

TTESwitch A664 Lab v2.0

User Manual

Document type: User Manual

Document number: D-A664Lab-G-05-001

Document revision: 1.0.1

Document date: 2020-06-29
Security: Confidential
Status: Released
Product version: 2.0.0

Schoenbrunner Str. 7, A-1040 Vienna, Austria, Tel. +43 1 585 34 34 – 0, Fax +43 1 585 34 34 – 90, office@tttech.com

No part of the document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the written permission of TTTech Computertechnik AG. Company or product names mentioned in this document may be trademarks or registered trademarks of their respective holders. TTTech Computertechnik AG undertakes no further obligation or relation to this document.

Table of Contents

Та	Table of Contents 1							
Lis	ist of Tables	3						
Lis	ist of Figures	4						
Di	isclaimer	5						
Lit	imited Rights Notice	5						
1		6						
2								
_	2.1 Identification 2.2 External interfaces 2.3 Functional features	. 7						
3	to the first of the first production of the first prod	10						
4	3.1 Block diagram 3.1.1 Primary components 3.2 Interfaces 3.2.1 Status LEDs 3.2.2 CONFIG interface and configuration plug 3.2.2.1 Pin programming scheme 3.2.3 MIRROR port 3.2.4 Ethernet ports 3.2.5 JTAG interface 3.2.6 RS-232 interface 3.2.6 RS-232 interface 3.3.1 Cooling 3.3.2 Size 3.3.3 Weight 3.3.4 Electrical characteristics	. 10 . 10 . 11 . 12 . 13 . 14 . 14 . 15 . 16 . 16						
5		20						
	5.1 INIT 5.2 MAINTENANCE 5.3 OPERATIONAL 5.4 PASSIVE 5.5 QUIET 5.6 SHOP 5.7 Error handling	. 21 . 21 . 22 . 22 . 22						
6	Creating a switch configuration 6.1 Using TTE-Tools for configuration creation 6.2 Creating a signature file for switch engine device configuration 6.3 Configuring the internal end system 6.4 Creating the switch configuration image (CONFIGS_BAK) 6.5 Uploading the switch configuration 6.5.1 Upload via RS-232 serial interface 6.5.2 Upload via A615 data loading 6.6 Configurable Target Hardware ID	. 24 . 25 . 26 . 27 . 27						

TABLE OF CONTENTS

7	Diag	Diagnosis									
	7.1	Mana	agement Information Database	30							
	7.2										
	7.3	Healt	th message	31							
	7.4		sign message								
	7.5			32							
		7.5.1	Read/write commands	32							
		7.5.2	File commands	32							
		7.5.3	Port commands	33							
				33							
8			nooting omer support information	35							
Α _Ι	pen	A xib	List of Built-In Self-Tests	36							
ΑĮ	pen	dix B	Serial terminal output at start-up	38							
GI	ossa	ry		40							
Re	efere	nces		42							
ln	dex			43							

List of Tables

1	Front panel status LEDs of the TTE-Switch A664 Lab v2.0
2	Pin assignment of the Configuration Plug
3	Valid programming pin combinations for the default configuration
4	
5	RJ45 port LED status
6	Pin assignment of the RS-232 interface
7	Functionality of the various states
8	Default values for internal application ports for critical and best-effort traffic
9	TT-615A3-Loader operations
10	List of Built-In Self-Tests 3

List of Figures

1	The TTE-Switch A664 Lab v2.0
2	Product identification label
3	Front view of the TTE-Switch A664 Lab v2.0
4	Rear view of the TTE-Switch A664 Lab v2.0
5	Block diagram of the TTE-Switch A664 Lab v2.0
6	The CONFIG interface of the TTE-Switch A664 Lab v2.0
	(a) The DB-25S CONFIG interface
	(b) The DB-25P configuration plug
7	The Ethernet ports of the TTE-Switch A664 Lab v2.0
8	Dimensions of the TTE-Switch A664 Lab v2.0
9	The TTE-Switch A664 Lab v2.0 state machine
10	Send file in Tera Term
11	Binary file transfer option in Tera Term

Legal Disclaimer

THE INFORMATION GIVEN IN THIS USER MANUAL IS GIVEN AS A SUPPORT FOR THE USAGE OF THE ^{TTE}SWITCH A664 LAB V2.0 ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE ^{TTE}SWITCH A664 LAB V2.0. THE RECIPIENT OF THIS USER MANUAL MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION.

TTTECH COMPUTERTECHNIK AG PROVIDES THE USER MANUAL FOR THE TTESWITCH A664 LAB V2.0 "AS IS" AND WITH ALL FAULTS AND HEREBY DISCLAIMS ALL WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OR COMPLETENESS, OR OF RESULTS TO THE EXTENT PERMITTED BY APPLICABLE LAW. THE ENTIRE RISK, AS TO THE QUALITY, USE OR PERFORMANCE OF THE USER MANUAL, REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW TTTECH COMPUTERTECHNIK AG SHALL IN NO EVENT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOSS OF DATA, DATA BEING RENDERED INACCURATE, BUSINESS INTERRUPTION OR ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF THE USE OR INABILITY TO USE THE USER MANUAL, EVEN IF TITECH COMPUTERTECHNIK AG HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TTTECH COMPUTERTECHNIK AG MAKES NO WARRANTY OF ITS PRODUCTS, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-ULAR PURPOSE AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW DISCLAIMS ALL LIABILITIES OR DAMAGES RESULTING FROM OR ARISING OUT OF THE APPLICATION OR USE OF THESE PRODUCTS.

Limited Rights Notice (Dec 2007)

(a) THESE DATA ARE SUBMITTED WITH LIMITED RIGHTS UNDER ANY U.S. GOVERNMENT CONTRACT AND SUBCONTRACT. THESE DATA MAY BE REPRODUCED AND USED BY THE GOVERNMENT OR THE PRIME CONTRACTOR WITH THE EXPRESS LIMITATION THAT THEY WILL NOT, WITHOUT WRITTEN PERMISSION OF THE CONTRACTOR, BE USED FOR PURPOSES OF MANUFACTURE NOR DISCLOSED OUTSIDE THE GOVERNMENT.

(b) THIS NOTICE SHALL BE MARKED ON ANY REPRODUCTION OF THESE DATA, IN WHOLE OR IN PART.

ALL PRODUCT NAMES AND TRADEMARKS MENTIONED IN THIS USER MANUAL ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS, WHICH ARE IN NO WAY ASSOCIATED OR AFFILIATED WITH TTTECH COMPUTERTECHNIK AG.

TTESwitch A664 Lab v2.0 User Manual

Document version 1.0.1 of 2020-06-29

Document number: D-A664Lab-G-05-001

1 Introduction

The TTE-Switch A664 Lab v2.0 supports laboratory testing efforts of TTEthernet.

TTEthernet is a fault-tolerant real-time communication protocol for safety-related systems that makes it possible to conveniently configure the deterministic processing of *critical* Ethernet traffic (time-triggered, ARINC 664 P7 [2]) and *non-critical*, standard Ethernet traffic (IEEE 802.3 [6]) in one physical infrastructure.

Switching function

The TTE-Switch A664 Lab v2.0 is a high-performance deterministic Ethernet switch that makes it possible to implement critical network-centric applications and process packets on all its 24 ports with full-line speeds, operating in full-duplex mode:

- 6 x triple-speed 10/100/1000 Mbit/s ports, and
- 18 x 10/100 Mbit/s ports

One additional port is available for traffic mirroring. The TTE-Switch A664 Lab v2.0 has built-in mechanisms for traffic policing and fault isolation.

Virtual links and protocol support

The TTE-Switch A664 Lab v2.0 allows configuring up to 4096 virtual links (VLs). Virtual links can be configured with 8 priorities and a bandwidth allocation gap (BAG) of 0.01 ms to 1310.71 ms. The network configuration is stored in the non-volatile memory of the switch (256 Mbit). It is optionally possible to configure IEEE 802.1Q VLANs. Profiled IP/UDP, redundancy management, and traffic shaping are implemented in hardware.

Data loading and diagnosis

The built-in management module runs on a separate CPU and allows for data loading and the querying of the network status via SNMP. Data loading is done according to ARINC 615A-3/TFTP and ARINC 665-loadable software parts.

2 Overview of the TTE-Switch A664 Lab v2.0

Figure 1: The TTE-Switch A664 Lab v2.0

2.1 Identification

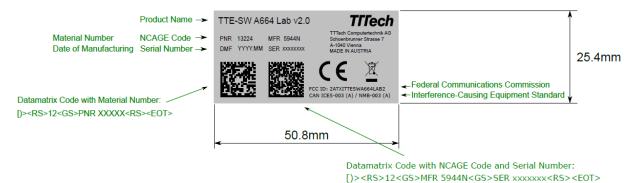


Figure 2: Product identification label

2.2 External interfaces

- 1. 4 x Status LEDs (POWER/STATUS/SYNC/DEF. CONF)
- 2. 1 x DB-25S configuration interface for diagnosis and maintenance and access to switch discretes
- 3. 1 x 10/100/1000 Mbit/s MIRROR port for mirroring
- 4. 2 x 10/100/1000 Mbit/s Ethernet ports (PORT1 and PORT2) that can be used either via SFP or RJ45
- 5. 4 x 10/100/1000 Mbit/s Ethernet ports via RJ45
- 6. 18 x 10/100 Mbit/s Ethernet ports via RJ45
- 7. 1 x Ethernet Link/Activity LED per port
- 8. 1 x JTAG connector for factory testing and programming
- 9. 1 x RS-232 serial interface that can be used for debugging
- 10. 1 x IEC 60320-1 C13 type power connector. The switch has an electrical fuse that protects the external power rail so that a failing switch does not cause the system power supply rail to fail.

Figure 3: Front view of the TTE-Switch A664 Lab v2.0

Figure 4: Rear view of the TTE-Switch A664 Lab v2.0

2.3 Functional features

- · Full line speed switching capability
- The switch supports partitioning between three traffic classes on each port:
 - a) Rate-constrained traffic (full compliance with ARINC 664 part 7 [2]),
 - b) Time-triggered traffic (SAE AS 6802 [7]), and
 - c) Best-effort traffic (IEEE 802.3-2005 [6])
- · 32 MB of memory
- · 256 Mbit Flash memory for storing switch configurations
- · Application CPU for management functions
- Configuration data programmable via ARINC 615A [1]/TFTP
- · Built-in self-tests (BISTs) for health monitoring
- · Monitoring faulty/healthy switch state through SNMP
- · Pin programming support
- External adapter with 12 dip switches for pin programming (including parity) and mode selection.

Supported network standards

- The switch forwards best-effort traffic in compliance with IEEE 802.3-2005 [6] (switching). The switch has a maximum internal non-blocking port-to-port latency of 2 µs for 1 Gbit/s ports, 20 µs for 100 Mbit/s ports, and 200 µs for 10 Mbit/s ports. This is for a frame size of 1518 bytes, sent as best-effort (BE) traffic. The switch allows limiting best-effort traffic for each ingress and egress port.
- The switch forwards VLAN-tagged frames according to IEEE 802.1Q [4] (VLAN core capabilities).

NOTE

The switch does not implement port-based VLANs (edge switch). This means that the switch cannot add VLAN tags to frames coming in on a specific port. The switch does not implement content-based VLANs (e.g., based on IP addresses or TCP/UDP ports).

The switch supports static VLAN routing according to a configuration table. VLAN frames will be accepted and routed only to the configured switch ports. VLANs are processed with a higher priority than BE frames without a VLAN tag. The switch routes VLAN frames according to the priority specified in the VLAN field. Frames with the same VLAN priority are processed on the basis of the incoming switch port number. VLAN frames with the same priority are handled in a similar way as RC frames with the same priority. Frames from Port 1 have priority over frames from Port 2. The switch can store VLAN frames in a separated buffer space. Depending on the respective configuration, BE and VLAN frames cannot share the same buffer space. Frames that contain a VLAN tag that is not in the list of the configured VLAN IDs are routed according to a default VLAN route. A default VLAN

2. OVERVIEW

route specifies to which ports such frames can be routed. If no port is configured, these frames are dropped.

TTEthernet implementation

- 8 sub-schedules
- · 8 clock synchronization masters
- 4096 virtual links
- · Store-and-forward switch architecture

ARINC 664 p7 implementation

- · Policing, filtering, switching engine for band-width control and traffic prioritizing
- · Integrity checking and error checking of frames
- · 4096 virtual links with up to 8 priorities, with restrictions of their associated ports
- 4096 BAGs
- · BAGs freely configurable from 0.01 to 1310 ms
- BAG configuration granularity 100 μs
- · Jitter and BAG resolution of 8 ns
- The switch supports ICMP (ping), SNMP v1 and A615A-3.
- Configuration data programmable via ARINC 615A/TFTP

Physical specifications

19-inch rack housing, 1 height unit (1U)

Power supply

- 110-230 V, 50/60 Hz
- 0.8 A max. current

Environmental operating ranges

• Operating temperature: 0 °C to +70 °C

Standards compliance

- IEEE 802.3[™]-2005 (switching, flow control) [6].
- IEEE 802.1Q™-2011 [4]
- IEEE 1588-2008: The switch supports the IEEE 1588 end-to-end transparent clock mode. The clock of the switch is not synchronized to the IEEE 1588 Master Clock [5].
- ARINC Specification 664P7-1: The switch is fully compliant with ARINC 664 part 7 (deterministic Ethernet networking) [2].
- **SAE AS 6802**: The switch supports the SAE AS 6802 network synchronization and start-up mechanism (fault-tolerant TTEthernet clock synchronization protocol) [7].

3 Functional description

This section describes the functionality of the TTE-Switch A664 Lab v2.0.

3.1 Block diagram

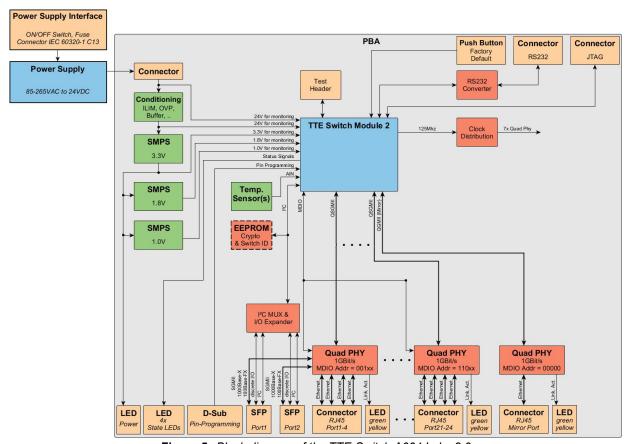


Figure 5: Block diagram of the TTE-Switch A664 Lab v2.0

3.1.1 Primary components

Base Board:

• 25 Ethernet transceivers (18 x 10/100 Mbit/s ports, 6 x 10/100/1000 Mbit/s ports, and 1 x 10/100/1000 Mbit/s port for mirroring only).

TTE Switch Module 2:

- · ASIC as switch engine.
- Reduced-latency DRAM with a storage capacity of 288 Mbit and running at 320 MHz.
- · Application CPU that controls BISTs, error logging and management functions.
- Three 256 Mbit Flash memory ICs for storing the configuration(s) (CPU Flash).
- JTAG chain that offers access to the CPU and reduced-latency DRAM for debugging, production testing and programming the flash memories.
- · A 64 kbit FRAM used for error logging.

3.2 Interfaces

This section describes the front-panel and back-panel interfaces of the TTE-Switch A664 Lab v2.0.

3.2.1 Status LEDs

In operation, the front-panel LEDs of the TTE-Switch A664 Lab v2.0 indicate the following status information. An empty field in the table means the respective LED is not relevant for the given status:

POWER	STATUS	SYNC	DEF. CONF	Description
•				When the power supply of the switch is turned on, the <i>POWER</i> LED is solid green.
•	•			When the bootloader starts or when the parity check fails, the <i>STATUS</i> LED is solid red.
•	-			When the firmware activation fails, the <i>STATUS</i> LED (controlled by the bootloader) flashes red.
•	-			When no valid configuration is found, the <i>STATUS</i> LED flashes orange.
•	•			When the firmware is running in Normal mode, the <i>STATUS</i> LED is solid green.
•	•			During start-up (initializing PHYs, running PBISTs, etc) or when the firmware is running in SHOP mode, the <i>STATUS</i> LED is solid orange.
•	•	•		When the firmware is running without an active TTEthernet synchronization in Normal mode, the <i>STATUS</i> LED is solid green and the <i>SYNC</i> LED is off.
•	•	•		When the firmware is running without an active TTEthernet synchronization in SHOP mode, the <i>STATUS</i> LED is solid orange and the <i>SYNC</i> LED is off.
•	•	•		When the firmware is running with an active TTEthernet synchronization in Normal mode, the <i>STATUS</i> LED and the <i>SYNC</i> LED are solid green.
•	•	•		When the firmware is running with an active TTEthernet synchronization in SHOP mode, the <i>STATUS</i> LED is solid orange and the <i>SYNC</i> LED is solid green.
•	•		•	When the switch has successfully started up and loaded the default configuration in Normal mode, the STATUS and DEF. CONF LEDs are solid green.
•	•		•	When the switch has successfully started up and loaded the default configuration in SHOP mode, the STATUS LED is solid orange and the DEF. CONF LED is solid green.
•	•		•	When the switch has successfully loaded the backup configuration in Normal mode, the <i>STATUS</i> is solid green and the <i>DEF. CONF</i> LED is off.
•	•		•	When the switch has successfully loaded the backup configuration in SHOP mode, the <i>STATUS</i> LED is solid orange and the <i>DEF. CONF</i> LED is off.

Table 1: Front panel status LEDs of the TTE-Switch A664 Lab v2.0

3.2.2 CONFIG interface and configuration plug

Connector type: 25-pin D-sub female connector (DB-25S)

(a) The DB-25S CONFIG interface

(b) The DB-25P configuration plug

Figure 6: The CONFIG interface of the TTE-Switch A664 Lab v2.0

The DB-25P configuration plug (see Figure 6b on this page) makes it possible to select configurations and operating modes of the switch.

Pin	Pin Type	Description	Dip Switch No.	Signal Name
1	Output	Reset push button	_	RESET
2	Output	Configuration selection 0 dip switch	1	CON_SEL_0
3	Output	Configuration selection 1 dip switch	2	CON_SEL_1
4	Output	Configuration selection 2 dip switch	3	CON_SEL_2
5	Output	Configuration selection 3 dip switch	4	CON_SEL_3
6	Output	Configuration selection 4 dip switch	5	CON_SEL_4
7	Output	Configuration selection 5 dip switch	6	CON_SEL_5
8	Output	Reserved for future use	9	RFU
9	Output	Dip switch	7	Shop-Mode
10	NC	Not connected	-	NC
11	Output	Dip switch	8	Write_Prot
12	NC	Not connected	-	NC
13	NC	Not connected	_	NC
14	NC	Not connected	-	NC
15	NC	Not connected	-	NC
16	NC	Not connected	-	NC
17	NC	Not connected	_	NC
18	Output	Dip switch	10	WD_Disable
19	Output	Dip switch	11	Grnd-Mode
20	Output	Maintenance dip switch	12	RFU
21	NC	Not connected	-	NC

Pin	Pin Type	Description	Dip Switch No.	Signal Name
22	NC	Not connected	-	NC
23	Ground	Dip switch ground	_	GND
24	Ground	Dip switch ground	_	GND
25	Ground	Dip switch ground	_	GND

Table 2: Pin assignment of the Configuration Plug

3.2.2.1 Pin programming scheme

The programming pins **Con_Sel_0** (LSB) to **Con_Sel_4** (MSB) are used to represent the configuration index, whereas **Con_Sel_5** is used as the **parity bit** (even parity). See also Figure 6b on the previous page and Table 2 on this page. Depending on the selected programming pin combination, a switch configuration is loaded from one of 16 possible positions.

- If the dip switch is set to position **ON**, the pin is connected to Ground on the connector.
- If the dip switch is set to position **OFF**, the pin is not connected at all on the connector.

Table 3 on the current page lists the valid programming pin combinations that are possible for the default configuration (**Con_Sel_0** = OFF).

NOTE To select a programming pin combination for the actual/backup configuration, set Con_Sel_0 to ON.

Position	Con_Sel_0	Con_Sel_1	Con_Sel_2	Con_Sel_3	Con_Sel_4	Con_Sel_5
0	OFF	ON	ON	ON	ON	ON
1	OFF	OFF	ON	ON	ON	OFF
2	OFF	ON	OFF	ON	ON	OFF
3	OFF	OFF	OFF	ON	ON	ON
4	OFF	ON	ON	OFF	ON	OFF
5	OFF	OFF	ON	OFF	ON	ON
6	OFF	ON	OFF	OFF	ON	ON
7	OFF	OFF	OFF	OFF	ON	OFF
8	OFF	ON	ON	ON	OFF	OFF
9	OFF	OFF	ON	ON	OFF	ON
10	OFF	ON	OFF	ON	OFF	ON
11	OFF	OFF	OFF	ON	OFF	OFF
12	OFF	ON	ON	OFF	OFF	ON
13	OFF	OFF	ON	OFF	OFF	OFF
14	OFF	ON	OFF	OFF	OFF	OFF
15	OFF	OFF	OFF	OFF	OFF	ON

Table 3: Valid programming pin combinations for the default configuration

NOTE Selecting a new programming pin combination at startup is only possible if the **Grnd-Mode** dip switch is set to **ON**, i.e. if unrestricted mode is active.

3.2.3 MIRROR port

The TTE-Switch A664 Lab v2.0 has a 10/100/1000 Mbit/s mirror port that can be used to forward selected traffic to a dedicated monitoring end system (e.g. a PC running Wireshark).

For monitoring, an end system must be configured in the network description, or the mirror port must be configured via the RS-232 interface. Configuring the mirror port via the RS-232 interface is only possible in SHOP mode.

NOTE

For CLI commands to enable hardware mirroring, see Section 7.5.3 on page 33.

3.2.4 Ethernet ports

Figure 7: The Ethernet ports of the TTE-Switch A664 Lab v2.0

The switch has 24 Ethernet ports, numbered PORT1 to PORT24. Ethernet ports PORT1 and PORT2 are special as they can be used either via SFP or RJ45. For each of these two ports, only one of the connectors can be used at a time as both the SFP and RJ45 interface connect to the same physical layer. The ports are configured as follows:

Port	Description
1 2	General-purpose SFP and RJ45 Ethernet ports: fiber medium – 100Base-FX/1000Base-X copper medium – 10Base-T/100Base-TX/1000Base-T
3 6	General-purpose RJ45 Ethernet ports: copper medium – 10Base-T/100Base-TX/1000Base-T
7 24	General-purpose RJ45 Ethernet ports: copper medium – 10Base-T/100Base-TX

Table 4: Ethernet ports of the TTE-Switch A664 Lab v2.0

NOTE

Hot-plugging of SFP modules (i.e. inserting a module during run-time) is not supported by the switch and requires a reset to configure the module properly.

There are two LEDs per port integrated in the connector, a green Link LED and a yellow Activity LED.

Port LED	Description
•	The Link LED is solid green when a link is established with the connected end system.
	The Activity LED flashes yellow when communication activity is detected (frame transmission or frame reception).

Table 5: RJ45 port LED status

3.2.5 JTAG interface

The JTAG connector is used for factory testing and firmware programming.

3.2.6 RS-232 interface

The RS-232 interface is used for debugging in SHOP mode (see Section 5.6 on page 22). The control interface complies with the RS-232 standard and enables connection to one of the COM ports of a PC using a serial 1:1 adapter cable (DB-9 connector to DB-9 socket). The settings are 19200 baud, 8 data bits, one stop bit, no handshake, no parity.

Pin No.	Signal Name	Signal Type
1	NC	Not connected
2	RS232_TXD_D-SUB	Transmit data output from the TTE-Switch A664 Lab v2.0
3	RS232_RXD_D-SUB	Receive data input from the TTE-Switch A664 Lab v2.0
4	NC	Not connected
5	GND	Ground
6	NC	Not connected
7	NC	Not connected
8	NC	Not connected
9	NC	Not connected

Table 6: Pin assignment of the RS-232 interface

3.3 Technical data of the TTE-Switch A664 Lab v2.0

3.3.1 Cooling

The TTE-Switch A664 Lab v2.0 is constructed for passive cooling only and can withstand an operational ambient temperature ranging from 0 $^{\circ}$ C to +70 $^{\circ}$ C without air flow.

NOTE

When the switch is used in environmental conditions with temperatures exceeding $+45\,^{\circ}\text{C}$, it is mandatory to mount the switch in a suitable rack to avoid the risk of burns or other personal injury.

3.3.2 Size

The dimensions of the TTE-Switch A664 Lab v2.0 are according to 1U of IEC 60297 [3]. Size (in mm): 351 x 482.6 x 43.8

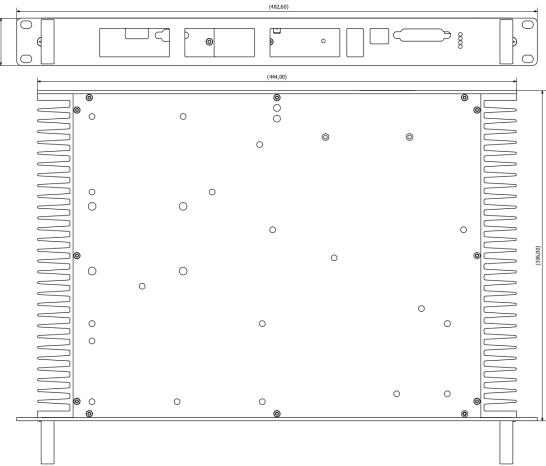


Figure 8: Dimensions of the TTE-Switch A664 Lab v2.0

3.3.3 Weight

The TTE-Switch A664 Lab v2.0 has a maximum weight of 5 kg.

3.3.4 Electrical characteristics

Power Supply:

The switch supports the following input voltage:

Voltage: 85 VAC - 264 VACFrequency: 47 Hz - 63 Hz

Power Consumption:

The switch consumes a maximum of 45 W.

Grounding:

- For ESD protection, Signal Ground (GND) is connected with 5 x 1 nF and 2 x 10 M Ω to CHASSISGND.
- Signal Ground (GND) is AC/DC-coupled with CHASSISGND, which is connected to the housing and the metal-plated connectors (Ethernet RJ45, SFP Cages, D-SUB DE-9, D-SUB DE-25), which can be accessed from outside.

4 Getting started

This section describes the sequence of steps to get started with the TTE-Switch A664 Lab v2.0.

- 1. Make sure the switch is connected to a power outlet and switched off.
- 2. Connect an RS-232 connector to the RS-232 serial interface on the back panel of the switch (see also Appendix B).
 - The settings for serial communication are: 19200 baud, 8 data bits, 1 stop bit, no parity, no handshake.
- 3. Connect the DB-25P configuration plug to the DB-25S CONFIG interface on the front panel of the switch.
- 4. On the DB-25P configuration plug, use the following dip switch positions to load the default configuration of Position 0:

Dip Switch	Position
Con_Sel_0	OFF
Con_Sel_1	ON
Con_Sel_2	ON
Con_Sel_3	ON
Con_Sel_4	ON
Con_Sel_5	ON
Shop-Mode	OFF
Maintenance	OFF
Grnd-Mode	ON

- 5. Turn on the power switch.
 - On start-up, all status LEDs are briefly turned on, which changes during the switch start-up sequence (see Table 1 on page 11).
 - When the switch has successfully finished start-up, the POWER LED and the STATUS LED are solid green. As the switch default configuration was selected for start-up, the DEF. CONF LED is solid green as well.
 - See Appendix B for the serial terminal output during start-up.

In the **Operational** state the switch provides information via SNMP. In **SHOP** mode, it is possible to retrieve more detailed information via serial terminal.

- 6. Connect a host PC directly to one of the 24 front-panel ports using a standard Cat5 or Cat5e patch cable.
 - Set the IP address of the host PC to the same subnet as the switch, for example to 10.10.10.20.
 - Set the subnet mask of the host PC to 255.255.255.0.
 - Set the transmission speed to 100 Mbps Full Duplex and make sure auto-negotiation is activated.
- 7. To verify that the switch is operational, open the CLI window, type ping 10.10.10.10 and press Enter. If no data packet was lost, the ping was successful.

```
Pinging 10.10.10.10 with 32 bytes of data:
Reply from 10.10.10.10: bytes=32 time=12ms TTL=128
Reply from 10.10.10.10: bytes=32 time=9ms TTL=128
Reply from 10.10.10.10: bytes=32 time=7ms TTL=128
```

4. GETTING STARTED


```
Reply from 10.10.10.10: bytes=32 time=7ms TTL=128

Ping statistics for 10.10.10.10:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 7ms, Maximum = 12ms, Average = 8ms
```


5 State machine

Figure 9 on the current page shows the different states of the TTE-Switch A664 Lab v2.0 and the conditions for transitions between these states.

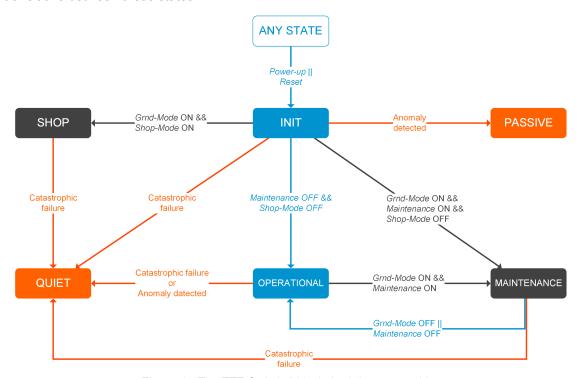


Figure 9: The TTE-Switch A664 Lab v2.0 state machine

The states of the TTE-Switch A664 Lab v2.0 correspond to the following ARINC 664P7-1 [2] specifications:

TTE-Switch A664 Lab v2.0	ARINC 664P7-1
INIT	INIT
SHOP	SHOP
PASSIVE	PASSIVE
QUIET	QUIET
OPERATIONAL	OPS
MAINTENANCE	DL

The various states of the TTE-Switch A664 Lab v2.0 provide the following functionality:

State	Network Traffic	CLI	A615 Dataload	ARP/ICMP/SNMP	BIST Execution
INIT	No	No	No	No	Abbreviated/full PBIST
MAINTENANCE	Yes	No	Yes	Yes	CBIST, IBIST
OPERATIONAL	Yes	No	No	Yes	CBIST
PASSIVE	No	No	No	No	No
QUIET	No	No	No	No	No
SHOP	No	Yes	No	No	CBIST

Table 7: Functionality of the various states

NOTE

Enabling **Grnd-Mode** via the DB-25P configuration plug puts the TTE-Switch A664 Lab v2.0 into *unre-stricted* mode. Disabling **Grnd-Mode** puts the switch into *restricted* mode, by contrast. Restricted mode disallows maintenance operations that might pose a safety hazard during non-ground operation (i.e., flight mode) for a behavior similar to a flight switch.

5.1 INIT

In the INIT state, the TTE-Switch A664 Lab v2.0 provides the following functionality:

State	Network Traffic	CLI	A615 Dataload	ARP/ICMP/SNMP	BIST Execution
INIT	No	No	No	No	Abbreviated/full
					PBIST

The TTE-Switch A664 Lab v2.0 transitions to the INIT state after a power-up or reset. In the INIT state, the switch performs an initialization sequence. The firmware initializes the peripherals of the switch for the switch IP and the end system IP. The firmware then reads out the pins on the configuration interface. If **Grnd-Mode** is **OFF**, the configuration pins will not be read from the interface. Instead, the position stored in non-volatile memory will be used.

After checking the parity of the configuration index, the availability and the CRC of the selected configuration, the switch applies the configuration.

Transitions

Depending on the DB-25P configuration plug settings and whether errors are detected or not, several transitions from the INIT state are possible:

Transition to	Shop-Mode	Grnd-Mode	Maintenance	Error
\longrightarrow SHOP	ON	ON	OFF	_
\longrightarrow OPERATIONAL	OFF	ON/OFF	OFF	-
\longrightarrow MAINTENANCE	OFF	ON	ON	_
\longrightarrow QUIET	-	_	_	Catastrophic Failure
\longrightarrow PASSIVE	_	_	_	Anomaly

5.2 MAINTENANCE

In the MAINTENANCE state, the TTE-Switch A664 Lab v2.0 provides the following functionality:

State	Network Traffic	CLI	A615 Dataload	ARP/ICMP/SNMP	BIST Execution
MAINTENANCE	Yes	No	Yes	Yes	CBIST, IBIST

Transitions

Depending on the DB-25P configuration plug settings and whether errors are detected or not, several transitions from the MAINTENANCE state are possible:

Transition to	Shop-Mode	Grnd-Mode	Maintenance	Error
\longrightarrow OPERATIONAL	OFF	OFF	OFF	-
\longrightarrow QUIET	_	_	_	Catastrophic Failure

5.3 OPERATIONAL

After a successful initialization and configuration, the switch enters the OPERATIONAL state. In the OPERATIONAL state, the TTE-Switch A664 Lab v2.0 provides the following functionality:

State	Network Traffic	CLI	A615 Dataload	ARP/ICMP/SNMP	BIST Execution
OPERATIONAL	Yes	No	No	Yes	CBIST

Transitions

Depending on the DB-25P configuration plug settings and whether errors are detected or not, several transitions from the OPERATIONAL state are possible:

Transition to	Shop-Mode	Grnd-Mode	Maintenance	Error
\longrightarrow MAINTENANCE	OFF	ON	ON	-
\longrightarrow QUIET	-	-	-	Catastrophic Failure
$\longrightarrow QUIET$	_	_	_	Anomaly

5.4 PASSIVE

In the PASSIVE state, the TTE-Switch A664 Lab v2.0 provides the following functionality:

State	Network Traffic	CLI	A615 Dataload	ARP/ICMP/SNMP	BIST Execution
PASSIVE	No	No	No	No	No

Transitions

No transitions from the PASSIVE state are possible.

5.5 QUIET

In the QUIET state, the TTE-Switch A664 Lab v2.0 provides the following functionality:

State	Network Traffic	CLI	A615 Dataload	ARP/ICMP/SNMP	BIST Execution
QUIET	No	No	No	No	No

Transitions

The TTE-Switch A664 Lab v2.0 can transition from the QUIET state to the previous state if the previous state was either INIT or OPERATIONAL.

5.6 SHOP

In the SHOP state, the TTE-Switch A664 Lab v2.0 provides the following functionality:

State	Network Traffic	CLI	A615 Dataload	ARP/ICMP/SNMP	BIST Execution
SHOP	No	Yes	No	No	CBIT

The SHOP state is a partially non-operational state for factory and development testing only. The SHOP

state makes it possible to access the system through the SHOP CLI from a serial terminal.

Transitions

Depending on the DB-25P configuration plug settings and whether errors are detected or not, the following transition from the SHOP state is possible:

Transition to	Shop-Mode	Grnd-Mode	Maintenance	Error
\longrightarrow QUIET	_	_	_	Catastrophic Failure

5.7 Error handling

The TTE-Switch A664 Lab v2.0's state machine transitions to either the QUIET or PASSIVE state if it detects a catastrophic failure or anomaly.

Catastrophic failure examples

- BIST fatal error (e.g., the switch would take permanent damage)
- Unrecoverable position error (e.g., a position could not be read)
- Unrecoverable file error (e.g., no file exists for a given position, CRC error)

Anomaly examples

- · Maintenance is ON and Grnd-Mode is OFF
- Shop-Mode is ON and Grnd-Mode is OFF

To avoid these anomalies, set Grnd-Mode to ON by default.

6 Creating a switch configuration

6.1 Using TTE-Tools for configuration creation

The configuration for the switch and the internal end system is created by the TTE-Tools (minimum recommended version: 5.4.4000) – TTE-Plan, TTE-Build Network Configuration, and TTE-Build Device Configuration.

- TTE-Plan is the TTEthernet network design tool. Based on input provided in a network description XML file, TTE-Plan creates the network configuration in a user-convenient way and calculates the TTEthernet schedule for the network. The network description XML file describes the high-level communication requirements for the system, e.g., physical and logical topology, virtual links (VLs), including their IDs, timing requirements and possible frame sizes, as well as synchronization parameters and requirements, e.g., the SAE AS 6802 clock.
- TTE-Build Network Configuration knows the specifics of all supported TTEthernet devices. The tool extracts the data from the network configuration, calculates the parameters for the individual devices, and generates the device configuration files.
- TTE-Build Device Configuration converts the device configurations from the XML representation into binary configuration images required by the TTEthernet switches and TTEthernet end systems. The XML schemas used to describe these specifications will be publicly available and allow for the highest level of flexibility when TTE-Build Device Configuration is integrated with third-party tools or customer-specific tool chains.

NOTE

A detailed description of how to create a configuration with the TTE-Tools can be found in the TTE-Plan User Manual [8] and the TTE-Build User Manual [11].

6.2 Creating a signature file for switch engine device configuration

A signature check XML file can be created with TTE-Build (minimum recommended version: 5.4.4000). To create a signature file, enter the following command in a Windows command prompt:

The items in the command string have the following purpose:

Command item	Purpose
Convert.DcToSignature	Instruct TTE-Build to create a signature file that is based on the provided device configuration.
SWO.device_config	(Relative) path and name of a valid switch engine device configuration.
OxDEADBEEF	The seed is used as input value to the CRC function for calculating the check- sum. The user can state a seed of their choice.
SWO.sgn	(Relative) path and name of the output signature file.

This example creates a signature file with the name SW0.sgn and puts it in the same directory where TTEbuild_batch.exe is located. Please note that the output directory needs to exist already!

6.3 Configuring the internal end system

The management CPU of the switch uses an internal end system to send and receive frames for data loading via ARINC 615A, ICMP (ping) and diagnostics via SNMP.

NOTE

Data loading, ICMP and SNMP via best-effort (Ethernet) traffic are always possible by selecting the default configuration via pin programming.

Rate-constrained management configuration

If a management service such as data loading via ARINC 615A, ICMP, and SNMP shall be available via rate-constrained (i.e., critical) traffic, the corresponding virtual links between the maintenance computer, the switch and the switch-internal end system need to be defined and configured correctly. The minimum VL configuration from a port to the internal end system is 4 user-defined VLs.

For data loading via ARINC 615A, ICMP, SNMP, and other management functionalities via critical traffic, the application ports must be configured. See Table 8 on this page for a list of the default values for internal application ports.

Name	Port Type ¹	Port ²	Partition ²	VL_ID	Protocol
#ICMP_TX	IPSAP	8	1	200	1
#ICMP_RX	IPSAP	8	1	100	1
#SNMP_TX	UDPSAP	4	5	203	161
#SNMP_RX	UDPSAP	32	5	103	161
#A615_MAIN_TX	UDPSAP	1	3	202	59
#A615_MAIN_RX	UDPSAP	24	3	102	59
#A615_STATUS_TX	UDPSAP	2	4	202	1022
#A615_STATUS_RX	UDPSAP	25	4	102	1022
#A615_FIND_TX	UDPSAP	0	2	201	1001
#A615_FIND_RX	UDPSAP	16	2	101	1001

Table 8: Default values for internal application ports for critical and best-effort traffic

The application port configuration file utilizes the .ini file format. Each section in the file represents exactly one configuration for one application port. The example below shows a valid section in the application port configuration file:

```
[#ICMP_RX]
dir = rx
port = 8
part = 1
```

The values for port and part must match the values of the header file of the internal end system, which is created by the TTE-Tools (see Section 6.1 on the previous page). The application port configuration file must be declared in the example_configs.ini file.

The <code>example_configs.ini</code> file defines configurations grouped in sections, with each section representing exactly one configuration. The order of sections listed in the <code>.ini</code> file implicitly shows the relation between a configuration position selected by pin programming (see Table 3 on page 13) and a section defined in the <code>.ini</code> file. This means that the binary files defined in the first section correspond to position 1, while

^{1.} The port type is MACRAW in the case of best-effort traffic.

^{2.} In the case of best-effort traffic, port and partition cannot be changed and are set to 0.

the binary files defined in the second section correspond to position 2, and so forth.

A section name, which is the name of a configuration, is given between square brackets and can be any string of a maximum of 16 ASCII characters. It is also possible to use blank spaces. The section name is packed into the configuration as well, which can be helpful during debugging. The following example shows a valid section in the example_configs.ini file:

[A664_EXAMPLE]	Section name
$swcfg = a664_sw0_0.bin$	Path to the switch device configuration file
<pre>escfg = internal_ES.bin</pre>	Path to the end system device configuration file
ipaddr = 10.10.10.10	IP address of end system/management interface
ipmask = 255.255.255.0	Subnet mask
gateway = 10.10.10.1	Gateway of the end system
enablect = 1	Enable management functionality via critical traffic
aportcfg = example.aport.ini	Path to the application port configuration file
swcfgsgn = DC\SWO.sgn	Path to the signature file ¹

NOTE

The binary configuration files for the switch and the end system must be located in a path that is relative to the .ini file.

6.4 Creating the switch configuration image (CONFIGS BAK)

This section describes how to create the switch configuration image with the tool prepare_configs_smc2.exe from the TTTech installation DVD. This tool uses binary device configurations created with **TTE-Build Device Configuration** as input.

To run prepare_configs_smc2.exe, use the batch file prepare_configs.bat that is supplied on the TTTech installation DVD.

Alternatively, you can start the tool via CLI as follows:

prepare_configs_smc2.exe example_configs.ini

It is mandatory to provide the path to a valid configuration .ini file. In addition, the following options can be used:

outdir	The output directory for the generated configuration file. Default is the working directory.
outname	The output name for the generated configuration file. Default is CONFIGS_BAK.
swap	If defined, the tool will swap the device configurations of the switch engine and the end system from Little Endian to Big Endian order or vice versa, depending on the original format of the respective device configuration. ²
avseed	The seed is used to calculate the CRC for the autoverify mechanism of the switch engine. Default is <code>0xFFFFFFFF</code> . If <code>avseed</code> is not defined and the configuration <code>.ini</code> file includes the parame-
	ter swcfgsgn, the tool prepare_configs_smc2.exe calculates the CRC based on the seed stated there.
	Ifavseed is not defined and the configuration .ini file does not include the parameter swcfgsgn, the default value will be used for the calculation.

This generates the output binary file CONFIGS_BAK.

^{1.} The swcfgsgn parameter is optional. See also Section 6.4 on the current page.

^{2.} The AeroASIC2 needs Big Endian configurations.

6.5 Uploading the switch configuration

The binary configuration file CONFIGS_BAK can be uploaded via A615 data loading or the RS-232 serial interface:

6.5.1 Upload via RS-232 serial interface

To upload the configuration via RS-232 serial interface, connect to the switch via Tera Term or any other serial terminal application that is capable of transmitting raw bytes.

- 1. In the terminal window, enter file integrity to retrieve the states and names of the internal files.
- Enter file upload CONFIGS_BAK <size in bytes> to prepare the switch for receiving a file. The
 file size has to be specified in bytes, as displayed in the file properties (Right-click > Properties >
 Size).

```
file integrity

FW BAK (FIRMWARE_BAK): ERR: Failed Reading header

FW DEF (FIRMWARE_DEF): ERR: Failed Reading header

CFG ACT (CONFIGS_ACT): OK

CFG BAK (CONFIGS_BAK): OK

CFG DEF (CONFIGS_DEF): ERR: Failed Reading header

>file upload CONFIGS_BAK 5072

Please wait, preparing...

Ready to receive...
```

- 3. Wait for the switch to get ready. The message Ready to receive... indicates that the switch is ready.
- Go to File > Send File. Select the file that is to be uploaded and check the Binary file transfer option.
 Click Open to confirm your selection.

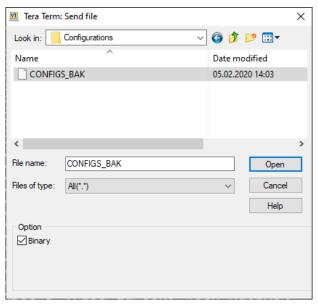


Figure 10: Send file in Tera Term

5. It will take some time for the switch to process the file. If it does not take the switch any time to process the file, the uploaded file was already present in the switch and nothing was changed. The messages Successfully wrote file and Successfully updated active page indicate that the upload was successful.

Successfully wrote file # Successfully updated active page

6.5.2 Upload via A615 data loading

This section describes how to use the TTTech Data Loader to upload the configuration file to the TTE-Switch A664 Lab v2.0. If you intend to use a different A615-compliant data loader, please see the user documentation for that product.

NOTE

The TT-615A3-Loader does not calculate a CRC for uploaded files. Therefore it is not fully compliant to ARINC 615A.

The current implementation of the application logs the CRC failure but accepts the file anyway.

The examples below use the following IP addresses:

- Client IP (TTE-Switch A664 Lab v2.0): 10.10.10.10
- Master IP: 10.10.10.30

Upload the configuration file

- 1. Rename the CONFIGS_BAK file to CONFIGS.LUP.
- 2. Create the upload.loading_configuration text file. This file has to contain all necessary information for identifying the master and its clients, and for performing the upload operation. See an example upload.loading_configuration file below:

[MASTER] sbnmask=255.255.255.0 nic=10.10.10.30	Master section Subnet mask for the master NIC for the master
[UPLOAD]	Upload operation section
<pre>[CLIENT] cid=THW001_SW0 ip2=10.10.10.10 rootfold=upload_directory</pre>	Client section Client ID Client IP address Root folder for the client. Both absolute and relative paths are accepted.
[FILES] fname=CONFIGS.LUP	List of load files to be uploaded to the client.

3. In the terminal window, enter tt_615a3_console_w.exe -c upload.loading_configuration -u to execute the Upload operation and upload the switch configuration.

Operations

The following table shows the operations that can be used with the TT-615A3-Loader and that are relevant to the file upload. For a list of all possible operations, see the TT-615A3-Loader User Manual [12].

Operation	Command and Description
Discover	tt_615a3_console_w.exe -c cfg.empty -r -l 10.10.10.30 -m 255.255.255.0 Retrieve basic information about every client found in the network. This command requires an existing configuration file which, however, can be empty.

Operation	Command and Description
Find	tt_615a3_console_w.exe -c cfg.loading_configuration -f Check if all clients specified in the configuration file exist in the network.
Information	tt_615a3_console_w.exe -c cfg.loading_configuration -i Retrieve additional information on each client specified in the configuration file.
Upload	tt_615a3_console_w.exe -c upload.loading_configuration -u Upload the files specified in the upload.loading_configuration to the TTE-Switch A664 Lab v2.0.

Table 9: TT-615A3-Loader operations

6.6 Configurable Target Hardware ID

The file thw_id_conf.smc contains the Target Hardware ID for A615 data loading. The Target Hardware ID has a maximum length of 15 alphanumeric characters. To display the Target Hardware ID, open a CLI window, type sys thwinfo and press Enter:

```
>sys thwinfo
Target Hardware Identifier: TTESMC2DEMOAPP
Target Type Name: TTESMC2DEMOAPP
Literal name: TTESMC2DEMOAPP
Manufacturer code: TTT
Target Position: SWO
>
```

To update the Target Hardware ID, the file can be modified via A615 data loading or RS-232 serial interface:

- A615 data loading: Upload the file thw_id_conf.smc via data loading.
- RS-232 interface: Open a CLI window, type file upload thw_id_conf.smc <size in bytes> and press Enter. For details about this command, see Section 7.5.2 on page 32.

NOTE After uploading the file thw_id_conf.smc, a reset is necessary to update the Target Hardware ID.

7 Diagnosis

7.1 Management Information Database

The Management Information Database (MIB) describes the managed objects that can be retrieved via SNMP Version 1 on UDP port 161. Make sure to use the correct IP address according to your loaded configuration.

NOTE

In your preferred SNMP client, make sure to choose SNMPv1 and disable all the other versions of the SNMP protocol.

The MIB files listed below can be loaded into any SNMPv1-compliant SNMP client. The MIB files contain the following diagnostic information about the switch status:

- TTE-SMC2-MIB: Contains information about firmware, configuration, temperatures, voltages, and built-in self-tests (BISTs) (see Section 7.2 on the current page).
- TTE-SWE-TT-MIB: Contains all relevant status information and error counters of the switch engine. For details about the switch engine, see the *TTEthernet Switch Interface Control Document* [9].
- TTE-ES-1-8-MIB: Contains all relevant status information and error counters of the switch end-system. For more detailed information about the switch end-system, see the *Pegasus End System Core Interface Control Document* [10].
- TT-MIB: Contains definitions.

7.2 Built-In Self-Tests (BISTs)

The TTE-Switch A664 Lab v2.0 implements three kinds of BISTs, power-up (PBISTs), continuous (CBISTs), and initiated (IBISTs).

- · The PBISTs are executed at startup only.
- The CBISTs are executed continuously, i.e., when **Grnd-Mode** is **ON** and when **Grnd-Mode** is **OFF**.
- The IBISTs are only executed when initiated manually.

The following BIST types determine how the results of a BIST are interpreted:

- · bitvector (BITVEC)
- counter (COUNT)
- CRC (CRC)
- temperature (TEMP)
- voltage (VOLT)

The BIST results, which can be retrieved via SNMPv1, are stored in non-volatile memory for ad-hoc or later analysis.

The timestamp of the BIST result is reported in seconds. This timestamp is absolute. It increases while the switch is operational and not in SHOP mode.

A BIST result consists of the following items:

- An index
- · The latest value measured

- · The number of faulty occurrences
- · The timestamp of the first faulty occurrence
- · The timestamp of the last faulty occurrence
- · The last faulty result value

NOTE

As long as a certain BIST has never failed, only the index and the latest value measured are reported via SNMP.

For a complete list of implemented BISTs, see Appendix A.

7.3 Health message

The TTE-Switch A664 Lab v2.0 sends a health message with a period of 1000 ms in the Best Effort Task-1. The length of the message is the maximum UDP Ethernet frame size (1518 B). The health message is transmitted on port 24.

The health message consists of:

- 1. A 1-byte free running counter which is incremented with every transmission.
- 2. A 1-byte error counter for every BIST that is configured to be executed.
- 3. The status of the health pin as ASCII string: "HEALTHY" or "FAULT".
- 4. The state of the TTE-Switch A664 Lab v2.0 application, for example "OPERATIONAL".
- 5. The TTE-SMC2 software synchronization state in the form of an ASCII string: "SYNC: <0-7>"

NOTE

When the TTE-Switch A664 Lab v2.0 is in the SHOP state, Best Effort Task-1 is not executed. Therefore, the switch will only send a health message when it is not in the SHOP state.

7.4 Life-sign message

The TTE-Switch A664 Lab v2.0 sends a life-sign message with a period of 1000 ms in the Best Effort Task-2. The length of the message is the minimum UDP Ethernet frame size (64 B). The life-sign message is transmitted on port 24.

The message consists of an ASCII string in the form of "DDDD:HH:MM:SS:mmm", where:

- 1. DDDD are days since start-up [0, 999], with any leading zeros being skipped.
- 2. HH are hours since start-up [0, 23], with a leading zero being skipped.
- 3. MM are minutes since start-up [0, 59], with a leading zero being skipped.
- 4. SS are seconds since start-up [0, 59], with a leading zero being written.
- 5. mmm are milliseconds since start-up [0, 999], with any leading zeros being written.

NOTE

When the TTE-Switch A664 Lab v2.0 is in the SHOP state, Best Effort Task-2 is not executed. Therefore, the switch will only send a life-sign message when it is not in the SHOP state.

7.5 Serial command line interface

A serial command line interface (CLI) that is passive, which means it only shows text messages, is available in the INIT, OPERATIONAL, and MAINTENANCE states. The SHOP mode starts an active CLI, which means that commands can be entered. This section describes the CLI that is available in the SHOP mode.

- SHOP mode can be activated only if **Grnd-Mode** is set to **ON** on the DB-25P configuration plug.
- · SHOP mode does not start the firmware and does not allow data loading and SNMP.
- SHOP mode makes it possible to debug and diagnose the switch at a fine-grained level.

Open the CLI window, type help and press [Enter] to get an overview of the available commands:

```
bash > help
           - Prints information on how to use the serial terminal
help (?)
           - Switch Engine commands
swe
           - End System commands
           - MDIO commands
mdio
shift
           - Shift register command
             Voltage tests
voltage
dio
             DIO commands
netcli
           - CLI via Ethernet
           - File commands
file
sys
           - System commands
```

7.5.1 Read/write commands

swe rd <addr></addr>	Reads from a specific address (as defined in the switch IP ICD)
	Example: swe rd 0x0 reads the device ID of the
	switch.
swe wr <addr> <val></val></addr>	Writes to a specific address.
es rd <addr></addr>	Reads from a specific address (as defined in the end-
	system IP).
es wr <addr></addr>	Writes to a specific address.
mdio rd <addr></addr>	Reads to the mdio bus.
mdio wr <addr> <val></val></addr>	Writes to the mdio bus
voltage idx	Reads the voltage for a given index.
voltage temp	Reads the voltage of the temperature sensor.
voltage smc	Read all voltages from the SMC board.
voltage ain	Read all voltages from the AIN pins.
voltage 3v3	Tests 3V3 over voltage.
voltage list <idx></idx>	Prints a list of voltage indexes.

7.5.2 File commands

Commands for erasing and uploading files can be useful as a backup if the update of the IP or CONFIG has failed and if the end system cannot be reached through Ethernet:

The parameter <filename> can be one of the following names:

CONFIGS_BAK

CONFIGS_DEF

Backup configuration image in the dataload area

Default configuration image in the dataload area

Backup firmware image in the dataload area

FIRMWARE_DEF

Default firmware image in the dataload area

NOTE It is not recommended to upload larger files due to the slow transfer speed of the serial interface (2 kb/s).

When using the file upload command, you must specify the file size in bytes, as displayed in the file properties (Right-click > **Properties** > **Size**).

```
>file upload thw_id_conf.smc 15
Please wait, preparing...
Ready to receive...
```

Wait until the message Ready to receive... appears and then upload the raw bytes (choose the **binary** file transfer option) via your terminal application. See Figure 11 on this page for an example.

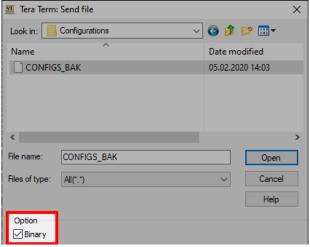


Figure 11: Binary file transfer option in Tera Term

It will take some time for the switch to process the file. If it does not take the switch any time to process the file, the uploaded file was already present in the switch and nothing was changed.

The message Successfully wrote file indicates that the upload has been successful. If a CONFIGS_BAK file was uploaded, this message will be followed by the message Successfully updated active page.

7.5.3 Port commands

The RS-232 command for mirror ports is:

Command	Arguments	Description
mirror	<port> [mirror port] [direction]</port>	Get the mirror port for port <port>. Alternatively, set the mirror port of port <port> to [mirror port]. Use the strings RX, TX, or RXTX to set the [direction].</port></port>

7.5.4 Event log

The sys eventlog command shows the complete event log with a timestamp (in seconds) and the event ID.

7. DIAGNOSIS

8 Troubleshooting

If you encounter a malfunction of the TTE-Switch A664 Lab v2.0, there are some basic checks you can perform:

- · Is the power supply voltage correct?
- · Is the pin programming correct for the desired configuration?
- What do the status LEDs display? See Table 1 on page 11 for details.
- Are all temperatures within the allowed ranges? See Section 7.2 on page 30 for details, and check the SNMP client output for the temperature values of the different sensors.

8.1 Customer support information

Company address:

Schoenbrunner Str. 7, A-1040 Vienna, Austria, Tel. +43 1 585 34 34 – 0, Fax +43 1 585 34 34 – 90

For technical assistance and support regarding TTTech Computertechnik AG products, please contact our customer support:

- E-Mail: support@tttech.com
- In case of problems with your TTE-Switch A664 Lab v2.0, please have the serial number ready to speed up the processing of your support request. See Section 2.1 on page 7 for information where to find the serial number.

■ A List of Built-In Self-Tests

Appendix A shows a complete list of Built-In Self-Tests.

ID	Name	С	- 1	PA	Р	Туре	Reaction	Confirmation	Min	Max	Reconfigurable
002	VOLTAGE_SUPERVISOR	•				BITVEC	LOG	1	0	0	Yes
101	0V85_VOLTAGE	•				VOLT	LOG	3	765 mV	935 mV	Yes
102	0V9_VOLTAGE	•				VOLT	LOG	3	810 mV	990 mV	Yes
103	1V2_VOLTAGE	•				VOLT	LOG	3	1080 mV	1320 mV	Yes
104	1V8_VOLTAGE	•				VOLT	LOG	3	1620 mV	1980 mV	Yes
105	2V5_VOLTAGE	•				VOLT	LOG	3	2250 mV	2750 mV	Yes
106	3V3_EXT_VOLTAGE	•				VOLT	LOG	3	2970 mV	3630 mV	Yes
107	3V3_INT_VOLTAGE	•				VOLT	LOG	3	2970 mV	3630 mV	Yes
003	125MHZ_25MHZ_CLCK_COMP	•				BITVEC	LOG	3	0	0	Yes
006	RLDRAM_DED_CHECK	•				COUNT	RESET_ENFORCED	1	0	0	Yes
110	RLDRAM_DED_CHECK_CHANGE	•				COUNT	LOG	1	0	0	Yes
007	RLDRAM_SEC_CHECK	•				COUNT	LOG	1	0	0	Yes
009	SWE_PORT	•				BITVEC	LOG	1	0	0	Yes
011	LOOPBACK				•	BITVEC	LOG	1	0	0	No
014	ASIC_DEV_ID		•	•	•	BITVEC	SHUTDOWN_ENFORCED	2	0x0032F001	0x0032F001	No
016	Test WD reset				•	BITVEC	safe mode	1	0	0	No
017	CPU_BOOT_SELF_TEST			•	•	BITVEC	safe mode	2	0	0	No
018	Watchdog	•				N/A	HW-triggered reset	1	0	0	Yes
021	FRAM_AVAILABILITY			•	•	N/A	safe mode	2	0	0	No
025	CRC_CHECK		•	•	•	BITVEC	LOG + explicit SHUT- DOWN_ENFORCED	2	0	0	Yes
026	CRC_ASIC_CP	•				BITVEC	RESET_ENFORCED	1	0	0	Yes
030	ASIC_CONFIG_CRC		•	•	•	BITVEC	LOG + explicit SHUT- DOWN_ENFORCED	2	0	0	Yes
032	SMC2_TEMPERATURE	•				TEMP	LOG	3	-53 °C	122 °C	Yes
045	ADC_VERIFY				•	BITVEC	LOG	2	0	0	No
047	RLDRAM_DED_VERIFY				•	BITVEC	SHUTDOWN_ENFORCED	2	4	4	No
048	RLDRAM_SEC_VERIFY				•	BITVEC	SHUTDOWN_ENFORCED	2	2	2	No
050	ASIC_REJECT_CFG				•	BITVEC	SHUTDOWN_ENFORCED	2	5	5	No
051	Power Supply Voltage Monitor	•				N/A	HW-triggered reset	1	0	0	Yes
053	RESET_CMD				•	BITVEC	safe mode	1	0	0	No
054	COMPARE_TEMPERATURE	•				TEMP	LOG	3	0 °C	29 °C	Yes
056	ASIC_POS_ID		•	•	•	BITVEC	LOG + explicit SHUT- DOWN ENFORCED	2	0	0	Yes

ID	Name	С	- 1	PA	Р	Туре	Reaction	Confirmation	Min	Max	Reconfigurable
061	FILES_CHECK	•				BITVEC	LOG	2	0	0	Yes
064	ECC_ASIC_RAM_D	•				BITVEC	RESET_ENFORCED	1	0	0	Yes
065	ECC_ASIC_RAM_C	•				BITVEC	LOG	1	0	0	Yes
066	ECC_ASIC_RAM_D_VERIF				•	BITVEC	SHUTDOWN_ENFORCED	2	0	0	No
067	ECC_ASIC_RAM_C_VERIF				•	BITVEC	SHUTDOWN_ENFORCED	2	0	0	No
070	MGIO_REG_CHECK	•				BITVEC	RESET_ENFORCED	2	0	0	Yes
074	FLASH_AVAILABILITY		•	•	•	BITVEC	safe mode	2	0	0	No
076	CP_INT_RAM_ECC_D	•				N/A	HW-triggered reset	1	0	0	Yes
077	CP_INT_RAM_ECC_C	•				COUNT	LOG	1	0	0	Yes
078	CP_INT_FLA_ECC_D	•				N/A	HW-triggered reset	1	0	0	Yes
079	CP_INT_FLA_ECC_C	•				COUNT	LOG	1	0	0	Yes
080	FLASH_MAIN_IMG		•	•	•	BITVEC	LOG + safe mode	2	0	0	No
081	RLDRAM_PORT_CRC_CHECK	•				BITVEC	RESET_ENFORCED	1	0	0	Yes
111	RLDRAM_PORT_CRC_CHECK_CHANGE	•				COUNT	LOG	2	0	0	Yes
082	CFG_TX_INHIBIT				•	BITVEC	SHUTDOWN_ENFORCED	1	0	0	No
083	RLDRAM_CRC_PROT				•	COUNT	SHUTDOWN_ENFORCED	1	0	0	No
084	CPU_CCM_CHECK	•				N/A	HW-triggered reset	1	0	0	Yes
087	CONFIGURATION_PINS_CHECK		•		•	BITVEC	LOG	2	0	0	No
088	FLASH_WP_CHECK		•		•	BITVEC	LOG	2	0	0	Yes
089	CPU_CONT_SELF_TEST	•				BITVEC	SHUTDOWN_ENFORCED	1	0	0	Yes
090	SWE_CRC_CHECK				•	BITVEC	SHUTDOWN_ENFORCED	1	0	0	No
091	CPU_CCM_SELF_TEST				•	BITVEC	safe mode	1	0	0	No
	Table	10: <i>Lis</i>	st of E	Built-In	Self-T	Tests		CCBIST	IIBIST	PAPBIST_ABBR	PPBIST

B Serial terminal output at start-up

Appendix B shows a sample CLI output at start-up in SHOP mode.

```
______
      TTTech TTE-SMC2 Image 2.5.0
2
         Jun 10 2020 @ 14:11:50
3
    ______
    [INIT STAGE]
5
   Shutdown cause: 0 info:13
   Lifetime: 370:27:36
    [CONFIGURATION STAGE]
   ### Mode changed RESTRICTED: OFF
   ### State changed INIT -> SHOP
10
   Reading Config Pins from Config Plug.
11
   Shop Mode
12
   Initializing SWE...
13
   SWE: Aero ASIC2 SWE IP (0x03030000)
14
   Initializing ES...
15
   TTE-ES: Device ID: 0x99000946, Device Revision:0x0032F001 ES Core
16
       Version:0x18190000
   ES: 1.8.24 (0x0032F001)
17
   Reading Config Pins from Config Plug.
18
   Configured Position: 0
19
   Loading default configuration...
20
   Applied config SWO from position O page CONFIGS_DEF
21
   ID:0 IP:10.10.10.10 MSK:255.255.255.0 GW:10.10.10.255
22
   MAC 02:00:00:00:01:20
23
   Setting PHY 1 (88E1548): COPPER -> 1Gbit/s (full duplex) with AutoNeg MODE ->
24
       AMD SGMII/Copper SFP at Port 1 unplugged.
   Setting PHY 2 (88E1548): COPPER -> 1Gbit/s (full duplex) with AutoNeg MODE ->
25
       AMD SGMII/Copper SFP at Port 2 unplugged.
   Setting PHY 3 (88E1548): COPPER -> 1Gbit/s (full duplex) with AutoNeg
26
   Setting PHY 4 (88E1548): COPPER -> 1Gbit/s (full duplex) with AutoNeg
   Setting PHY 5 (88E1548): COPPER -> 1Gbit/s (full duplex) with AutoNeg
28
   Setting PHY 6 (88E1548): COPPER -> 1Gbit/s (full duplex) with AutoNeg
29
   Setting PHY 7 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
30
   Setting PHY 8 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
31
   Setting PHY 9 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
32
   Setting PHY 10 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
33
   Setting PHY 11 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
34
   Setting PHY 12 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
35
   Setting PHY 13 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
36
   Setting PHY 14 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
37
   Setting PHY 15 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
38
   Setting PHY 16 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
39
   Setting PHY 17 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
40
   Setting PHY 18 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
41
   Setting PHY 19 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
42
   Setting PHY 20 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
43
   Setting PHY 21 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
44
   Setting PHY 22 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
45
   Setting PHY 23 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
46
   Setting PHY 24 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
47
   Setting PHY 25 (88E1548): COPPER -> 100Mbit/s (full duplex) with AutoNeg
48
   Initializing Application Ports... Initializing BPDU application ports... done
   Management functionality via best effort
   Initializing CAL... done
   Initializing Network Stack... done
```

B. SERIAL TERMINAL OUTPUT AT START-UP


```
Initializing Message Router... done
Initializing Routing Table... done
Initializing ICMP... done
Initializing SNMPv1... done
Initializing ARINC 615A-3... done
Finalizing application port configuration... done
Free Memory:43 Kbytes
Successfully initialized System
Starting serial terminal...
```


Glossary

Entry	Description
A664	A protocol standard defined by the Aircraft Data Network (ADN) subcommittee of ARINC Airlines Electronic Engineering Committee (AEEC), but now maintained by the Network Infrastructure and Security.
ARINC 615A	Standard [1] that covers data loading over ARINC 664.
ARINC 664	Defines the use of a deterministic Ethernet network as an avionic databus in modern aircraft.
ARINC	Aeronautical Radio, Incorporated
BAG	Bandwidth Allocation Gap
BE	See Best-Effort Traffic.
BIST	Built-In Self-Test
Best-Effort Traffic	Ethernet traffic that is not critical traffic (IEEE 802.3 standard traffic). BE traffic will be serviced with lowest priority.
CBIST	Continuous Built-In Self-Test
CRC	Cyclic Redundancy Check
DRAM	Dynamic Random-Access Memory
ESD	Electrostatic Discharge
ES	End System
GND	Ground
IBIST	Initiated Built-In Self-Test
ICMP	Internet Control Message Protocol
IEEE	Institute of Electrical and Electronics Engineers
JTAG	Joint Test Action Group
MACRAW	MAC RAW mode
MIB	Management Information Base
MSB	Most Significant Bit
NC	Not Connected
PBIST	Power-Up Built-In Self-Test
RC	See Rate-Constrained Traffic.
RFU	Reserved for Future Use

Entry	Description
Rate-Constrained Traffic	TTEthernet traffic that is used for applications with less stringent determinism and real-time requirements than strictly time-triggered applications (ARINC 664 avionics traffic). RC traffic is used for safety-critical aerospace applications that depend on highly reliable communication and have moderate temporal quality requirements, e.g., multimedia systems.
SFP	Small Form-factor Pluggable, a compact, optical module transceiver.
SNMP	Simple Network Management Protocol
SWE	Switch Engine
TFTP	Trivial File Transfer Protocol
тт	See Time-Triggered Traffic.
Time-Triggered Traffic	TTEthernet traffic that is used for applications with stringent determinism and real-time requirements (IEEE 1588-compatible clock synchronization service, real-time control [5]). TT traffic guarantees that bandwidth and latency are predefined for each application. TT traffic is used for safety-critical aerospace applications that depend on highly reliable communication and have high temporal quality requirements, e.g., closed loop control systems.
VAC	Voltage, Alternating Current
VLAN	Virtual Local Area Network
VL	See Virtual Link.
Virtual Link	A <i>logical link</i> that is used for all critical traffic. For RC traffic, a virtual link has the properties as defined in the ARINC 664 standard. Hence, each virtual link is associated with a dedicated maximum bandwidth that is specified by the minimum frame interval called <i>bandwidth allocation gap (BAG)</i> and the maximum frame length. For TT traffic, a virtual link is characterized by exact timing information and a maximum frame length.
TTEthernet	Time-Triggered Ethernet, also TTE when used as a prefix.

References

- [1] ARINC. ARINC Report 615A-3, *Software Data Loader Using Ethernet Interface*. International Standard, Aeronautical Radio, Incorporated, 2007.
- [2] ARINC. ARINC Specification 664P7-1, *Aircraft Data Network, Part 7, Avionics Full-Duplex Switched Ethernet Network (AFDX®*). International Standard, Aeronautical Radio, Incorporated, 2009.
- [3] IEC. IEC 60297-3-105 Part 3-105: Dimensions and design aspects for 1U chassis. International Standard, International Electrotechnical Commission, 2004.
- [4] IEEE. 802.1Q™-2011 Standard for Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks. International Standard, Institute of Electrical and Electronics Engineers, 2005.
- [5] IEEE. IEEE 1588-2008 Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, Precision Time Protocol (PTP) Version 2. International Standard, Institute of Electrical and Electronics Engineers, 2008.
- [6] IEEE. IEEE 802.3™-2008 Standard for Ethernet. International Standard, Institute of Electrical and Electronics Engineers, 2008.
- [7] SAE. SAE AS 6802, Time-Triggered Ethernet. International Standard, SAE International, 2011.
- [8] TTTech. TTE-Plan "5.0" User Manual. User Documentation D-TTE-G-01-014, TTTech.
- [9] TTTech. Pegasus Switch Core Interface Control Document. User Documentation D-STRATPHY-G-10-006, TTTech, 2011.
- [10] TTTech. Pegasus End System (Full IP) Interface Control Document. Interface Description D-PEGTTE-ID-10-004, TTTech, 2013.
- [11] TTTech. TTE-Build User Manual. User Documentation D-TTE-G-01-002, TTTech, 2014.
- [12] TTTech. TT-A615A3-Loader User Manual. User Documentation TT-A615A3-Loader User Manual, TTTech, 2017.

Index

-A-	_I _
Anomaly	IBIST30
Error handling23	Identification label7
	INIT state
	Initiated BIST30
— B —	Interfaces
BIST result timestamp30	Introduction6
Block diagram10	
Built-In Self Tests	
List of Built-In Self-Tests	— J —
Built-In Self-Tests30	JTAG interface
CBIST30	
IBIST30	
PBIST30	-L-
	Life-sign message31
-c —	
Catastrophic failure	- M $-$
Error handling23	MAINTENANCE state21
CBIST30	Management Information Database
CONFIG interface	MIBs30
Configurable target hardware ID29	Mirror port
Configuration plug	·
Configuring the internal end system	
Continuous BIST	-0 -
Customer support	OPERATIONAL state
oustomer support	Overview
-D-	
DB-25P connector	— P —
DB-25S interface	PASSIVE state22
Diagnosis	PBIST30
Blaghoolo	Pin programming scheme
	Ports
E	Ethernet ports14
Electrical characteristics	Mirror port
Error handling	Power-up BIST30
Ethernet ports	Primary components10
External interfaces	•
External internaces	
	-Q —
_ F _	QUIET state
Functional description	
Functional features	
Tunctional readures	-R-
	Rate-constrained management configuration
-G-	RS-232 interface
Getting started	
County started	
	- \$-
—H—	Serial command line interface
Health message31	Serial terminal output at start-up38
110alui 111003ago	Setting up the switch
	SHOP state
	Signature file for SWE device configuration
	State machine20

INDEX

INIT	21
MAINTENANCE	21
OPERATIONAL	<mark>2</mark> 2
PASSIVE	
QUIET	22
SHOP	<u>2</u> 2
Status LEDs	11
Switch configuration	
Creation	24
Upload	27
Switch configuration image creation	
T	
Technical data	
Timestamp of BIST result	
Troubleshooting	35
TTE-Tools	24
	24
TTE-Tools	24
TTE-ToolsSwitch configuration	24 24
TTE-Tools Switch configuration — U — Uploading the switch configuration	24 24
TTE-ToolsSwitch configuration	24 24 27