TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No. : DREFCC1907-0220(1)

2. Client / Applicant

• Name : Intellian Systems, Inc.

• Address : 7F. Dongik Building, 730, Eonju-ro, Gangnam-gu, Seoul, Republic of Korea

3. Use of Report : Grant of Certification

4. Product Name / Model Name / FCC ID : All-in-one android pc / S16N-X18K-7WN / 2ATXA-SA163PLUS

5. Test Standard : ANSI C63.4:2014

FCC Part 15 Subpart B

(Class A digital devices, peripherals & external switching power supplies.)

6. Date of Test : Jul. 12. 2019 ~ Jul. 29. 2019

7. Testing Environment : Temperature (23 ~ 26) °C , Humidity (49 ~ 53) % R.H.

8. Test Result : Refer to the attached Test Result

Affirmation	Tested b	У	/	Reviewe	d by	
Ammadon	Name :	Taehyun Choi	(Grante)	Name :	KyoungHwan Bae	(Silpature)
The test re	sults pres	ented in this test rep	ort are limited onl	y to the sa	mple supplied by applic	ant and
the use of	this test re	port is inhibited othe	er than its purpose	e.		
This test re	port shall	not be reproduced e	except in full, with	out the writ	tten approval of DT&C (Co., Ltd.

Sep. 02. 2019

DT&C Co., Ltd.

'This test report is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.'

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

CONTENTS

I. General Remarks	3
2. Test Laboratory	3
3. General Information of EUT	4
4. EUT Operations and Test Configurations 4.1 Principle of Configuration Selection	
4.2 EUT Operation Mode	5
4.3 Test Configuration Mode 4.4 Supported Equipment	6
4.5 EUT In/Output Port4.6 Test Voltage and Frequency	
5. Test Summary	7
5. Test Environment	7
7. Test Results : Emission	8
7.1 Conducted Disturbance	
7.2 Radiated Disturbance1	1
3. Revision History	23

1. General Remarks

This report contains the result of tests performed by :

DT&C Co., Ltd. 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042 http://www.dtnc.net Tel: +82-31-321-2664 Fax: +82-31-321-1664

2. Test Laboratory

DT&C Co., Ltd. has been accredited / filed / authorized by the agencies listed in the following table;

Certificate	Nation	Agency	Code	Remark
	Korea	KOLAS	393	ISO/IEC 17025
Accreditation	South Africa	SABS	0006	ISO/IEC 17025
	Ghana	NCA	NCA agreement 23rd,Oct,2018	-
	USA	FCC	KR0034 101842 678747, 596748, 804488, 165783	Accredited 2.948 Listed
Sito Filing	Canada	IC	5740A-3 5740A-4	Registered
Site Filing	Japan VCC	VCCI	C-1427 R-3385, R-4076, R-4180, R-4496, T-1442, G-10338, G-754, G-10815, G-20051	Registered
	Korea	КС	KR0034	Designation
Certification	Germany	TUV	CARAT 17 11 89112 005	ISO/IEC 17025
	Russia	RMRS	17.10189.296	ISO/IEC 17025

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

3. General Information of EUT

	Intellian Systems, Inc.
Applicant	7F. Dongik Building, 730, Eonju-ro, Gangnam-gu, Seoul, Republic of
	Korea
	Intellian Systems, Inc.
Manufacturer	7F. Dongik Building, 730, Eonju-ro, Gangnam-gu, Seoul, Republic of
	Korea
Product Name	All-in-one android pc
Model Name	S16N-X18K-7WN
Add Model Name	None
Add Model Difference	None
Maximum Internal Frequency	1.2 GHz
Software Version	Android 6.0.1
Hardware Version	3Q-V40-1.1
FCC ID	2ATXA-SA163PLUS
RF Module Name	None
Rated Power	DC 12 V, 1.6 A / 60 Hz
Remarks	None

Related Submittal(s) / Grant(s) Original submittal only

4. EUT Operations and Test Configurations

4.1 Principle of Configuration Selection

Emission :

The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the instructions for use. For each testing mode different configurations were used, Refer to the individual tests.

4.2 EUT Operation Mode

No.	Mode	Description
1	Display mode	The EUT receives the DC voltage, reads and writes the USB memory, outputs the audio, and outputs the H-pattern image.

4.3 Test Configuration Mode

No.	Mode	Description
1	Display mode	The EUT is connected to the AC / DC adapter, the USB memory is connected to the Micro USB port, the headset is connected to the AUX port, and tested by connecting a mouse to the USB port.

4.4 Supported Equipment

Used*	Product Type	Manufacturer	Model	Remarks		
AE	E USB Memory Sandisk		3.0 OTG USB	None		
AE	AC/DC Adapter	SHENZHEN YINGHUIYUAN ELECTRONICS CO., LTD	YHY-12002000	A11712070861		
AE Headset AE Mouse		COSY	COV903	None		
		Logitech	B100	810-002149		
*Abbreviations: AE - Auxiliary/Associated Equipment, or						

SIM - Simulator

4.5 EUT In/Output Port

	Name	Turne*	Cable	Cable	Cable	Domorko	
	Name	Type*	Max. >3m	Shielded	Back shell	Remarks	
	DC In	DC	1.2	Non shield	Plastic	None	
	Micro USB	I/O	-	Non shield	Plastic	None	
	USB	I/O	1.0	Non shield	Plastic	None	
	AUX	I/O	1.5	Non shield	Plastic	None	
*Abbre	*Abbreviations:						
AC	AC = AC Power Port		DC = DC Power	Port	N/E = Non-Electri	cal	
I/O	= Signal Input or	Output Port					
TP	= Telecommunica	ation Ports					

4.6 Test Voltage and Frequency

Case	Voltage (V)	Frequency (DC/AC-Hz)	Phases	Remarks
1	AC 120	60	Single	None

5. Test Summary

Test Items	Applied Standards	Results
Conducted Disturbance	ANSI C63.4 : 2014	С
Radiated Disturbance	ANSI C63.4 : 2014	С
C=Comply N/C=Not Comply	N/T=Not Tested N/A=Not Applicable	

-Conducted Disturbance

Frequency [MHz]	Phase	Result [dBµV]	Detector	Limit [dBµV]	Margin [dB]
0.15209	Ν	52.76	QP	79.00	26.24

-Radiated Disturbance

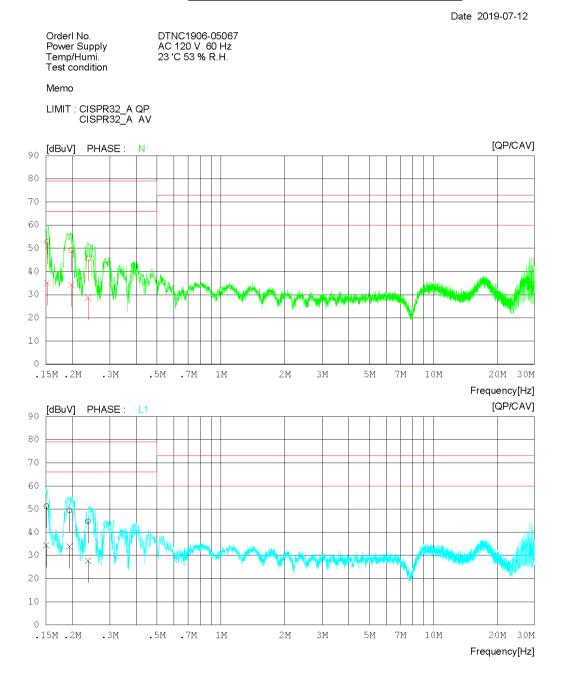
Frequency [MHz]	Pol.	Result [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]
36.790	Vertical	33.95	QP	39.00	5.05

6. Test Environment

Test Items	Test date (YYYY-MM-DD)	Temp. (°C)	Humidity (% R.H.)	Pressure (kPa)
Conducted Disturbance	2019-07-12	23	53	
Radiated Disturbance	2019-07-12	23	53	-
	2019-07-29	26	49	

7. Test Results : Emission

7.1 Conducted Disturbance


ANSI C63.4		Mains terminal disturbance voltage							
plane. This dis EUT and asso system through were made at spectrum analy detector mode perform final m Quasi-Peak de Quasi-Peak de	tance was betwee ciated equipment when Artificial Mains Main	e boundary of the unit under tes n the closest points of the AMN were at least 0,8 m from the AM Network (AMN). Conducted volt AMN. The measuring port of the cted emission test software, the over the frequency range, susp en performing final measurement PR Average detector. For (0. 2 RBW and 30 kHz VBW was us atting it was attempted to maximized the additional measurement of the software of the software of the software of the software of the software of the software of the were of the software of the software of the software of the software of the software of the softw	I and the EU MN. All power tage measure tage measure emissions of pected emissions of, the receive 15 ~ 30) sed. By var	JT. All other units of the er was connected to the rements on mains lines EUT was connected to were scanned with peak ssions were selected to ver was used which has MHz frequency range, ying the configuration of	Comply				
Fully configured sample scanned ov Frequency range on each side of line Measurement					Point				
er the following fre	equency range	150 kHz to 30 MHz		Mains					
EUT mo	ode	Test configuration mode		1					
(Refer to cla	(Refer to clauses 4) EUT Operation mode 1								
		Limits – Class A							
Frequency (MHz)		Limit	dBµV						
r requericy (in 12)		Quasi-Peak	Average						
0.15 to 0.50		79		66					
0.50 to 30		73		60					
		Limits – Class B							
		Limit	dBµV						
Frequency (MHz)		Quasi-Peak		Average					
0.15 to 0.50	15 to 0.50 66 to 56								
0.50 to 5 56 46									
5 to 30		60 50							

Measurement Instrument											
Description	Cal. Date	Cal. Due									
MEASUREMENT SOFTWARE	EMI-C VER. 2.00.0165	TSJ	N/A	N/A	N/A						
EMI TEST RECEIVER	ESR	ROHDE & SCHWARZ	101767	2018.12.19	2019.12.19						
LISN	NNLK 8129	SCHWARZBECK	8129-272	2018.07.31	2019.07.31						
PULSE LIMITER	ESH3-Z2	ROHDE & SCHWARZ	101334	2018.12.19	2019.12.19						

Mains terminal disturbance voltage _Measurement data								
Test configuration mode 1 EUT Operation mode 1								
Test voltage (V) AC 120 Test Frequency (Hz) 60								

Results of Conducted Emission

Results of Conducted Emission

Date 2019-07-12

DTNC1906-05067 AC 120 V 60 Hz 23 'C 53 % R.H.

Memo

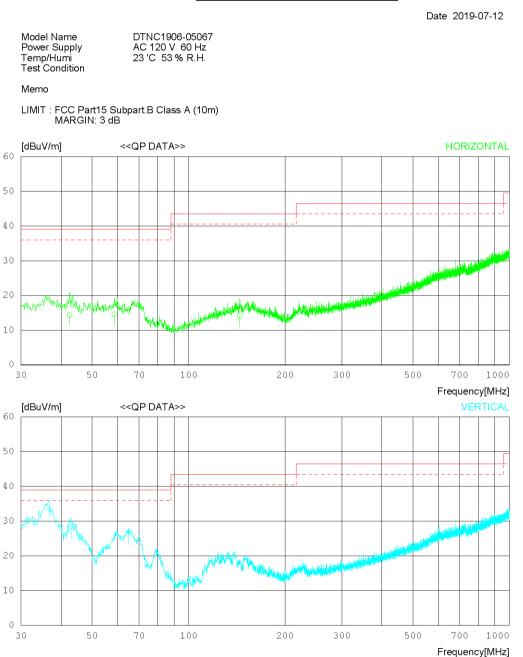
LIMIT : CISPR32_A QP CISPR32_A AV

NO	FREQ [MHz]	READING QP CAV [dBuV][dBuV]	C.FACTOR [dB]	RESULT QP CAV [dBuV] [dBuV]	LIMIT QP CAV [dBuV][dBuV]	MARGIN QP CAV [dBuV][dBuV]	PHASE
1	0.15209	42.81 25.09	9.95	52.76 35.04	79.00 66.00	26.24 30.96	N
2	0.19764	39.29 24.34	9.94	49.23 34.28	79.00 66.00	29.77 31.72	N
3	0.23726	35.59 18.75	9.95	45.54 28.70	79.00 66.00	33.4637.30	Ν
4	0.15050	41.3624.45	9.94	51.30 34.39	79.00 66.00	27.70 31.61	L1
5	0.19350	39.50 23.94	9.95	49.45 33.89	79.00 66.00	29.55 32.11	L1
6	0.23643	34.82 17.80	9.94	44.76 27.74	79.00 66.00	34.24 38.26	L1

Calculation

N : Neutral phase, L1 : Live phase C.FACTOR(dB) : Pulse Limiter(dB) + Cable loss(dB) + Insertion loss of LISN(dB) Result(dBµV) : Reading Value(dBµV) + C.FACTOR(dB) Margin(dB) : Limit(dBµV) - Result(dBµV)

7.2 Radiated Disturbance


ANSI C63.4		Radiated o	disturband	e 30 Mł	lz – 18 GHz		Result
receive antenna loca were then performed m. All frequencies w applicable. For final 120 kHz Bandwidth)	and 3 met ated at va d by rotati ere invest measurer was used	er above 1GHz. The rious heights in horiz ng the EUT 360° and igated in both horizo nent below 1 GHz fro d. For final measurer	EUT was ro contal and ver d adjusting the ontal and ver equency ran ment above	otated 360 ertical pol he receive rtical ante nge, Quas 1 GHz fre	D° about its azimuth wi arities. Final measurer e antenna height from	ith the ments 1 to 4 RBW = detector	Comply
EUT mode		Test configu	ration mod	de	-	1	
(Refer to clauses 4)	EUT Opera	ation mode	1	-	1	
		Radiated Disturb	ance belov	v 1 000 N	ſHz		
Frequency range			Qu	asi-peak	limit dBµV/m		
(MHz)		Class A (10	m distance	e)	Class B (3)	m distan	ce)
30 to 88		39	9.1		4	0	
88 to 216		43	3.5		43	3.5	
216 to 960		46	6.4		4	6	
960 to 1 000		49	9.5	54			
According to 15.109(g), as a comply with the standards(C				t shown a	bove, digital devices n	nay be sh	nown to
Frequency range	-		Qu	asi-peak	limit dBµV/m		
(MHz)		Class A (10	m distance	e)	Class B (10	m dista	nce)
30 to 230		4	0		3	0	
230 to 1 000		4	7	37			
Radiated	l Disturba			a measur	ement distance of 3		
Frequency range	-	Peak limi	it dBµV/m		Average lir	nit dBµV	//m
(GHz)		Class A	Class	s B	Class A	C	ass B
1 to 40		80	74	ļ	60		54
				r	ements are listed be		
Highest frequency g or on which the de	generate vice oper	d or used in the de ates or tunes (MHz	vice z)	Upp	er frequency of mea (MHz)	suremei	nt range
Below 108					1 000		
108 – 500				2 000			
	500 – 1 0	000		5 000 5 th harmonic of the highest frequency or 40 GHz			40 011
	Above 1 (000		5" harr	nonic of the highest fr whichever is l		or 40 GHz

Measurement Instrument											
Description	Model Manufacturer Identifier Cal. Date Cal.										
MEASUREMENT SOFTWARE	EMI-R VER. 2.00.0177	TSJ	N/A	N/A	N/A						
EMI TEST RECEIVER	ESR	ROHDE & SCHWARZ	101061	2019.01.30	2020.01.30						
TRILOG BROADBAND TEST-ANTENNA	VULB9160	SCHWARZBECK	9160-3363	2018.09.17	2020.09.17						
WITH 6DB ATT	8491B	HP	23831	2018.09.17	2020.03.17						
LOW NOISE PRE AMPLIFIER	MLA-010K01-B01-27	TSJ	1844539	2019.02.27	2020.02.27						
EMI TEST RECEIVER	ESU	ROHDE & SCHWARZ	100469	2019.06.12	2020.06.12						
HORN ANTENNA	3117	ETS-LINDGREN	00152093	2018.03.26	2020.03.26						
HORN ANTENNA WITH	EM-6969/	ELECTRO-METRICS/	156/	2019.02.13	2021.02.13						
PREAMPLIFIER	MLA-0618-B03-34	TSJ	1785642	2019.01.02	2020.01.02						
(NOTE : THE MEASUREM	IENT ANTENNAS WER	E CALIBRATED IN ACCO	RDANCE TO THE F	REQUIREMENTS C	OF C63.5-2017.)						

Radiated disturbance at (30 ~ 1000) MHz _Measurement data							
Test configuration mode 1 EUT Operation mode 1							
Test voltage (V) AC 120 Test Frequency (Hz) 60							

Date 2019-07-12

Model Name Power Supply Temp/Humi Test Condition DTNC1906-05067 AC 120 V 60 Hz 23 'C 53 % R.H.

Memo

LIMIT : FCC Part15 Subpart.B Class A (10m) MARGIN: 3 dB

No	o. FRE			ANT I ACTOR	LOSS	GAIN :	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz	Q [dB]			[dB]	[dB] [d	dBuV/m][dBuV/m]	[dB]	[cm]	[DEG]
	- Horiz	ontal									
1 2 3	42.4 58.6 144.3	15 22.	80 1	9.90 9.97 8.29	2.06 2.31 2.90	30.54 30.49 30.15	14.32 14.59 14.04	39.00 39.00 43.50	24.68 24.41 29.46	329 310 283	230 200 275
	- Verti	cal									
4 5 6	36.7 42.9 64.9	74 36.	60 1	0.23 9.86 8.33	1.97 2.07 2.40	30.55 30.54 30.46	33.95 27.99 26.47	39.00 39.00 39.00	5.05 11.01 12.53	400 126 133	171 267 309

Radiated disturbance at (1 ~ 6) GHz _Peak Measurement data								
Test configuration mode 1 EUT Operation mode 1								
Test voltage (V) AC 120 Test Frequency (Hz) 60								

Date 2019-07-29 Order No. Power Supply Temp/Humi DTNC1906-05067 AC 120 V 60 Hz 26 'C 49 % R.H. Test Condition Memo LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Peak) FCC Part15 Subpart.B Class A (3m) - GHz(Peak) <<PEAK DATA>> HORIZONTAL [dBuV/m] 90 80 70 60 50 40 30 20 10 0 1G 2G 3G 5G 6G Frequency[Hz] <<PEAK DATA>> VERTICAL [dBuV/m] 90 80 70 60 50 40 30 20 10 0 1G2G 3G 5G 6G

Date 2019-07-29

Order No. Power Supply Temp/Humi Test Condition

Memo

LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Peak) FCC Part15 Subpart.B Class A (3m) - GHz(Peak)

DTNC1906-05067 AC 120 V 60 Hz 26 'C 49 % R.H.

No	. FREQ	READING PEAK	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE			
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]			
	Horizontal												
1 2 3	3331.25	00 45.60 2 00 42.30 3 00 40.90 3	32.84	4.75 7.95 9.75	35.64 34.67 34.45	43.51 48.42 49.95	80.0 80.0 80.0	36.49 31.58 30.05	400 300 100	344 99 63			
	Vertical	l											
4 5 6	3331.25	00 43.90 2 00 44.20 3 00 42.10 3	32.84	4.75 7.95 9.75	35.64 34.67 34.45	41.81 50.32 51.15	80.0 80.0 80.0	38.19 29.68 28.85	199 400 299	358 101 53			

Radiated disturbance at (1 ~ 6) GHz _Average Measurement data							
Test configuration mode 1 EUT Operation mode 1							
Test voltage (V)	AC 120	Test Frequency (Hz)	60				

Date 2019-07-29 Order No. Power Supply Temp/Humi DTNC1906-05067 AC 120 V 60 Hz 26 'C 49 % R.H. Test Condition Memo LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Average) FCC Part15 Subpart.B Class A (3m) - GHz(Average) <<AV DATA>> HORIZONTAL [dBuV/m] 90 80 70 60 50 40 30 20 10 0 1G 2G 3G 5G 6G Frequency[Hz] <<AV DATA>> VERTICAL [dBuV/m] 90 80 70 60 50 40 30 20 10 0 1G2G 3G 5G 6G Frequency[Hz]

Date 2019-07-29

Order No. Power Supply Temp/Humi Test Condition

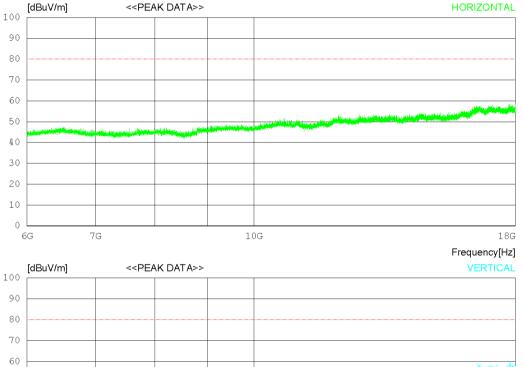
Memo

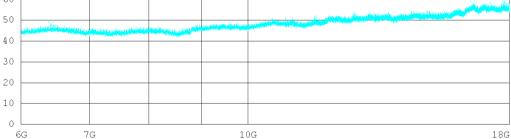
LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Average) FCC Part15 Subpart.B Class A (3m) - GHz(Average)

DTNC1906-05067 AC 120 V 60 Hz 26 'C 49 % R.H.

No	. FREQ	READING CAV	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	al								
1 2 3	1200.261 3331.254 4376.776	29.80	28.80 32.84 33.75	4.75 7.95 9.75	35.64 34.67 34.45	35.92	60.00 60.00 60.00	29.29 24.08 21.65	367 312 152	140 289 136
	Vertical									
4 5 б	1201.370 3330.061 4375.180	30.60	28.80 32.84 33.75	4.75 7.94 9.75	35.64 34.67 34.45	36.71	60.00 60.00 60.00	29.69 23.29 21.35	178 376 282	108 253 116

Radiated disturbance at (6 ~ 18) GHz _Peak Measurement data							
Test configuration mode 1 EUT Operation mode 1							
Test voltage (V)	AC 120	Test Frequency (Hz)	60				


Date 2019-07-29


Order No.	
Power Supply	
Temp/Humi	
Test Condition	

DTNC1906-05067 AC 120 V 60 Hz 26 'C 49 % R.H.

Memo

LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Peak) FCC Part15 Subpart.B Class A (3m) - GHz(Peak)

Frequency[Hz]

Date 2019-07-29

Order No. Power Supply Temp/Humi Test Condition

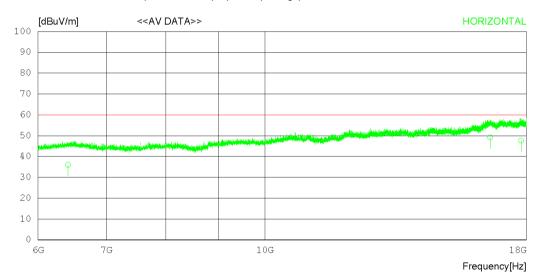
Memo

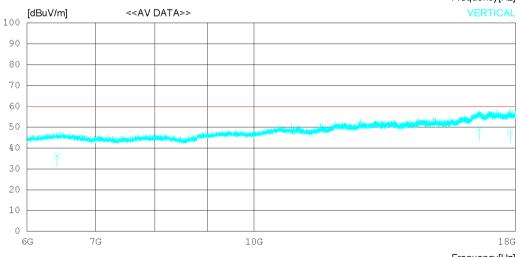
LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Peak) FCC Part15 Subpart.B Class A (3m) - GHz(Peak)

DTNC1906-05067 AC 120 V 60 Hz 26 'C 49 % R.H.

No.	FREQ	READING PEAK	ANT FACTO	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizon	tal								
1 2 3	16590.7	0 32.603 75026.004 75027.104	41.64	11.78 22.26 21.27	34.79 34.41 33.91	45.11 55.49 55.82	80.0 80.0 80.0	34.89 24.51 24.18	100 200 100	113 0 358
	Vertica	l								
4 5 6	16590.7	0 35.403 5028.304 5030.204	41.64	11.78 22.26 21.27	34.79 34.41 33.91	47.91 57.79 58.92	80.0 80.0 80.0	32.09 22.21 21.08	100 199 100	87 358 0

Radiated disturbance at (6 ~18) GHz _Average Measurement data							
Test configuration mode 1 EUT Operation mode 1							
Test voltage (V)	AC 120	Test Frequency (Hz)	60				


Date 2019-07-29


Order No.	
Power Supply	
Temp/Humi	
Test Condition	

DTNC1906-05067 AC 120 V 60 Hz 26 'C 49 % R.H.

Memo

LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Average) FCC Part15 Subpart.B Class A (3m) - GHz(Average)

Frequency[Hz]

Date 2019-07-29

Order No. Power Supply Temp/Humi Test Condition

Memo

LIMIT : FCC Part15 Subpart.B Class A (3m) - GHz(Average) FCC Part15 Subpart.B Class A (3m) - GHz(Average)

DTNC1906-05067

AC 120 V 60 Hz 26 'C 49 % R.H.

Nc	. FREQ	READING CAV	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	al								
1 2 3	6419.125 16590.56 17784.79	019.70	35.52 41.64 41.36	11.78 22.25 21.27	34.79 34.41 33.91	49.18	60.00 60.00 60.00	23.99 10.82 12.38	109 222 162	313 210 184
	Vertical									
4 5 6	6419.270 16590.73 17784.57	019.50	35.52 41.64 41.36	11.78 22.25 21.27	34.79 34.41 33.91	48.98	60.00 60.00 60.00	23.69 11.02 12.28	127 188 136	178 285 89

Calculation

Result(dBµV/m) : 30 ~ 1G : Reading Value(dBµV) + Cable loss(dB) - Pre amplifier gain(dB) + Ant. Factor(dB) 1 ~ 6 G : Ant. Factor = Ant. Factor - Pre amplifier gain Margin(dB) : Limit(dBµV/m) - Result(dBµV/m)

8. Revision History

Description	Revised By	Reviewed By
Initial report	Taehyun Choi	KyoungHwan Bae
Change FCC ID (2ATXA-S16N-X18K-7WN \rightarrow 2ATXA-SA163PLUS)	Taehyun Choi	KyoungHwan Bae
	Initial report Change FCC ID (2ATXA-S16N-X18K-7WN	Initial report Taehyun Choi Change FCC ID (2ATXA-S16N-X18K-7WN Taehyun Choi

-End of test report-