Span
5.00		Full Span
-5.00		Start Freq 30.000000 MHz
-15.0		Stop Freg
-25.0		0L1-25.24.06m 1.00000000 GHz
-35.0		AUTO TUNE
-45.0		CF Step 97.00000 MHz
-55.0		Auto
-86.0 Upper particular to the second se	a service in a service of the	
-75.0		0 Hz
Start 0.0300 GHz #Res BW 100 kHz	#Video BW 300 kHz	Stop 1.0000 GHz Sweep 94.0 ms (30001 pts)
■ 5 ⊂ ■ 7	Jan 22, 2024	Signal Track (Span Zoom)

Channel	Verdict
НСН	PASS

9. RADIATED TEST RESULTS

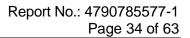
9.1. LIMITS AND PROCEDURE

Please refer to FCC §15.205 and §15.209 Please refer to FCC KDB 558074 Radiation Disturbance Test Limit for FCC (Class B) (9Hz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

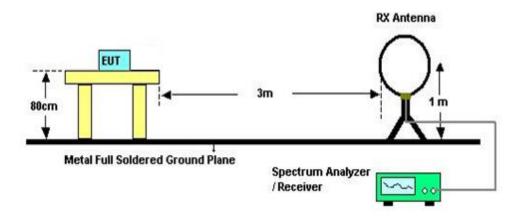
(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.


Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)	
	Peak	Average
Above 1000	74	54

FCC Restricted bands of operation:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7- <mark>1</mark> 56.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			


Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

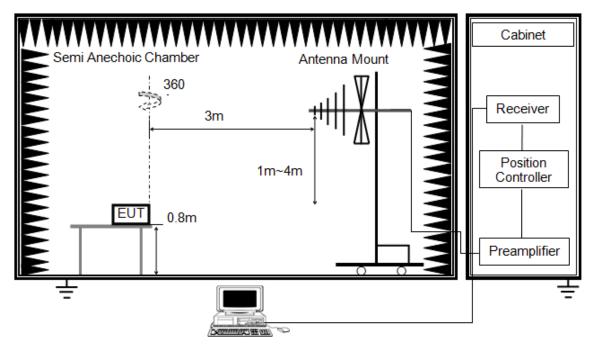
RBW	200Hz (From 9kHz to 0.15MHz) / 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz) / 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/Average
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.


5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Below 1G

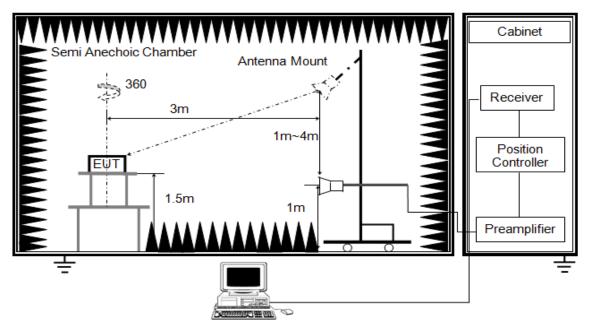
The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 0.8 meter above ground.


4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Above 1G

The setting of the spectrum analyser

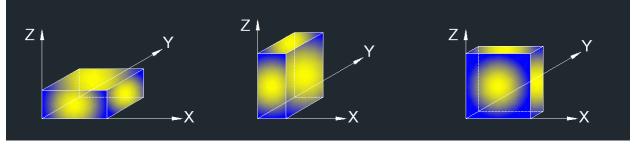
RBW	1 MHz
	PEAK:3 MHz AVG: See note6
Sweep	Auto
Detector	Peak/Average (10 Hz)
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.


5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with set VBW ≤RBW/100, but not less than list in section 7.1 with average detector, max hold to run for at least 50 traces for average measurements.

7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

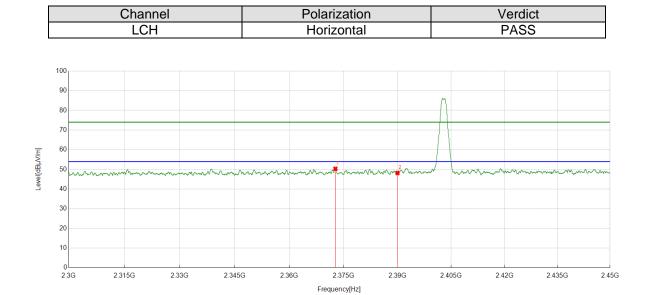
X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Form-ULID-008536-9 V3.0

TEST ENVIRONMENT

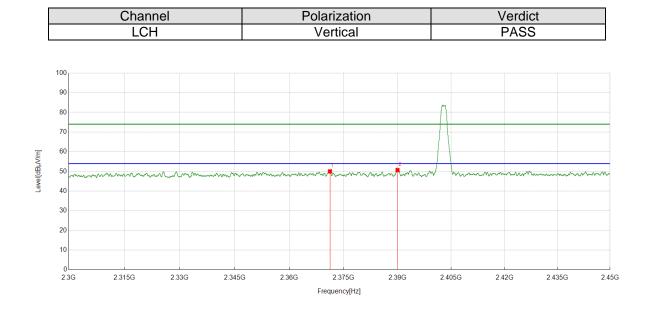
Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3V


9.2. RESTRICTED BANDEDGE

TEST RESULT TABLE

Test Antenna	Channel	Puw(dBm)	Verdict
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
Antenna 1	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	НСН	<limit< td=""><td>PASS</td></limit<>	PASS

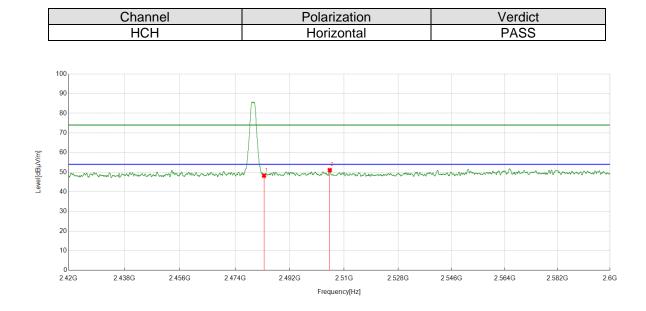
Form-ULID-008536-9 V3.0



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2372.7403	40.14	10.16	50.30	74.00	23.70	Peak
2	2390.0000	37.80	10.35	48.15	74.00	25.85	Peak

Note: 1. Peak detector: RBW: 1 MHz, VBW: 3 MHz.

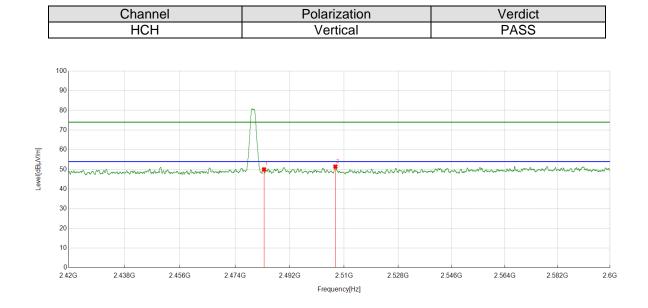
- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor,
- Correct Factor = Antenna Factor + Loss (Cable + Attenuator) Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2371.2402	39.87	10.14	50.01	74.00	23.99	Peak
2	2390.0000	40.32	10.35	50.67	74.00	23.33	Peak

Note: 1. Peak detector: RBW: 1 MHz, VBW: 3 MHz.

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor,
- Correct Factor = Antenna Factor + Loss (Cable + Attenuator) Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	37.57	10.64	48.21	74.00	25.79	Peak
2	2505.2407	40.11	10.92	51.03	74.00	22.97	Peak

- Note: 1. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
 - 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
 - 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable + Attenuator) – Amplifier Gain.
 - 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	39.35	10.64	49.99	74.00	24.01	Peak
2	2507.0859	40.40	10.99	51.39	74.00	22.61	Peak

Note: 1. Peak detector: RBW: 1 MHz, VBW: 3 MHz.

- 2. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 7.1.).
- 3. Measurement = Reading Level + Correct Factor,
- Correct Factor = Antenna Factor + Loss (Cable + Attenuator) Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

9.3. SPURIOUS EMISSIONS (1~18GHz)

TEST RESULTS TABLE

1) For 1GHz~18GHz

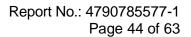
Channel	Puw(dBm)	Verdict
LCH	<limit< td=""><td>PASS</td></limit<>	PASS
MCH	<limit< td=""><td>PASS</td></limit<>	PASS
НСН	<limit< td=""><td>PASS</td></limit<>	PASS

2) For 9kHz~30MHz

Channel	Puw(dBm)	Verdict
LCH	<limit< td=""><td>PASS</td></limit<>	PASS

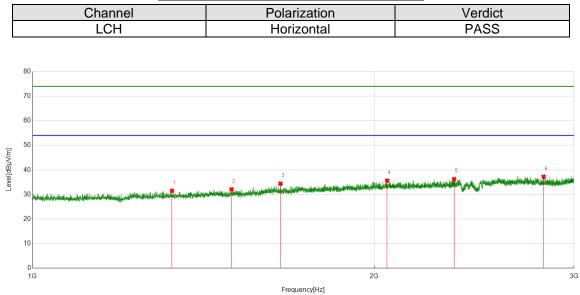
Note: Through pre-testing all the test channels, but only the data of the worst case is included in this test report.

3) For 30MHz~1GHz


Channel	Puw(dBm)	Verdict	
LCH	<limit< td=""><td>PASS</td></limit<>	PASS	

Note: Through pre-testing all the test channels, but only the data of the worst case is included in this test report.

4) For 18GHz~26.5GHz


Channel	Puw(dBm)	Verdict		
LCH	<limit< th=""><th>PASS</th></limit<>	PASS		

Note: Through pre-testing all the test channels, but only the data of the worst case is included in this test report.

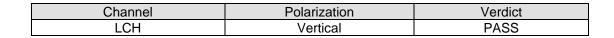
Part 1: 1GHz~3GHz

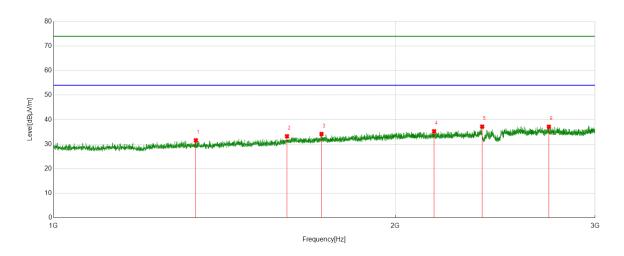
HARMONICS AND SPURIOUS EMISSIONS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	1327.0409	52.11	-20.62	31.49	74.00	42.51	Peak
2	1497.3122	51.80	-19.73	32.07	74.00	41.93	Peak
3	1653.8317	52.75	-18.34	34.41	74.00	39.59	Peak
4	2053.3817	51.64	-16.01	35.63	74.00	38.37	Peak
5	2351.919	51.00	-14.76	36.24	74.00	37.76	Peak
6	2820.4776	50.12	-12.92	37.20	74.00	36.80	Peak

Note: 1. Measurement = Reading Level + Correct Factor,

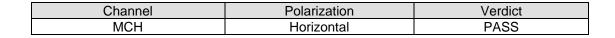
Correct Factor = Antenna Factor + Loss (Cable + Filter) – Amplifier Gain.

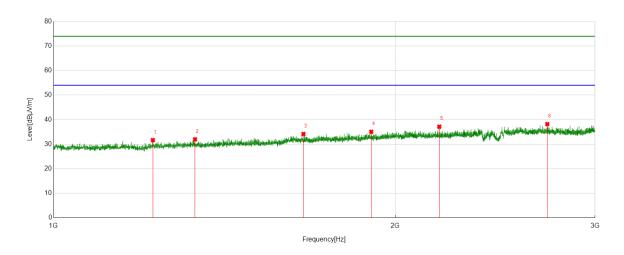

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.


- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.

5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.

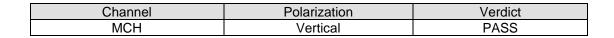
6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

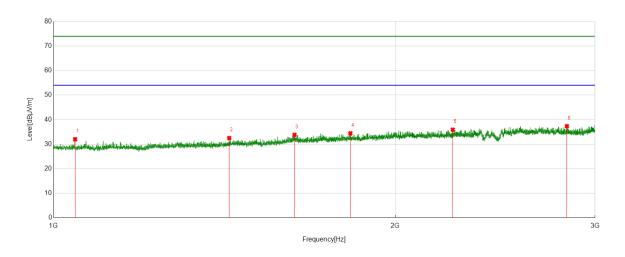




No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	1334.7918	52.18	-20.60	31.58	74.00	42.42	Peak
2	1605.8257	52.01	-18.78	33.23	74.00	40.77	Peak
3	1722.3403	52.24	-18.07	34.17	74.00	39.83	Peak
4	2164.3955	51.25	-15.99	35.26	74.00	38.74	Peak
5	2385.9232	51.40	-14.23	37.17	74.00	36.83	Peak
6	2731.7165	49.55	-12.43	37.12	74.00	36.88	Peak

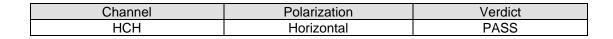
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

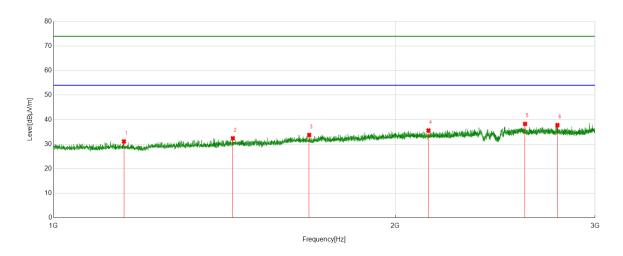




No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	1223.2779	52.89	-21.23	31.66	74.00	42.34	Peak
2	1332.5416	52.57	-20.59	31.98	74.00	42.02	Peak
3	1660.3325	52.48	-18.32	34.16	74.00	39.84	Peak
4	1905.1131	52.11	-17.04	35.07	74.00	38.93	Peak
5	2187.1484	53.05	-15.91	37.14	74.00	36.86	Peak
6	2722.9654	50.51	-12.31	38.20	74.00	35.80	Peak

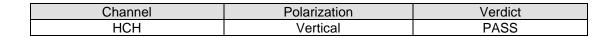
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

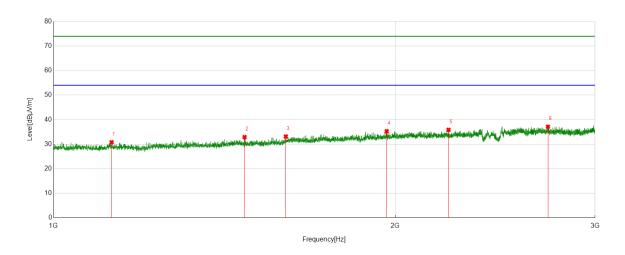




No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	1044.7556	53.98	-21.94	32.04	74.00	41.96	Peak
2	1428.3035	52.57	-20.05	32.52	74.00	41.48	Peak
3	1630.5788	52.28	-18.46	33.82	74.00	40.18	Peak
4	1826.3533	51.81	-17.36	34.45	74.00	39.55	Peak
5	2247.906	50.89	-14.97	35.92	74.00	38.08	Peak
6	2833.4792	50.03	-12.68	37.35	74.00	36.65	Peak

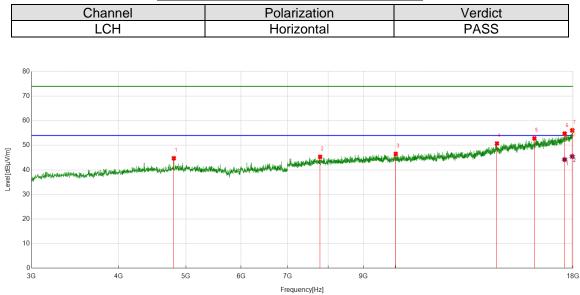
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.





No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	1153.5192	52.49	-21.35	31.14	74.00	42.86	Peak
2	1438.8049	52.20	-19.78	32.42	74.00	41.58	Peak
3	1679.835	51.90	-18.14	33.76	74.00	40.24	Peak
4	2139.6425	51.19	-15.61	35.58	74.00	38.42	Peak
5	2602.9504	51.49	-13.21	38.28	74.00	35.72	Peak
6	2779.4724	50.68	-12.91	37.77	74.00	36.23	Peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.



No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	1125.0156	52.24	-21.44	30.80	74.00	43.20	Peak
2	1473.3092	52.71	-19.81	32.90	74.00	41.10	Peak
3	1602.0753	51.88	-18.74	33.14	74.00	40.86	Peak
4	1965.8707	51.79	-16.49	35.30	74.00	38.70	Peak
5	2228.6536	51.17	-15.31	35.86	74.00	38.14	Peak
6	2726.4658	49.47	-12.34	37.13	74.00	36.87	Peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 4. Peak: Peak detector.
- 5. For below 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band Reject Filter losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Part 2: 3GHz~18GHz

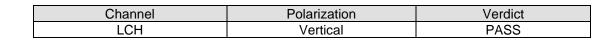
HARMONICS AND SPURIOUS EMISSIONS

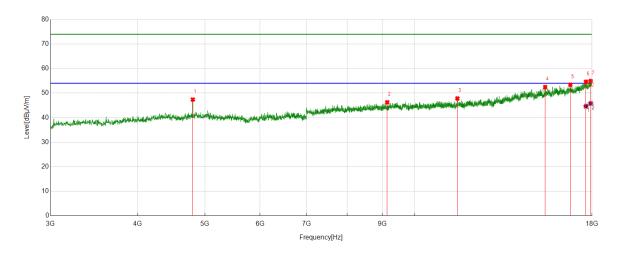
PK Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	4803.9755	48.62	-3.88	44.74	74.00	29.26	Peak
2	7794.9744	44.25	1.07	45.32	74.00	28.68	Peak
3	10011.5014	42.48	4.05	46.53	74.00	27.47	Peak
4	13994.4993	40.32	10.42	50.74	74.00	23.26	Peak
5	15839.73	39.00	13.79	52.79	74.00	21.21	Peak
6	17506.8134	37.52	17.21	54.73	74.00	19.27	Peak
7	17953.1191	37.69	18.39	56.08	74.00	17.92	Peak

AV Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	17506.8134	26.98	17.21	44.19	54.00	9.81	AV
2	17953.1191	27.08	18.39	45.47	54.00	8.53	AV

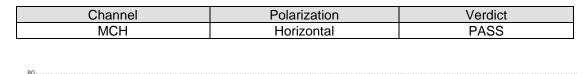

Note: 1. Measurement = Reading Level + Correct Factor,

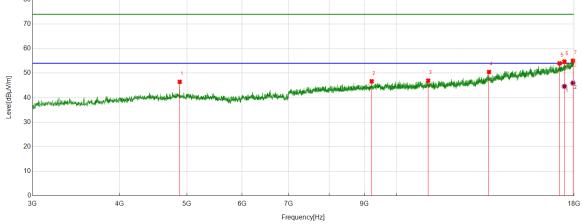

Correct Factor = Antenna Factor + Loss (Cable + Filter) – Amplifier Gain.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 8.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	4803.9755	51.25	-3.88	47.37	74.00	26.63	Peak
2	9139.5174	43.69	2.56	46.25	74.00	27.75	Peak
3	11526.6908	41.87	5.96	47.83	74.00	26.17	Peak
4	15414.0518	39.34	13.14	52.48	74.00	21.52	Peak
5	16752.9691	38.46	14.96	53.42	74.00	20.58	Peak
6	17643.7055	36.79	17.80	54.59	74.00	19.41	Peak
7	17919.3649	36.2	18.73	54.93	74.00	19.07	Peak

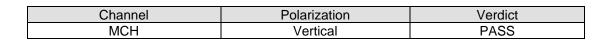

AV Result:

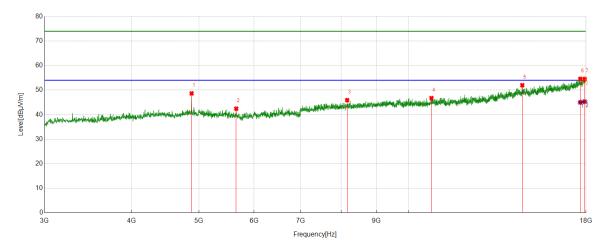

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	17643.7055	26.84	17.80	44.64	54.00	9.36	AV
2	17919.3649	27.06	18.73	45.79	54.00	8.21	AV

Note: 1. Measurement = Reading Level + Correct Factor,

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 8.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	4882.7353	49.94	-3.49	46.45	74.00	27.55	Peak
2	9214.5268	43.88	2.81	46.69	74.00	27.31	Peak
3	11108.5136	41.71	5.23	46.94	74.00	27.06	Peak
4	13585.6982	41.43	9.05	50.48	74.00	23.52	Peak
5	17161.7702	38.37	15.62	53.99	74.00	20.01	Peak
6	17437.4297	37.93	16.75	54.68	74.00	19.32	Peak
7	17934.3668	36.35	18.68	55.03	74.00	18.97	Peak

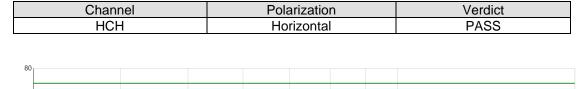

AV Result:

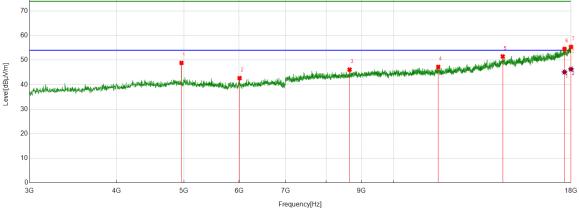

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	17437.4297	27.84	16.75	44.59	54.00	9.41	AV
2	17934.3668	27.27	18.68	45.95	54.00	8.05	AV

Note: 1. Measurement = Reading Level + Correct Factor,

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 8.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	4880.8601	52.15	-3.48	48.67	74.00	25.33	Peak
2	5657.2072	45.05	-2.60	42.45	74.00	31.55	Peak
3	8166.2708	44.10	1.82	45.92	74.00	28.08	Peak
4	10793.4742	42.42	4.34	46.76	74.00	27.24	Peak
5	14575.822	39.83	12.18	52.01	74.00	21.99	Peak
6	17664.333	36.95	17.62	54.57	74.00	19.43	Peak
7	17919.3649	35.81	18.73	54.54	74.00	19.46	Peak

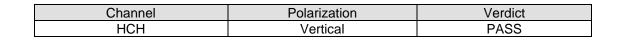

AV Result:

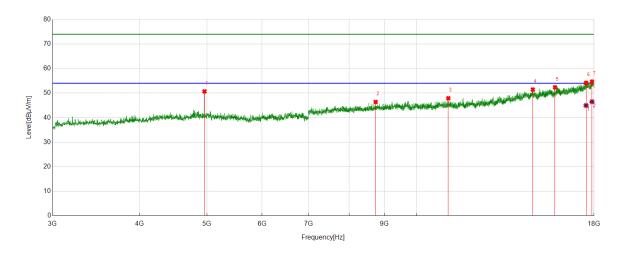

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	17664.333	27.40	17.62	45.02	54.00	8.98	AV
2	17919.3649	26.57	18.73	45.30	54.00	8.70	AV

Note: 1. Measurement = Reading Level + Correct Factor,

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 8.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	4959.62	53.05	-4.18	48.87	74.00	25.13	Peak
2	6011.6265	44.54	-1.88	42.66	74.00	31.34	Peak
3	8650.0813	43.97	2.17	46.14	74.00	27.86	Peak
4	11599.825	41.78	5.46	47.24	74.00	26.76	Peak
5	14358.2948	40.49	11.02	51.51	74.00	22.49	Peak
6	17615.5769	36.90	17.63	54.53	74.00	19.47	Peak
7	17998.1248	36.66	18.72	55.38	74.00	18.62	Peak


AV Result:


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	17615.5769	27.48	17.63	45.11	54.00	8.89	AV
2	17998.1248	27.58	18.72	46.30	54.00	7.70	AV

Note: 1. Measurement = Reading Level + Correct Factor,

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 8.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	4959.62	54.89	-4.18	50.71	74.00	23.29	Peak
2	8738.2173	43.82	2.59	46.41	74.00	27.59	Peak
3	11114.1393	42.85	5.04	47.89	74.00	26.11	Peak
4	14697.7122	39.86	11.61	51.47	74.00	22.53	Peak
5	15819.1024	38.28	14.08	52.36	74.00	21.64	Peak
6	17531.1914	37.56	16.59	54.15	74.00	19.85	Peak
7	17878.1098	35.70	18.96	54.66	74.00	19.34	Peak

AV Result:

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	[MHz]	[dBuV/m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
1	17531.1914	28.37	16.59	44.96	54.00	9.04	AV
2	17878.1098	27.53	18.96	46.49	54.00	7.51	AV

Note: 1. Measurement = Reading Level + Correct Factor,

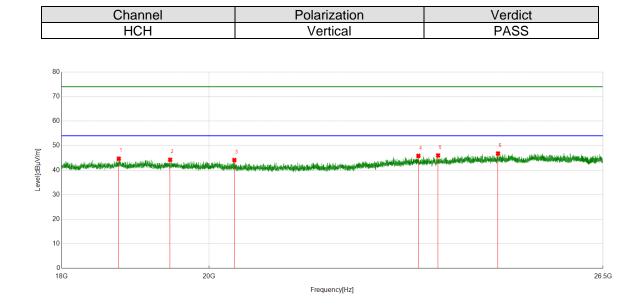
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak detector: RBW: 1 MHz, VBW: 3 MHz.
- 4. Average detector: RBW: 1 MHz, VBW: 1/T MHz(refer to clause 8.1.).
- 5. For above 3GHz part, filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for HPF losses.
- 6. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Part 3: 18GHz~26.5GHz

Channel Polarization Verdict HCH Horizontal PASS 80 70 60 50 Level[dBµV/m] 40 30 20 10 0 18G 20G 26.5G Frequency[Hz]

SPURIOUS EMISSIONS 18GHz TO 26.5GHz (WORST-CASE CONFIGURATION)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	18385.0885	51.47	-6.68	44.79	74.00	29.21	Peak
2	20057.2057	49.64	-5.10	44.54	74.00	29.46	Peak
3	22849.735	49.20	-3.84	45.36	74.00	28.64	Peak
4	23485.5986	49.28	-3.16	46.12	74.00	27.88	Peak
5	24688.4688	50.16	-3.18	46.98	74.00	27.02	Peak
6	25746.8247	50.71	-2.93	47.78	74.00	26.22	Peak

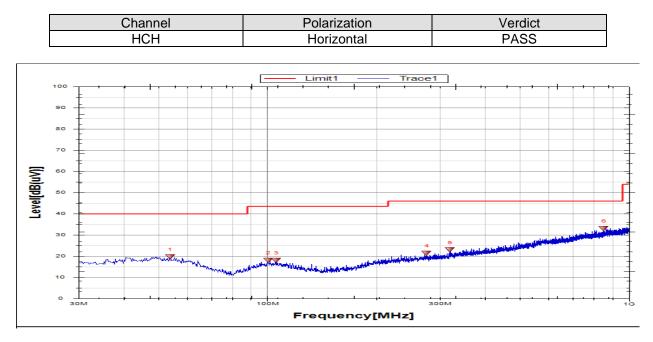

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Loss (Cable) – Amplifier Gain.

4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

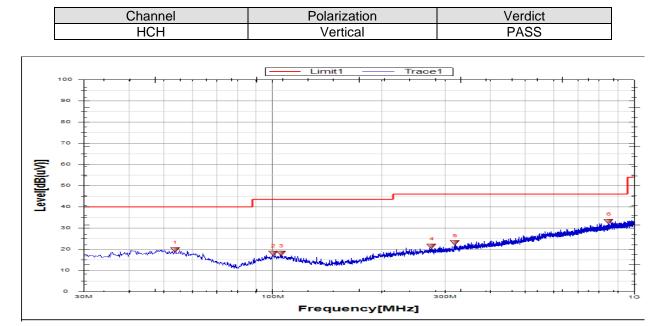
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	18751.4751	50.90	-6.21	44.69	74.00	29.31	Peak
2	19451.9452	49.75	-5.50	44.25	74.00	29.75	Peak
3	20364.9365	49.64	-5.51	44.13	74.00	29.87	Peak
4	23225.4725	49.22	-3.38	45.84	74.00	28.16	Peak
5	23554.4554	49.12	-3.12	46.00	74.00	28.00	Peak
6	24584.7585	49.87	-3.08	46.79	74.00	27.21	Peak


Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 2. Test setup: RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto.

- 3. Measurement = Reading Level + Correct Factor,
 - Correct Factor = Antenna Factor + Loss (Cable) Amplifier Gain.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

Note: All the test modes have been tested, only the worst data record in the report.

Part 4: 30MHz~1GHz


SPURIOUS EMISSIONS 30M TO 1GHz (WORST-CASE CONFIGURATION)

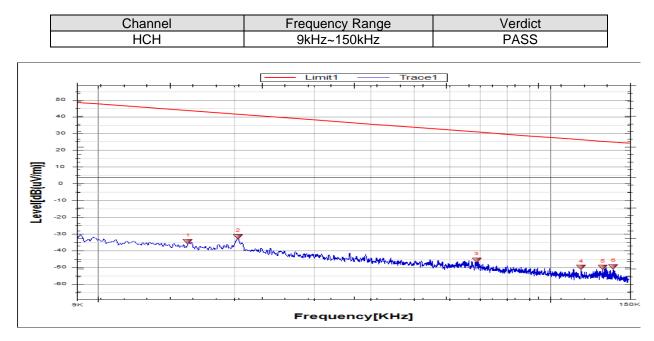
No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	47.9495	0.66	20.81	21.47	40	18.53	Peak
2	99.8576	-0.88	18.85	17.97	43.5	25.53	Peak
3	279.8378	4.63	20.85	25.48	46	20.52	Peak
4	287.8423	6.39	21.01	27.4	46	18.6	Peak
5	582.0688	1.51	27.55	29.06	46	16.94	Peak
6	883. 5722	1.39	31.35	32.74	46	13.26	Peak

Note: 1. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

- 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 3. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Loss (Cable).

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	53.771	-0.75	20.5	19.75	40	20.25	Peak
2	100.5853	-0.66	18.85	18.19	43.5	25.31	Peak
3	105.9216	-0.42	18.62	18.2	43.5	25.3	Peak
4	275.9569	0.74	20.78	21.52	46	24.48	Peak
5	320.103	1.09	21.96	23.05	46	22.95	Peak
6	853.252	2.21	30.88	33.09	46	12.91	Peak

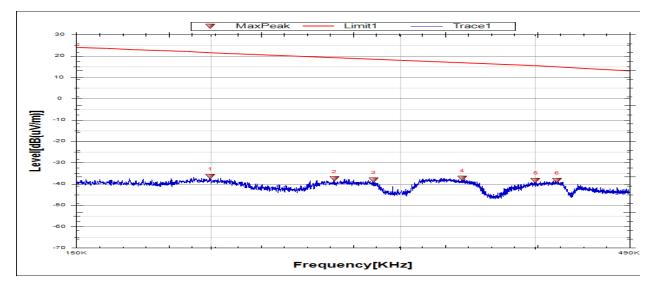
Note: 1. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.


3. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Loss (Cable).

Part 5: 9kHz~30MHz

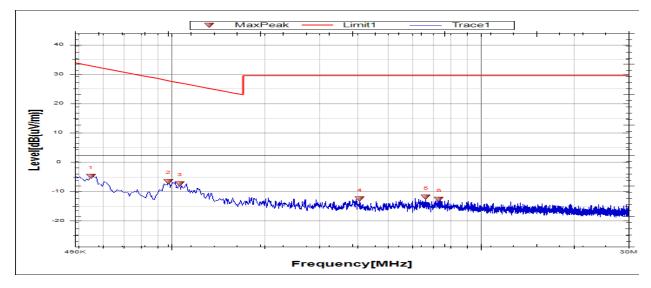
SPURIOUS EMISSIONS Below 30MHz (WORST CASE CONFIGURATION-FACE ON)


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0158	27.27	-61.85	-34.58	44.11	78.69	Peak
2	0.0204	30.15	-61.81	-31.66	41.44	73.1	Peak
3	0.0687	16.08	-61.77	-45.69	30.89	76.58	Peak
4	0.117	11.79	-61.82	-50.03	26.25	76.28	Peak
5	0.1308	11.84	-61.83	-49.99	25.28	75.27	Peak
6	0.138	12.27	-61.83	-49.56	24.81	74.37	Peak

Note: 1. Measurement = Reading Level + Correct Factor,

- Correct Factor = Antenna Factor + Loss (Cable) + Distance Factor.
- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, the test data of Face-on was the worst and recorded in the report.

Channel	Frequency Range	Verdict
НСН	150kHz~490kHz	PASS


No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.1997	25.39	-61.86	-36.47	21.59	58.06	Peak
2	0.2605	24.29	-61.89	-37.6	19.45	57.05	Peak
3	0.2834	23.84	-61.9	-38.06	18.64	56.7	Peak
4	0.3424	24.54	-61.9	-37.36	17	54.36	Peak
5	0.401	23.59	-61.88	-38.29	15.53	53.82	Peak
6	0.4196	23. 51	-61.88	-38.37	15.02	53.39	Peak

Correct Factor = Antenna Factor + Loss (Cable) + Distance Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, the test data of Face-on was the worst and recorded in the report.

Channel	Frequency Range	Verdict
НСН	150kHz~490kHz	PASS

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.5490	16.97	-21.87	-4.90	32.86	37.76	Peak
2	0.9770	15.23	-21.85	-6.62	27.81	34.43	Peak
3	1.0656	14.48	-21.85	-7.37	27.06	34.43	Peak
4	4.0614	9.20	-21.75	-12.55	29.54	42.09	Peak
5	6.6515	9.80	-21.74	-11.94	29.54	41.48	Peak
6	7.3377	9.04	-21.72	-12.68	29.54	42.22	Peak

Correct Factor = Antenna Factor + Loss (Cable) + Distance Factor.

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, the test data of Face-on was the worst and recorded in the report.

10. ANTENNA REQUIREMENTS

APPLICABLE REQUIREMENTS

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

ANTENNA GAIN

The antenna gain of EUT is less than 6 dBi

END OF REPORT

Form-ULID-008536-9 V3.0