

Reviewed by

RADIO TEST REPORT - REP024534-1

Type of assessment: Final product testing	
Applicant: Leonardo Spa Piazza Monte Grappa, 4 00195 Roma RM – Italy	
Product: Radio Base Station, for fixed installation	
Model: ECOS-E DTA7000 U2HPW481 P/N 774-1165/01	
FCC ID: 2ATWB-DTA7KU2H48	
 Specifications: FCC 47 CFR Part 22, Subpart C and E FCC 47 CFR Part 90, Subpart I 	
Date of issue: March 01, 2024	
D. Guarnone	Signature Grousse
P. Barbieri	Ball L

Signature

Lab locations			

Company name	Nemko Spa			
Facilities	Via del Carroccio,	Via del Carroccio, 4		
	20853 Biassono (I	MB)		
	Italy	Italy		
	+39 039 220 12 0	+39 039 220 12 01		
Test site registration	Organization	Recognition numbers		
	FCC	682159		
Website	www.nemko.com	1		

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Spa ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of Contents

Table of 0	Contents	3
Section 1	1 Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	2 Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	3 Test conditions	6
3.1	Atmospheric conditions	6
3.2	Power supply range	6
Section 4	4 Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	5 Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	8
5.4	Technical information	9
5.5	EUT setup details	9
Section 6	Summary of test results	14
6.1	Testing location	14
6.2	Testing period	14
6.3	Sample information	14
6.4	FCC Part 2 and 90 Subpart I test requirements results	14
Section 7	7 Testing data	15
7.1	Number of frequencies	15
7.2	Modulation characteristic	16
7.3	Transmitter Output Power	21
7.4	Bandwidth limitations	40
7.5	Spectrum mask and spurious emissions	47
7.6	Transient frequency behavior	155
7.7	Transmitter frequency stability	160
Section 8	B Photos	162
8.1	Photos of the test set-up	162
8.2	Photos of the EUT	164

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 90, Subpart I	Private land mobile radio services. General technical standards
FCC 47 CFR Part 22, Subpart C	Public Mobile Services. Operational and Technical Requirements
FCC 47 CFR Part 22, Subpart E	Public Mobile Services. Paging and Radiotelephone Service

1.2 Test methods

ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
FCC 47 CFR Part 2, Subpart J	Equipment authorization procedures

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision # Date of issue Details of changes made to test report		Details of changes made to test report
REP024534	February 20, 2024	Original report issued
REP024534-1	March 01, 2024	Second release

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

None

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

In the laboratory, the following ambient conditions are respected for each test reported below:

Ambient temperature: $18 \div 33 \, ^{\circ}\text{C}^{\,(1)}$

Relative Humidity: $25 \div 70 \%$ (2)

Atmospheric pressure: 860 ÷ 1060 hPa

The following instruments are used to monitor the environmental conditions:

Equipment	Manufacturer	Model	Serial N°
Thermo-hygrometer data loggers	Testo	175-H2	20012380/305
Thermo-hygrometer data loggers Testo		175-H2	38203337/703
Barometer Castle		GPB 3300	072015

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2 and other specific test standard and is documented in Nemko Spa working manual WML1002. The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

Hereafter Nemko's measurement uncertainties are reported:

EUT	Туре	Test	Range	Measurement Uncertainty	Notes
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)
		, ,	0.009 MHz ÷ 30 MHz	1.1 dB	(1)
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)
			40 MHz ÷ 140 GHz	5.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)
			40 GHz ÷ 220 GHz	6.0 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
	Conducted	Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
Transmitter	Transient behaviour of the transmitter–Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)	
		Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)
		Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
			0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
	Radiated		66 GHz ÷ 220 GHz	10 dB	(1)
	Radiated		10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
			66 GHz ÷ 220 GHz	10 dB	(1)

NOTES:

Report reference ID: REP024534-1 Page 7 of 164

⁽¹⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

Information provided by the applicant Section 5

5.1 Disclaimer

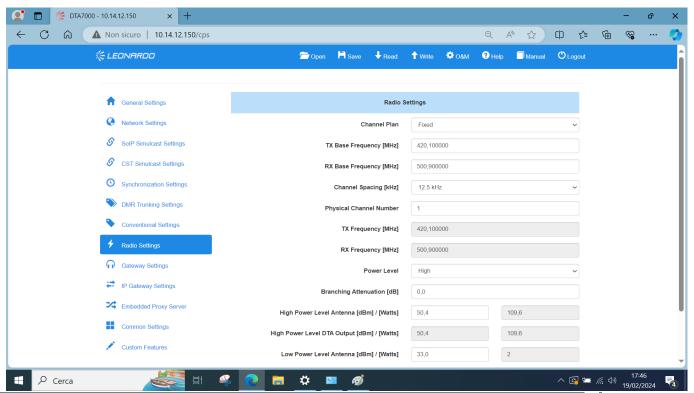
This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Leonardo Spa
Applicant address	Piazza Monte Grappa, 4 – 00195 Roma (RM) – Italy
Manufacture name	Leonardo Spa
Manufacture address	Piazza Monte Grappa, 4 – 00195 Roma (RM) – Italy

5.3 **EUT** information

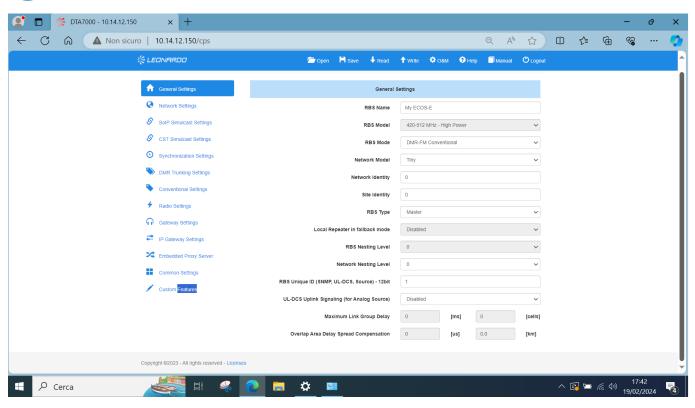
Product name	Radio Base Station for fixed installation		
Model	ECOS-E DTA7000 U2HPW481		
Model variant(s)	General Code: ECOS-E DTA7000 aayPz480		
	aa = 2 digits		
	Frequency Band		
	U2 = 420 - 512 MHz		
	00 = no radio part		
	y = 1 digit		
	RF Power level Configuration		
	H = 110 Watt		
	N = no transmitter		
	z = 1 digit		
	RF Configuration (Antenna Commutation and RX Diversity)		
	W =configuration with 2 receivers		
	0 = configuration without receiver		
	o = 1 digit		
	Options		
	0 = no option board		
	1 = with DMR option board		
Serial number	000002		
Part number	774-1165/01		
Power supply requirements	48 V DC		
Product description and theory of operation	The EUT is a radio base station for fixed installation		
Software version			

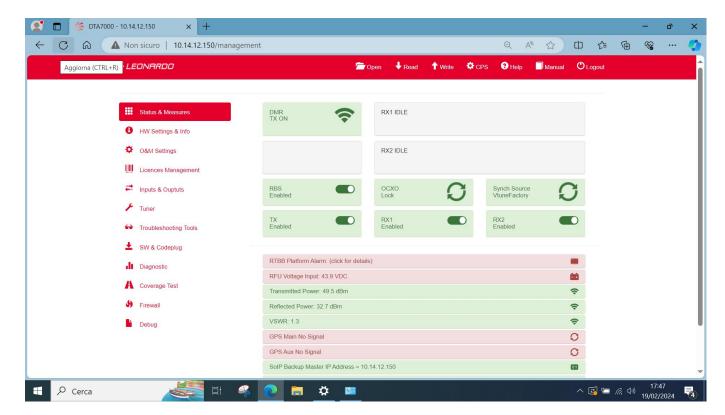

5.4 Technical information

System type	☐ Mobile system			
	Base/Fixed point-t	to-point system		
Frequency band	420 MHz – 512 MHz			
Frequency Min (MHz)	420.0 MHz			
Frequency Max (MHz)	512 MHz			
RF power Max (W), Conducted	110 W (50.4 dBm)			
Field strength, dBμV/m @ 3 m	N/A			
Measured BW (kHz), 99% OBW	10.0 kHz	10.0 kHz		
Emission designators	Analog	FM 11K0F3E / 16K0F3E (12.5 / 25 kHz)		
	DMR 4FSK Voice	7K60FXE		
	DMR 4FSK Data	7K60FXD		
	CST link 4FSK	6K05FXD / 6K05FXE		
	P25 C4FM Voice	8K10F1E		
	P25 C4FM Data	8K10F1D		
Transmitter spurious, dBm @ 3 m	-53.8 dBm			
Antenna information	Antenna not provided			

5.5 EUT setup details

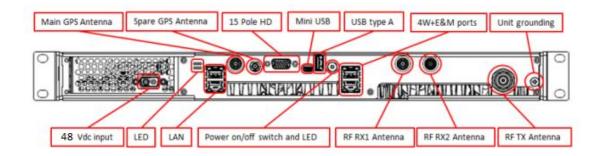
5.5.1 Radio exercise details


The following software has been used to set the EUT.



Report reference ID: REP024534-1

Page 9 of 164



5.5.2 EUT sub assemblies

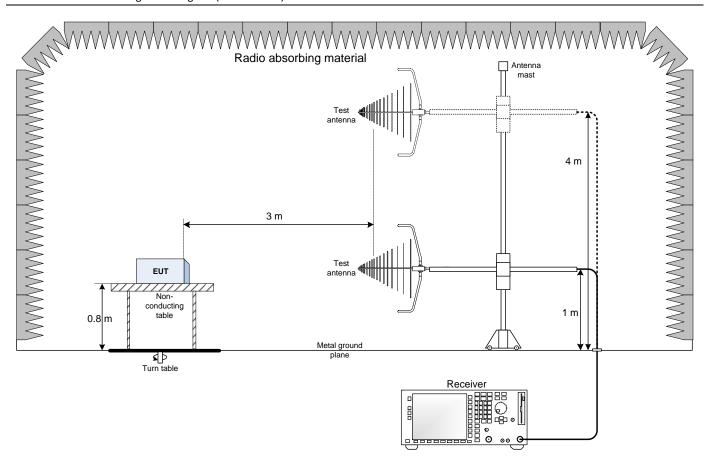
5.5.3 EUT interface ports

Port	Name	Type ¹	Cable Max. >3m	Cable Shielded	Description
0	Enclosure	N/E	_	_	-
1	48V dc input	DC	\boxtimes		Two wires cable
2	LAN	TP	×	×	Standard cable with RJ45 connector
3	RF RX1 antenna	ANT	×	×	Coaxial cable with sma connector
4	RF RX2 antenna	ANT	×	×	Coaxial cable with sma connector
5	Main GPS antenna	ANT	×	×	Coaxial cable with sma connector
6	Spare GPS antenna	ANT	×	×	Coaxial cable with sma connector
7	Mini USB	1/0	_	_	Normally not used
8	USB type A	I/O	_	_	Normally not used
9	RF TX antenna	ANT	\boxtimes	×	Coaxial cable with N connector
10	15 pole HD	I/O	×		Multi wires cable
11	4W+E&M	TP	×		Multi wires cable

Notes:

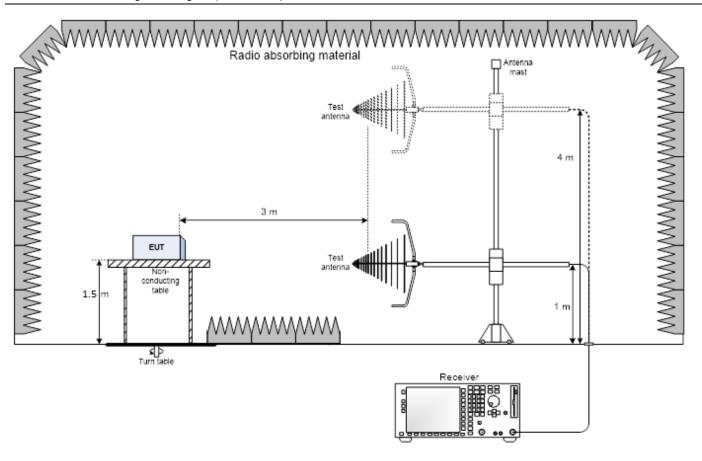
¹ Port type:

AC = AC Power Port DC = DC Power Port N/E = Non-Electrical ANT = Antenna Port

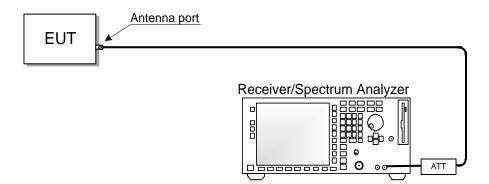

I/O = Signal/Control Input or Output Port TP = Wired network or telecommunication Port

5.5.4 Support equipment

Product Type	Manufacturer	Model	Comments
Notebook	DELL	Latitude	-



5.5.5 Radiated testing block diagram (below 1 GHz)



5.5.6 Radiated testing block diagram (above 1 GHz)

5.5.7 Antenna port testing block diagram

Section 6 Summary of test results

6.1 Testing location

Test location (s)	Nemko Spa

6.2 Testing period

Test start date	January 04, 2024	Test end date	February 19, 2024

6.3 Sample information

Receipt date	January 03, 2024	Nemko sample ID number(s)	PRJ00367500001

6.4 FCC Part 2 and 90 Subpart I test requirements results

Table 6.4-1: FCC requirements results

Part	Test description	Verdict
§2.1047	Modulation characteristics	Pass
§90.205(h)	Transmitter output power	Pass
§90.209(b)	Bandwidth limitations	Pass
§90.210	Spectrum mask and spurious emissions	Pass
§90.214	Transient frequency behavior	Pass
§90.213(a)	Transmitter frequency stability	Pass
Notes: -	-	

6.5 FCC Part 22 Subpart C and E test requirements results

Table 6.4-1: FCC requirements results

Test description	Verdict
Transmitter output power	Pass
Bandwidth limitations	Pass
Spectrum mask and spurious emissions	Pass
Transmitter frequency stability	Pass
	Transmitter output power Bandwidth limitations Spectrum mask and spurious emissions

Notes: --

Section 7 Testing data

7.1 Number of frequencies

7.1.1 References, definitions and limits

ANSI C63.26, Clause 5.1.2:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in table below.

Table 7.1-1: Frequency Range of Operation

Frequency range over which the device		Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

7.1.2 Test summary

Verdict	Pass		
Tested by	D. Guarnone	Test date	January 23, 2024

7.1.3 Observations, settings and special notes

None

7.1.4 Test data

Table 7.1-2: Test channels selection

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
420	512	92	420.1	467	511.9

Modulation characteristic 7.2

7.2.1 References, definitions and limits

FCC §2.1047:

- (a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
- Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed

Test summary 7.2.2

Verdict	Pass		
Tested by	D. Guarnone	Test date	January 23, 2024

7.2.3 Observations, settings and special notes

Per ANSI C63.26 Subclause 5.3.1: The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

Spectrum analyser settings:

Receiver mode	RMS deviation
Audio frequency generator	100 Hz and 5000 Hz
tone	

Reference voltage measurement: Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation. Record the DMM reading as V_{REF} .

Calculation of the audio frequency response at the present frequency: $20 \times Log_{10}$ (V_{FREQ.} / V_{REF})

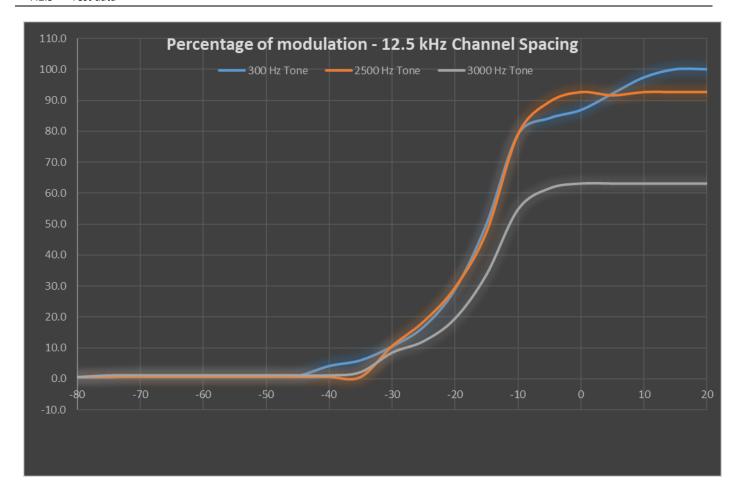
Per ANSI C63.26 Subclause 5.3.2: Modulation limiting is the ability of a transmitter circuit to limit the transmitter from producing deviations in excess of a rated system deviation.

Spectrum analyser settings:

Receiver mode	Peak positive and negative deviation
Audio frequency generator	300 Hz, 2500 Hz and 3000 Hz
tone	

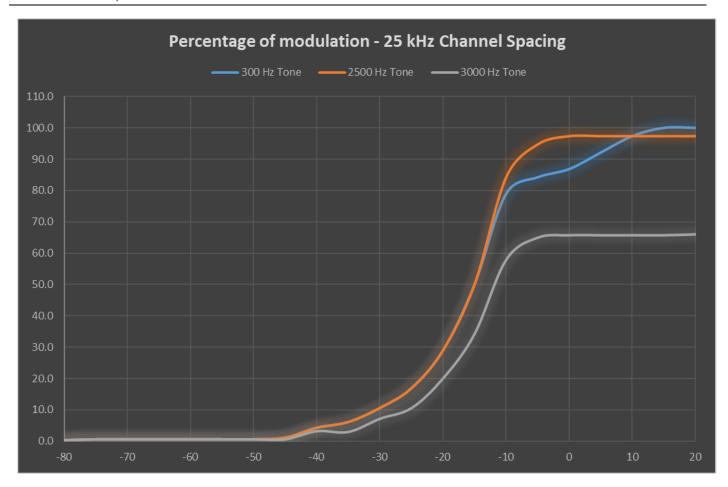
Reference voltage measurement: Apply a 1000 Hz tone and adjust the audio frequency generator to produce 60% of the rated system deviation. This is the 0 dB reference level. Plot the data set as a percentage of deviation relative to the 0 dB reference point versus input voltage.

7.2.4 Test equipment list

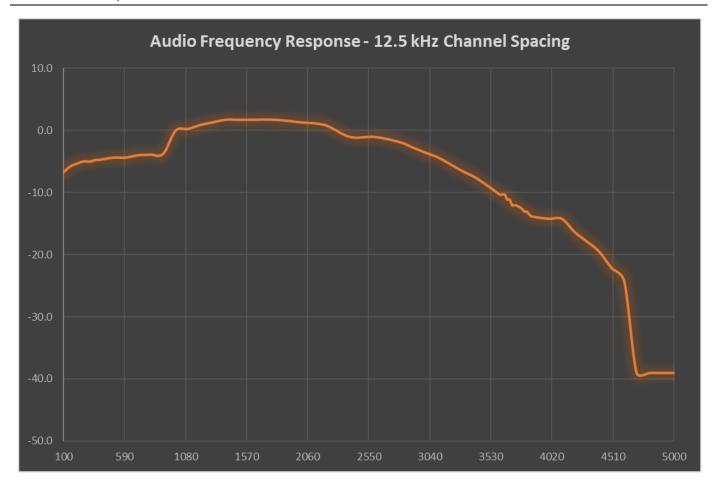

Report reference ID:

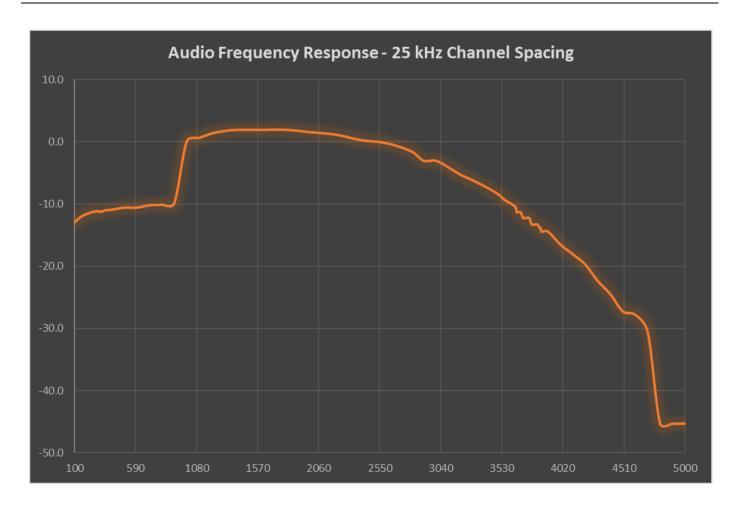
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Spectrum Analyzer	Rohde & Schwarz	FSW43	101767	2023-09	2024-09
Shielded room	Siemens	10m control room	1947	NCR	NCR
Radiocommunication Tester	R&S	CMT	883152/001	2023/01	2026-01
Audio Generator	Rohde & Schwarz	APN04	860 093/017	2024-01	2027-01
Note: NCR - no calibration require	ed, VOU - verify on use				

REP024534-1



7.2.5 Test data


Modulation Limiting at 467 MHz


Modulation Limiting at 467 MHz

Audio frequency response at 467 MHz

Audio frequency response at 467 MHz

7.3 Transmitter Output Power

7.3.1 References, definitions and limits

FCC §22.565:

The transmitting power of base, mobile and fixed transmitters operating on the channels listed in § 22.561 must not exceed the limits in this section.

(a) Maximum ERP. The effective radiated power (ERP) of base and fixed transmitters must not exceed the applicable limits in this paragraph under any circumstances.

Frequency range (MHz)	Maximum ERP (watts)
152 – 153	1400
157 – 159	150
454 – 455	3500
459 – 460	150

Table 7.3-1: Maximum ERP

- (b) Basic power limit. Except as provided in paragraph (d) of this section, the ERP of base transmitters must not exceed 500 Watts.
- (c) Height-power limits. Except as provided in paragraph (d) of this section, the ERP of base transmitters must not exceed the amount that would result in an average distance to the service contour of 41.6 kilometers (26 miles) for VHF channels or 30.7 kilometers (19 miles) for UHF channels. The average distance to the service contour is calculated by taking the arithmetic mean of the distances determined using the procedures specified in § 22.567 for the eight cardinal radial directions, excluding cardinal radial directions for which 90% or more of the distance so calculated is over water.
- (d) Encompassed interfering contour areas. Base transmitters are exempt from the basic power and height-power limits of this section if the area within their interfering contours is totally encompassed by the interfering contours of operating co-channel based transmitters controlled by the same licensee. For the purpose of this paragraph, operating transmitters are authorized transmitters that are providing service to subscribers.
- (e) Adjacent channel protection. The ERP of base and fixed transmitters must not exceed 500 Watts if they transmit on channel 454.025 MHz and are located less than 7 kilometers (4.3 miles) from any Private Radio Services station receiving on adjacent channel 454.0000 MHz.
- (f) Mobile transmitters. The transmitter output power of mobile transmitters must not exceed 60 watts.

FCC §90.205:

- (h) Power and antenna height limits within 450–470 MHz.
- (1) The maximum allowable station effective radiated power (ERP) is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table below. Applicants requesting an ERP in excess of that listed in table below must submit an engineering analysis based upon generally accepted engineering practices and standards that includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires.
- (2) Applications for stations where special circumstances exist that make it necessary to deviate from the ERP and antenna heights in Table below will be submitted to the frequency coordinator accompanied by a technical analysis, based upon generally accepted engineering practices and standards, that demonstrates that the requested station parameters will not produce a signal strength in excess of 39 dBu at any point along the edge of the requested service area. The coordinator may then recommend any ERP appropriate to meet this condition.
- (3) An applicant for a station with a service area radius greater than 32 km (20 mi) must justify the requested service area radius, which may be authorized only in accordance with table below, note 4. For base stations with service areas greater than 80 km, all operations 80 km or less from the base station will be on a primary basis and all operations outside of 80 km from the base station will be on a secondary basis and will be entitled to no protection from primary operations.

Table 7.3-2: Maximum ERP	/Re	ference HAAT	for a Spe	cific	Service A	Area I	Radius i	(FCC)

Service area radius (km):	3	8	13	16	24	32	40 ⁴	48 ⁴	644	80 ⁴
Maximum ERP (w)1:	2	100	² 500							
Up to reference HAAT (m) ³ :	15	15	15	27	63	125	250	410	950	2700

Notes:

¹Maximum ERP indicated provides for a 39 dBu signal strength at the edge of the service area per FCC Report R-6602, Fig. 29 (See §73.699, Fig. 10 b).

²Maximum ERP of 500 watts allowed. Signal strength at the service area contour may be less than 39 dBu.

³When the actual antenna HAAT is greater than the reference HAAT, the allowable ERP will be reduced in accordance with the following equation: ERP_{allow} = ERP_{max} × (HAAT_{actual})².

⁴Applications for this service area radius may be granted upon specific request with justification and must include a technical demonstration that the signal strength at the edge of the service area does not exceed 39 dBu.

(s) The output power shall not exceed by more than 20 percent either the output power shown in the Radio Equipment List [available in accordance with § 90.203(a)(1)] for transmitters included in this list or when not so listed, the manufacturer's rated output power for the particular transmitter specifically listed on the authorization.

FCC §90.279:

Power limitations applicable to the 421-430 MHz band

(a) Base station authorizations in the 421–430 MHz band will be subject to Effective Radiated Power (ERP) and Effective Antenna Height (EAH) limitations as shown in the table below. ERP is defined as the product of the power supplied to the antenna and its gain relative to a half-wave dipole in a given direction. EAH is calculated by subtracting the Assumed Average Terrain Elevation (AATE) as listed in table 7 of § 90.619 from the antenna height above mean sea level.

Table 7.3-3: Limits of Effective Radiated Power (ERP) Corresponding to Effective Antenna Heights (EAH) of Base Stations in the 421-430 MHz Band

Effective antenna height (EAH) in meters (feet)	Maximum effective radiated power (ERP) (watts)
0-152 (0-500)	250
Above 152–305 (above 500–1000)	150
Above 305–457 (above 1000–1500)	75
Above 457–610 (above 1500–2000)	40
Above 610–762 (above 2000–2500)	20
Above 762–914 (above 2500–3000)	15
Above 914–1219 (above 3000–4000)	10
Above 1219 (above 4000)	5

7.3.2 Test summary

Verdict	Pass		
Tested by	D. Guarnone	Test date	January 8, 2024 / 19 February, 2024

7.3.3 Observations, settings and special notes

Manufacturer's rated output power is 110 W or 50.41 dBm. 20% of the rated power = 51.2 dBm

 $Measurement\ of\ peak\ power\ was\ performed\ per\ ANSI\ C63.26\ subclause\ 5.2.3.3.\ Spectrum\ analyser\ settings:$

Resolution bandwidth	≥ ORM
Video bandwidth	≥ 3 × RBW
Frequency span	≥ 2 × OBW
Detector mode	Peak
Trace mode	Max Hold
Sweep time	≥ 10 × (number of points in sweep) × (transmission symbol period)

7.3.4 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Receiver	Rohde & Schwarz	ESW44	101620	2023-09	2024-09
EMI Receiver	Rohde & Schwarz	ESU8	100202	2023-09	2024-09
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	2023-09	2025-09
Shielded room	Siemens	10m control room	1947	NCR	NCR

Note: NCR - no calibration required, VOU - verify on use

7.3.5 Test data

Table 7.3-4: Transmitter power results

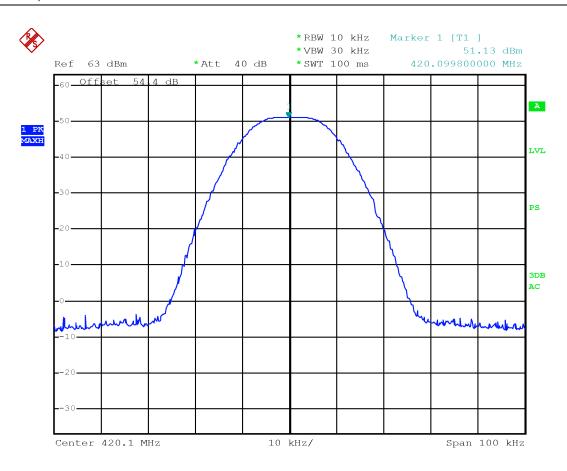
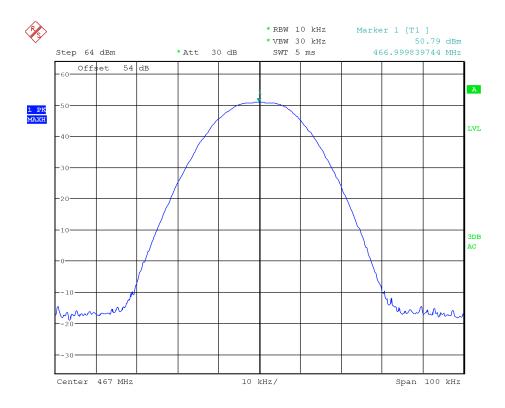

			Max	
Modulation	Frequency, MHz	Output power, dBm	Antenna gain, dBd	ERP limit, dBm
FM 12.5 kHz	420.1	51.1	2.9	54
FM 25.0 kHz	420.1	51.1	2.9	54
DMR 4FSK	420.1	51.1	2.9	54
CST 4FSK	420.1	51.1	2.9	54
P25 C4FM	420.1	51.1	2.9	54
FM 12.5 kHz	467.0	50.8	3.2	54
FM 25.0 kHz	467.0	50.8	3.2	54
DMR 4FSK	467.0	50.8	3.2	54
CST 4FSK	467.0	50.7	3.3	54
P25 C4FM	467.0	50.7	3.3	54
FM 12.5 kHz	511.9	50.7	3.3	54
FM 25.0 kHz	511.9	50.8	3.2	54
DMR 4FSK	511.9	50.7	3.3	54
CST 4FSK	511.9	50.7	3.3	54
P25 C4FM	511.9	50.7	3.3	54

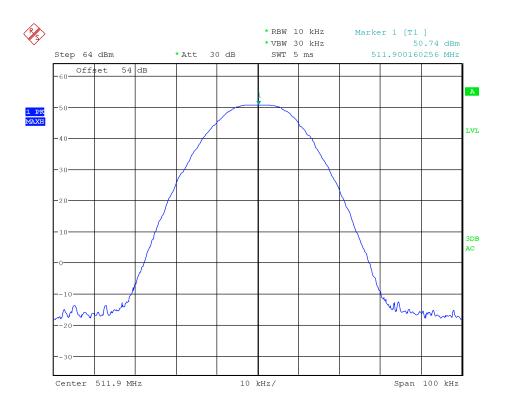
Table 7.3-5: Rated vs measured power

		Rated output	Measured output		Difference limit,	
Modulation	Frequency, MHz	power, dBm	power, dBm	Difference, dB	dB	Margin, dB
FM 12.5 kHz	420.1	50.4	51.1	0.7	0.1	0.8
FM 25.0 kHz	420.1	50.4	51.1	0.7	0.1	0.8
DMR 4FSK	420.1	50.4	51.1	0.7	0.1	0.8
CST 4FSK	420.1	50.4	51.1	0.7	0.1	0.8
P25 C4FM	420.1	50.4	51.1	0.7	0.1	0.8
FM 12.5 kHz	467.0	50.4	50.8	0.4	0.4	0.8
FM 25.0 kHz	467.0	50.4	50.8	0.4	0.4	0.8
DMR 4FSK	467.0	50.4	50.8	0.4	0.4	0.8
CST 4FSK	467.0	50.4	50.7	0.3	0.5	0.8
P25 C4FM	467.0	50.4	50.7	0.3	0.5	0.8
FM 12.5 kHz	511.9	50.4	50.7	0.3	0.5	0.8
FM 25.0 kHz	511.9	50.4	50.8	0.4	0.4	0.8
DMR 4FSK	511.9	50.4	50.7	0.3	0.5	0.8
CST 4FSK	511.9	50.4	50.7	0.3	0.5	0.8



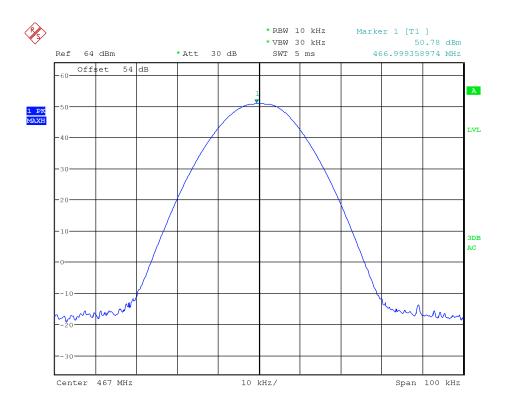
Date: 19.FEB.2024 15:24:49

Output power with modulation DMR 4FSK at 420.1 MHz



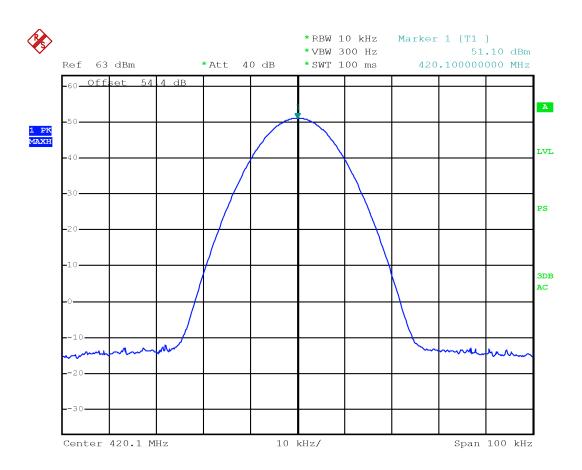
Date: 8.JAN.2024 18:56:17

Output power with modulation DMR 4FSK at 467 MHz



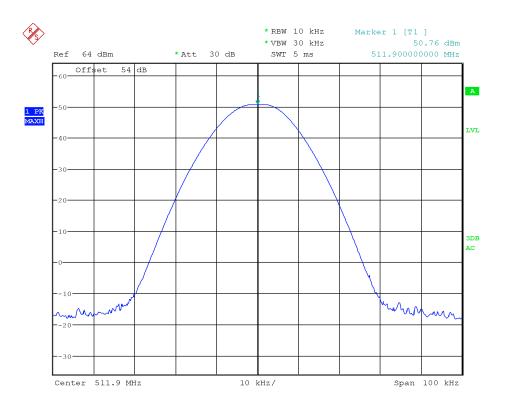
Date: 8.JAN.2024 18:58:26

Output power with modulation DMR 4FSK at 511.9 MHz



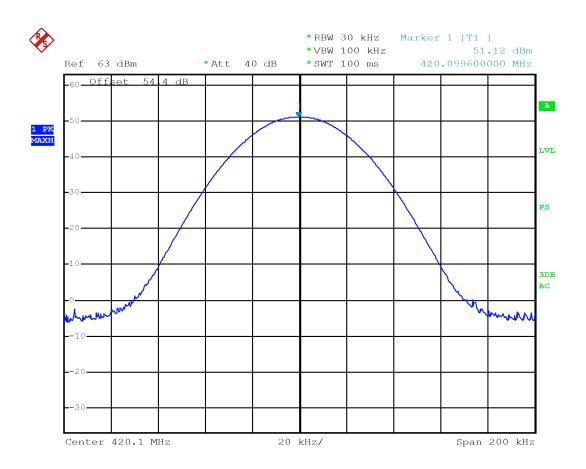
Date: 9.JAN.2024 11:58:38

Output power with modulation FM 12.5 kHz at 467.0 MHz



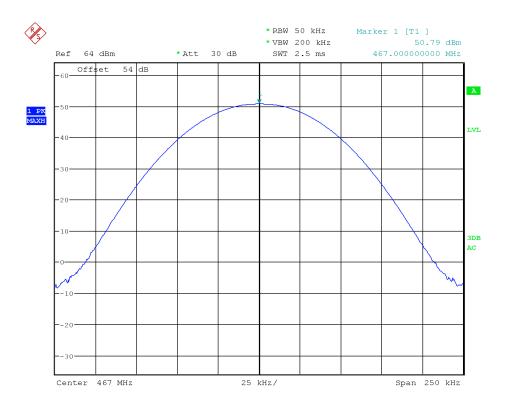
Date: 19.FEB.2024 15:53:44

Output power with modulation FM 12.5 kHz at 420.1 MHz



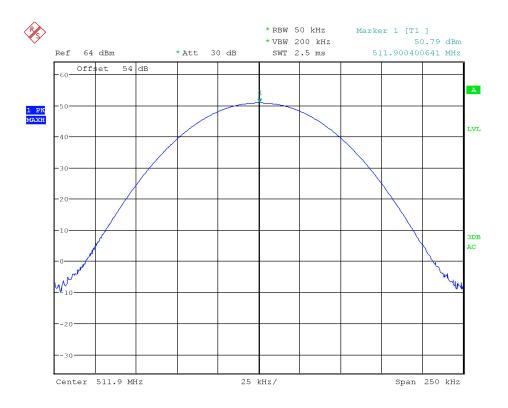
Date: 9.JAN.2024 12:03:04

Output power with modulation FM 12.5 kHz at 511.90 MHz



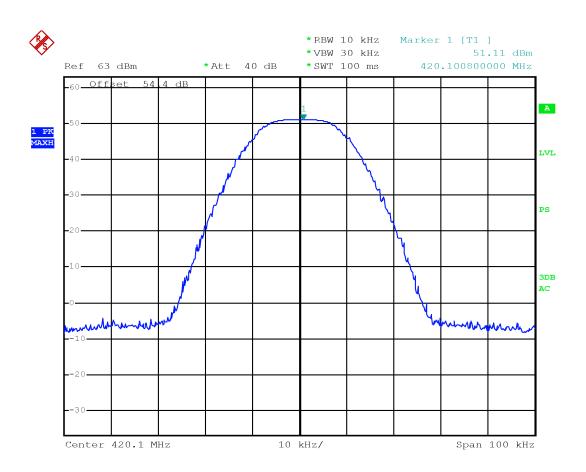
Date: 19.FEB.2024 15:57:33

Output power with modulation FM 25 kHz at 420.1 MHz



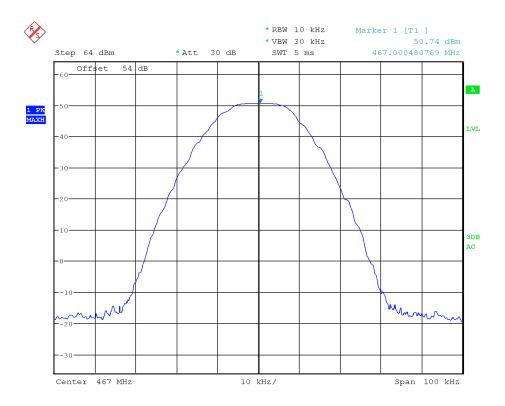
Date: 9.JAN.2024 12:08:00

Output power with modulation FM 25 kHz at 467 MHz



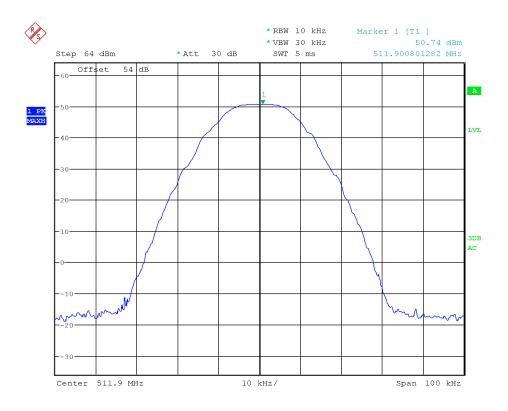
Date: 9.JAN.2024 12:06:24

Output power with modulation FM 25 kHz at 511.9 MHz



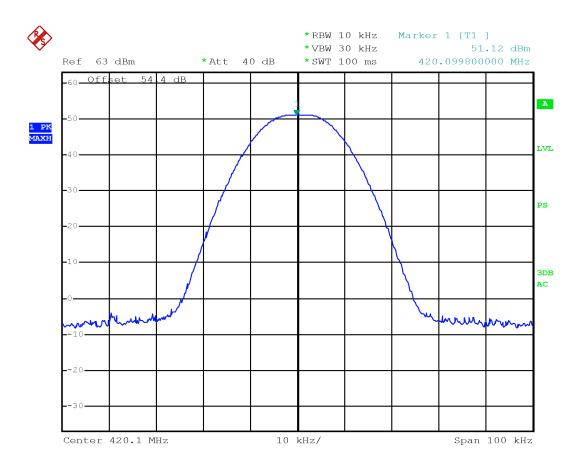
Date: 19.FEB.2024 15:29:49

Output power with modulation P25 C4FM at 420.1 MHz



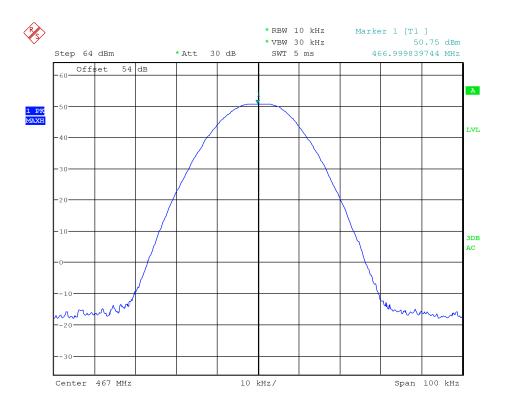
Date: 8.JAN.2024 19:05:03

Output power with modulation P25 C4FM at 467.0 MHz



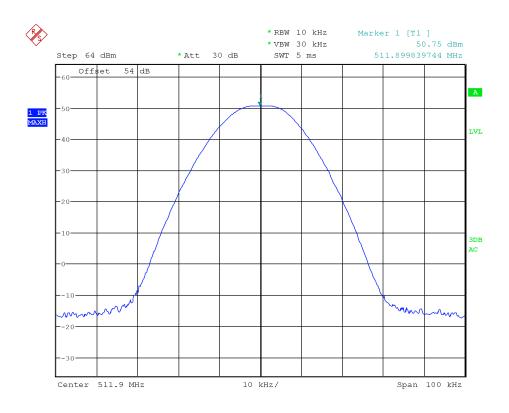
Date: 8.JAN.2024 19:07:33

Output power with modulation P25 C4FM at 511.9 MHz



Date: 19.FEB.2024 15:37:07

Output power with modulation CST 4FSK at 420.1 MHz


Test data, continued

Date: 8.JAN.2024 19:03:08

Output power with modulation CST 4FSK at 467 MHz

Date: 8.JAN.2024 19:01:31

Output power with modulation CST 4FSK at 511.9 MHz

7.4 Bandwidth limitations

7.4.1 References, definitions and limits

FCC §22.561:

The following channels are allocated for paired assignment to transmitters that provide (or support other transmitters that provide) one-way or two-way public land mobile service, either individually or collectively under a paging geographic area authorization. The paging geographic areas used for these channels are the EAs (see § 22.503(b)(3)). These channels may be assigned for use by mobile or base transmitters as indicated, and or by fixed transmitters (including control, repeater or other fixed transmitters). The mobile channels may also be assigned for use by base or fixed transmitters under certain circumstances (see § 22.567(h)). Unless otherwise indicated, all channels have a bandwidth of 20 kHz and are designated by their center frequencies in MegaHertz.

Base, MHz	Mobile, MHz	Base, MHz	Mobile, MHz
454.025	459.025	454.350	459.350
454.050	459.050	454.375	459.375
454.075	459.075	454.400	459.400
454.100	459.100	454.425	459.425
454.125	459.125	454.450	459.450
454.150	459.150	454.475	459.475
454.175	459.175	454.500	459.500
454.200	459.200	454.525	459.525
454.225	459.225	454.550	459.550
454.250	459.250	454.575	459.575
454.275	459.275	454.600	459.600
454.300	459.300	454.625	459.625
454.325	459.325	454.650	459.650

Table 7.4-1: UHF Channels

FCC §90.209:

Frequency band, MHz

- (b) The maximum authorized single channel bandwidth of emission corresponding to the type of emission specified in §90.207 is as follows:
- (5) Unless specified elsewhere, channel spacings and bandwidths that will be authorized in the following frequency bands are given in the following table.

Table 7.4-2: Standard Channel Spacing/Bandwidth

Channel spacing, kHz

Authorized bandwidth1, kHz

	421–512	6.25	20 / 11.25 / 6
Note:	¹ Operations using equipment designed to ope	rate with a 25 kHz channel bandwidth will be author	rized a 20 kHz bandwidth. Operations using equipment
	designed to operate with a 12.5 kHz channel b	andwidth will be authorized a 11.25 kHz bandwidth.	Operations using equipment designed to operate with a
	6.25 kHz channel bandwidth will be authorized	a 6 kHz bandwidth. All stations must operate on ch	annels with a bandwidth of 12.5 kHz or less beginning
	January 1, 2013		

(6)(i) Beginning January 1, 2011, no new applications for the 421–512 MHz bands will be acceptable for filing if the applicant utilizes channels with an authorized bandwidth exceeding 11.25 kHz, unless specified elsewhere or the operations meet the efficiency standards of §90.203(j)(3).

7.4.2 Test summary

Verdict	Pass		
Tested by	D. Guarnone/Oscar Frau	Test date	10/12/22 Jan., 2024

7.4.3 Observations, settings and special notes

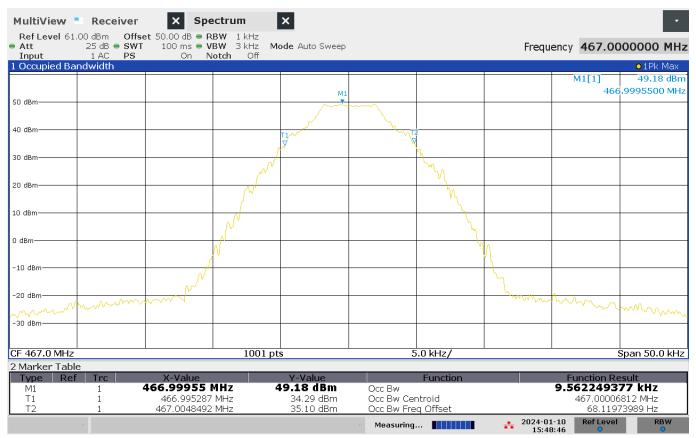
The test was performed as per ANSI C63.26, subclause 5.4.4.

Spectrum analyser settings:

Resolution bandwidth	1–5% of OBW
Video bandwidth	≥3 × RBW
Frequency span	1.5 × OBW
Detector mode	Peak
Trace mode	Max Hold

7.4.4 Test equipment list

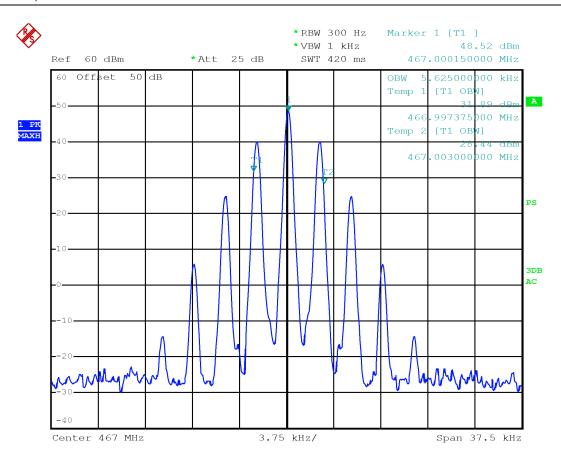
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Receiver	Rohde & Schwarz	ESW44	101620	2023-09	2024-09
EMI Receiver	Rohde & Schwarz	ESU8	100202	2023-09	2024-09
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	2023-09	2025-09
Shielded room	Siemens	10m control room	1947	NCR	NCR


Note: NCR - no calibration required, VOU - verify on use

7.4.5 Test data

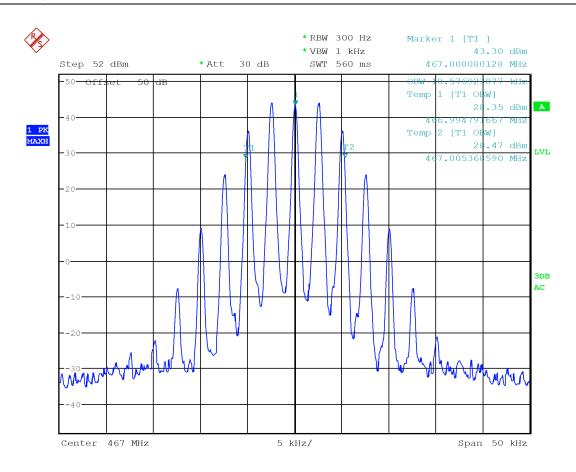
Table 7.4-3: 99% occupied bandwidth results

Modulation	Frequency, MHz	99% occupied bandwidth, kHz	Limit, kHz	Margin, kHz
FM 12.5 kHz	467.0	5.6	11.25	-6.0
FM 25.0 kHz	467.0	10.6	20.00	-10.0
DMR 4FSK	467.0	9.5	11.25	-3.7
P25 C4FM	467.0	9.2	11.25	-3.0
CST 4FSK	467.0	6.9	11.25	-5.4



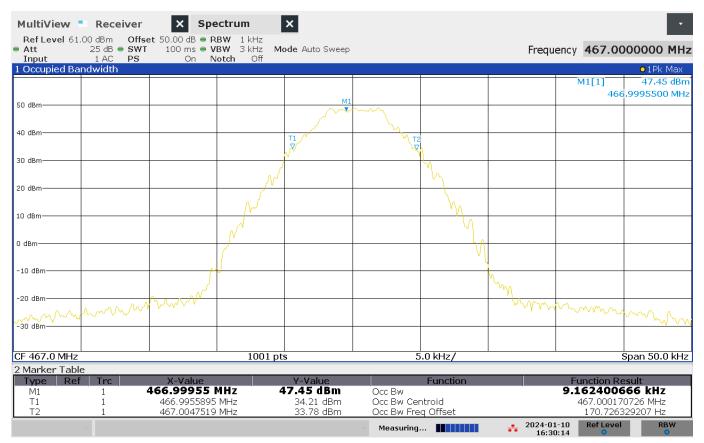
03:48:47 PM 01/10/2024 Page 0/0

99% occupied bandwidth with modulation DMR 4FSK at 467 MHz



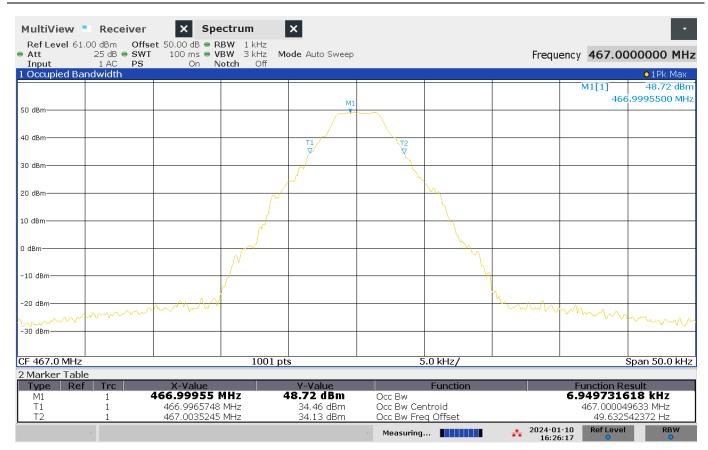
Date: 12.JAN.2024 18:32:17

99% occupied bandwidth with modulation FM 12.5 kHz at 467 MHz



Date: 22.JAN.2024 11:39:00

99% occupied bandwidth with modulation FM 25 kHz at 467 MHz



04:30:15 PM 01/10/2024 Page 0/0

99% occupied bandwidth with modulation P25 C4FM at 467 MHz

04:26:17 PM 01/10/2024 Page 0/0

99% occupied bandwidth with modulation CST 4FSK at 467 MHz

7.5 Spectrum mask and spurious emissions

7.5.1 References, definitions and limits

FCC §22.359:

The rules in this section govern the spectral characteristics of emissions in the Public Mobile Services, except for the Air-Ground Radiotelephone Service (see § 22.861, instead) and the Cellular Radiotelephone Service (see § 22.917, instead).

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.
- (i.e., 30 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (c) Alternative out of band emission limit. Licensees in the Public Mobile Services may establish an alternative out of band emission limit to be used at specified frequencies (band edges) in specified geographical areas, in lieu of that set forth in this section, pursuant to a private contractual arrangement of all affected licensees and applicants. In this event, each party to such contract shall maintain a copy of the contract in their station files and disclose it to prospective assignees or transferees and, upon request, to the FCC.
- (d) Interference caused by out of band emissions. If any emission from a transmitter operating in any of the Public Mobile Services results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

FCC §90.210:

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

Table 7.5-1: Applicable Emission Masks

Frequency band, MHz	Mask for equipment with audio low pass filter	Mask for equipment with audio low pass filter
421–512 ^{1,2}	B, D, or E	C, D, or E

Notes: ¹Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

²Equipment designed to operate on 25 kilohertz bandwidth channels must meet the requirements of either Emission Mask B or G, whichever is applicable, while equipment designed to operate on 12.5 kilohertz bandwidth channels must meet the requirements of Emission Mask D. Equipment designed to operate on 25 kilohertz bandwidth channels may alternatively meet the Adjacent Channel Power limits of §90.221.

- (b) **Emission Mask B.** For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:
- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

- (c) **Emission Mask C.** For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:
- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (f_d/5) dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (f_d²/11) dB or 50 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
- (d) **Emission Mask D**—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
- (1) On any frequency from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 : Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd-2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.
 - (e) **Emission Mask E**—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
 - (1) On any frequency from the center of the authorized bandwidth f₀ to 3.0 kHz removed from f₀: Zero dB.
 - (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(f_d -3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
 - (3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
 - (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

7.5.2 Test summary

Verdict	Pass		
Tested by	D. Guarnone	Test date	January 22, 2024/February 19 2024

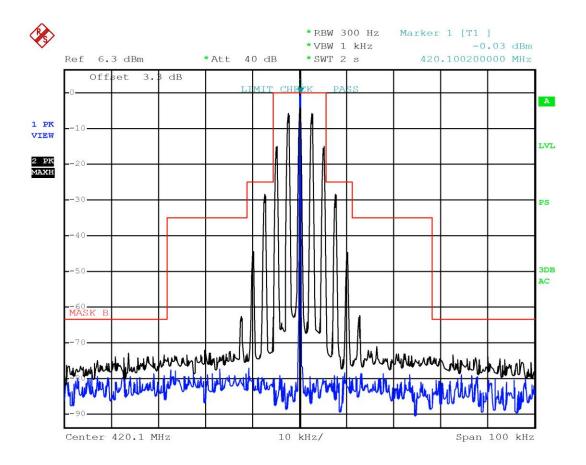
7.5.3 Observations, settings and special notes

Spectrum analyser settings for spectrum mask:

Resolution bandwidth:	100 Hz / 300 Hz
Video bandwidth:	> RBW
Detector mode:	Peak
Trace mode:	Max Hold

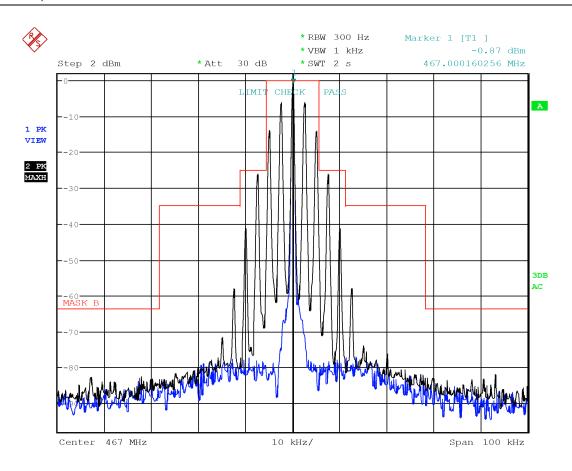
Spectrum analyser settings for spurious emissions:

Resolution bandwidth:	100k Hz (below 1 GHz); 1 MHz (above 1 GHz)		
Video bandwidth:	> RBW		
Detector mode:	Peak		
Trace mode:	Max Hold		


7.5.4 Test equipment list

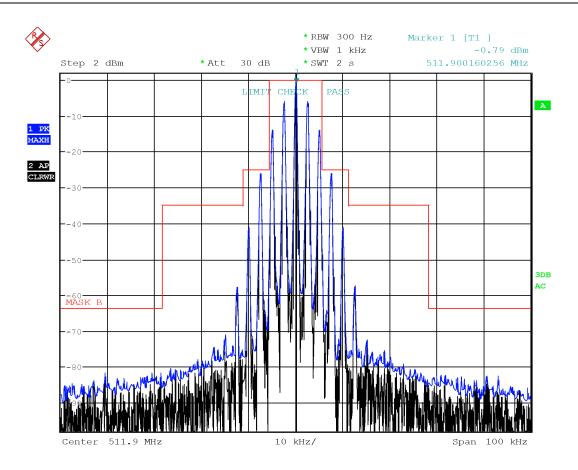
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Receiver	Rohde & Schwarz	ESW44	101620	2023-09	2024-09
EMI Receiver	Rohde & Schwarz	ESU8	100202	2023-09	2024-09
Trilog Broadband Antenna	Schwarzbeck	VULB 9162	9162-025	2021-07	2024-07
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152	2021-09	2024-09
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718C	00121	2023-03	2024-03
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	2023-09	2025-09
Shielded room	Siemens	10m control room	1947	NCR	NCR
3m Semi anechoic chamber	Comtest	SAC-3	1711-150	2022-09	2024-09

Note: NCR - no calibration required, VOU - verify on use


7.5.5 Test data

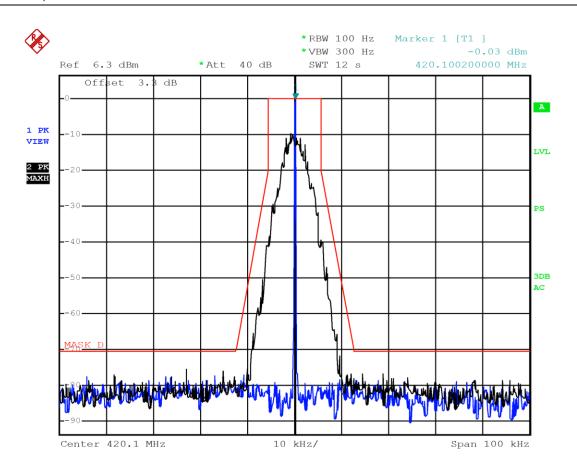
Date: 19.FEB.2024 16:27:22

Emission mask B with modulation FM 25.0 kHz at 420.1 MHz



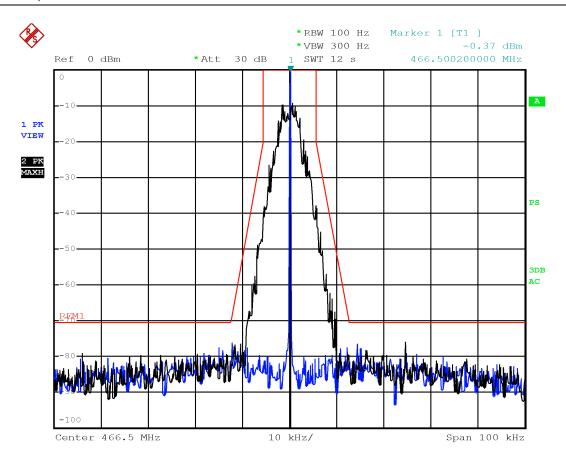
Date: 22.JAN.2024 12:29:17

Emission mask B with modulation FM 25.0 kHz at 467.0 MHz



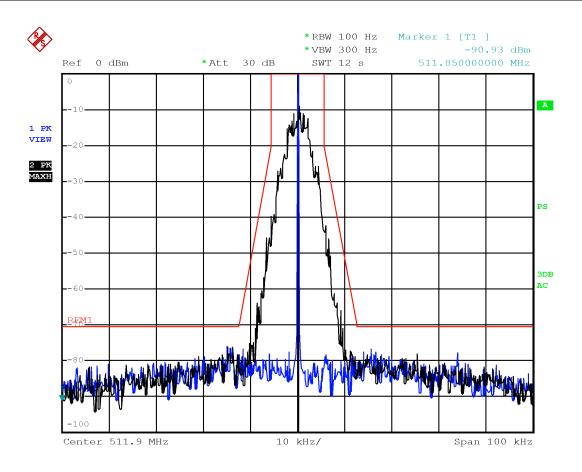
Date: 22.JAN.2024 12:26:06

Emission mask B with modulation FM 25.0 kHz at 511.9 MHz



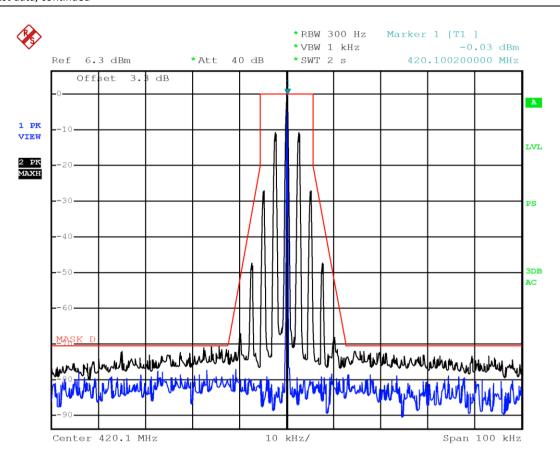
Date: 19.FEB.2024 17:39:01

Emission mask D with modulation DMR 4FSK at 420.1 MHz



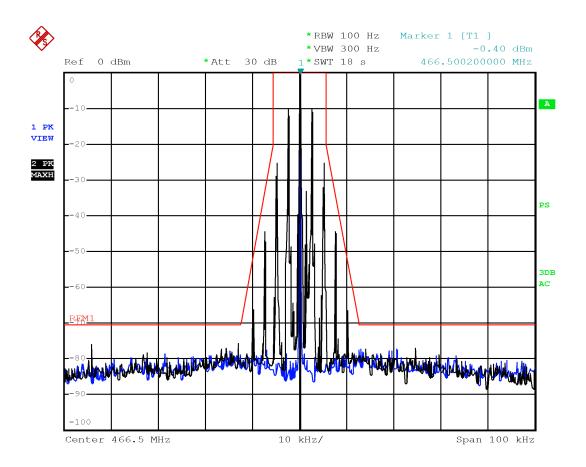
Date: 11.JAN.2024 17:45:39

Emission mask D with modulation DMR 4FSK at 467 MHz



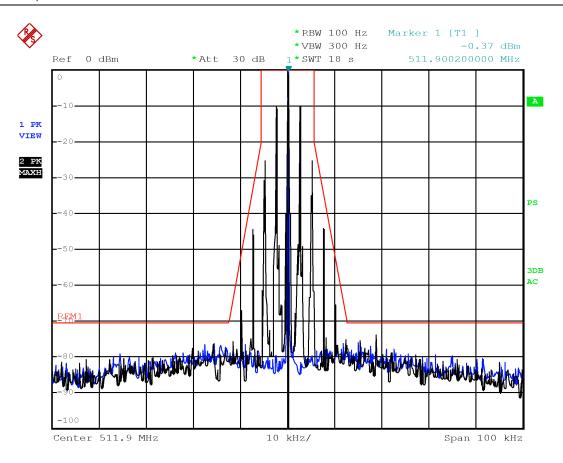
Date: 11.JAN.2024 17:54:31

Emission mask D with modulation DMR 4FSK at 511.9 MHz



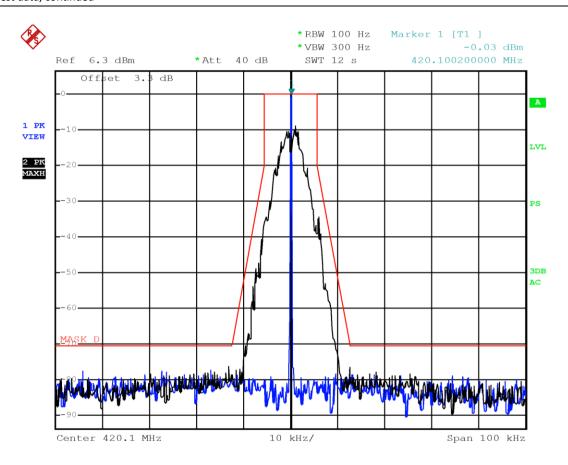
Date: 19.FEB.2024 16:33:58

Emission mask D with modulation FM 12.5 kHz at 420.1 MHz



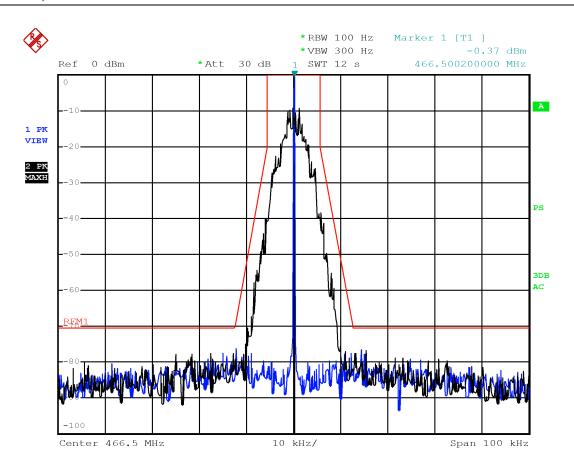
Date: 12.JAN.2024 17:58:50

Emission mask D with modulation FM 12.5 kHz at 467 MHz



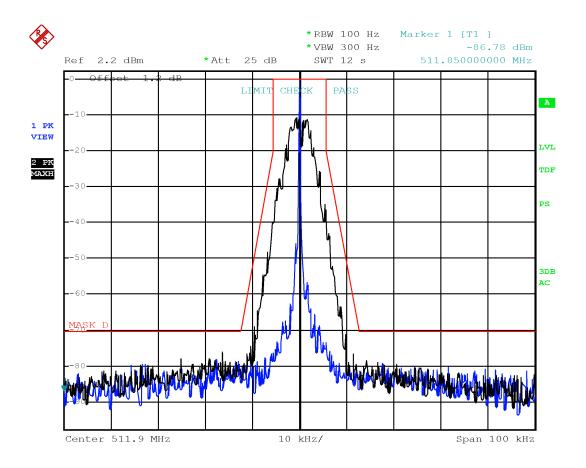
Date: 12.JAN.2024 18:02:41

Emission mask D with modulation FM 12.5 kHz at 511.9 MHz



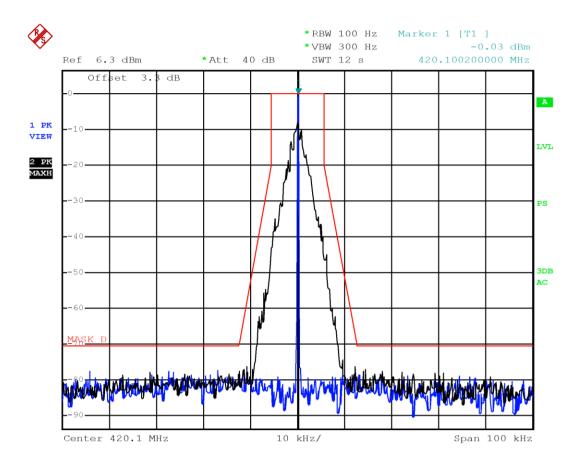
Date: 19.FEB.2024 16:47:11

Emission mask D with modulation P25 C4FM at 420.1 MHz



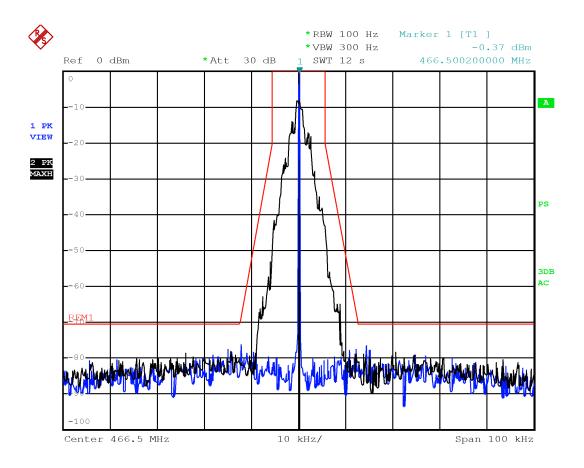
Date: 11.JAN.2024 17:49:41

Emission mask D with modulation P25 C4FM at 467 MHz



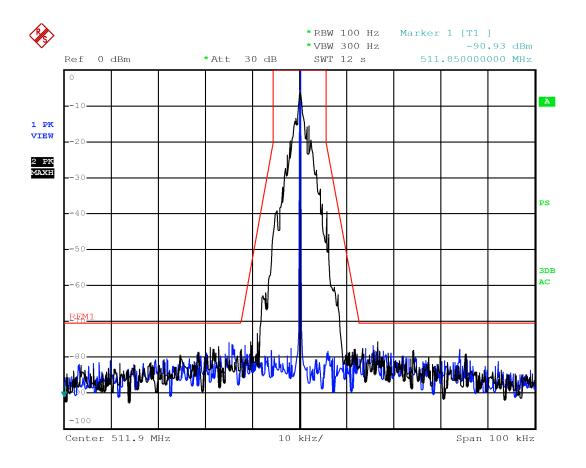
Date: 25.JAN.2024 18:49:50

Emission mask D with modulation P25 C4FM at 511.9 MHz



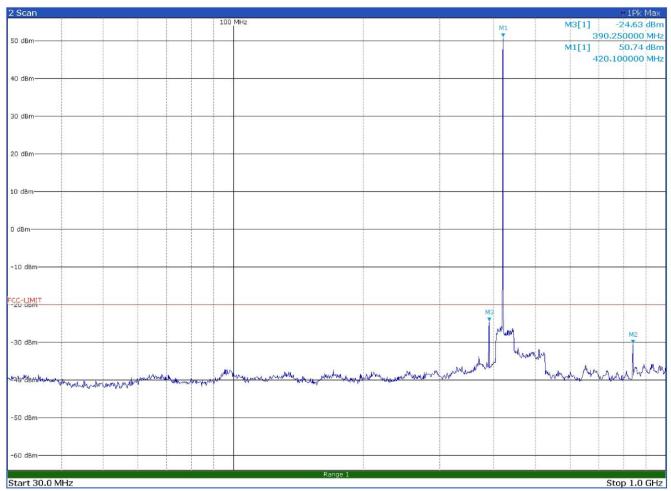
Date: 19.FEB.2024 17:24:47

Emission mask D with modulation CST 4FSK at 420.1 MHz



Date: 11.JAN.2024 17:48:24

Emission mask D with modulation CST 4FSK at 467 MHz



Date: 11.JAN.2024 17:56:08

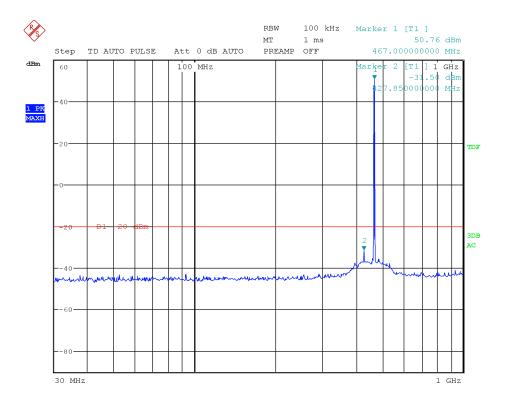
Emission mask D with modulation CST 4FSK at 511.9 MHz

12:06:11 PM 02/19/2024 Page 1/2

3 Marker Table	2				
Wnd	Type	Ref	Trc	X-value	Y-value
Scan	M1		1	420.1 MHz	50.74 dBm
Scan	M2		1	840.2 MHz	-30.52 dBm
Scan	M3		1	390.25 MHz	-24.63 dBm

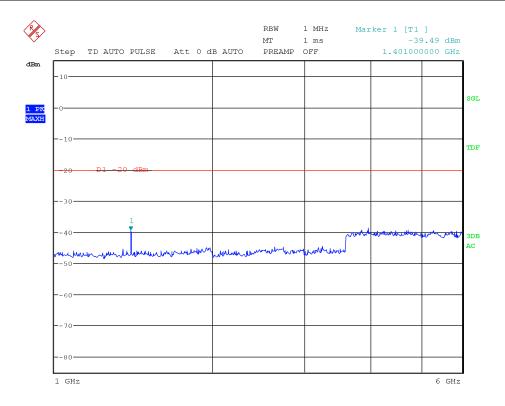
Conducted spurious emissions with modulation DMR 4FSK at 420.1 MHz

Limit exceeded by the carrier



12:28:36 PM 02/19/2024 Page 1/1

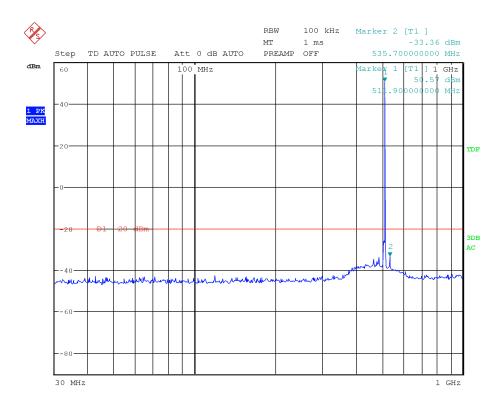
Conducted spurious emissions with modulation DMR 4FSK at 420.1 MHz



Date: 9.JAN.2024 13:34:13

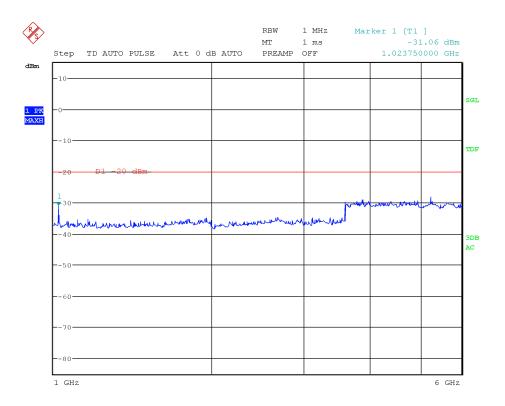
Conducted spurious emissions with modulation DMR 4FSK at 467 MHz $\,$

Limit exceeded by the carrier



Date: 9.JAN.2024 17:07:52

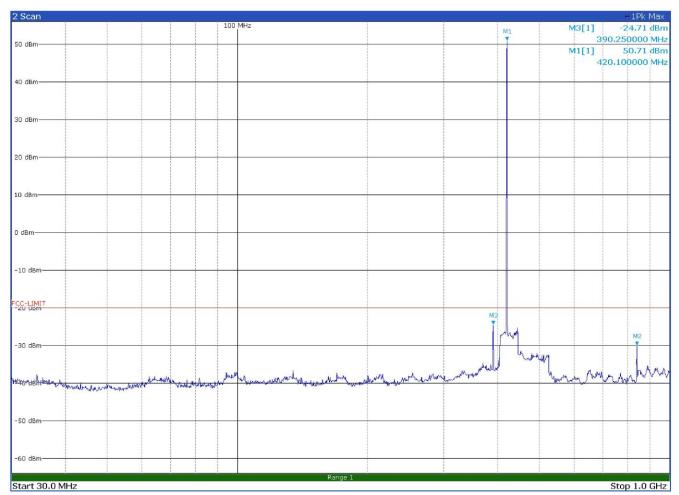
Conducted spurious emissions with modulation DMR 4FSK at 467 MHz



Date: 9.JAN.2024 13:36:04

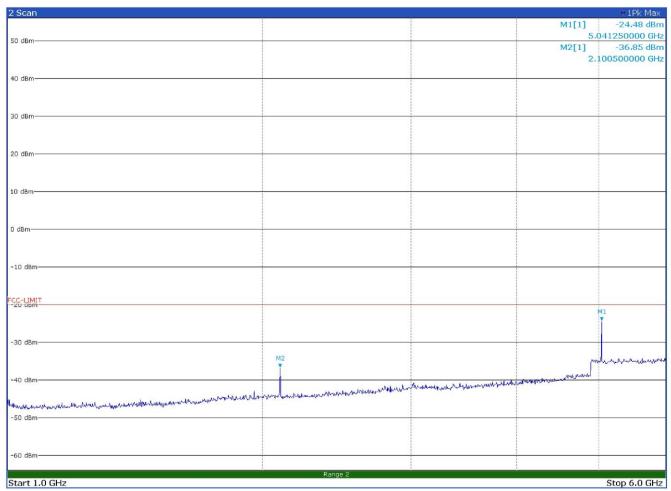
Conducted spurious emissions with modulation DMR 4FSK at 511.9 MHz

Limit exceeded by the carrier



Date: 9.JAN.2024 17:43:18

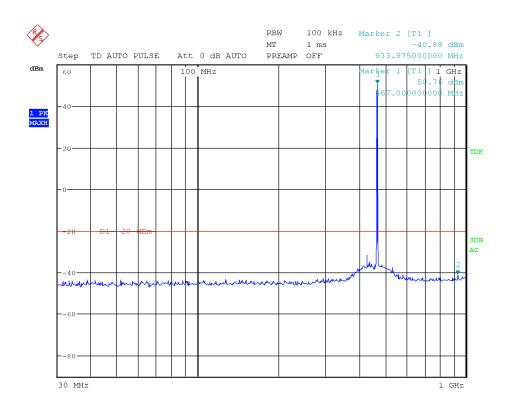
Conducted spurious emissions with modulation DMR 4FSK at 511.9 MHz


12:07:18 PM 02/19/2024 Page 1/2

Wnd	Type	Ref	Trc	X-value	Y-value
Scan	M1		1	420.1 MHz	50.71 dBm
Scan	M2		ī	840.2 MHz	-30.23 dBm
Scan	M3		î.	390.25 MHz	-24.71 dBm

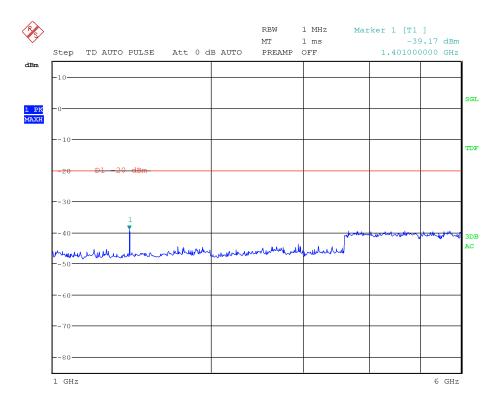
Conducted spurious emissions with modulation FM 12.5 kHz at 420.1 MHz

Limit exceeded by the carrier



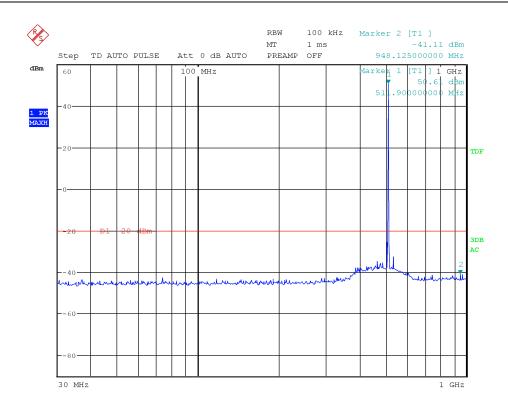
12:27:37 PM 02/19/2024 Page 1/1

Conducted spurious emissions with modulation FM 12.5 kHz at 420.1 MHz



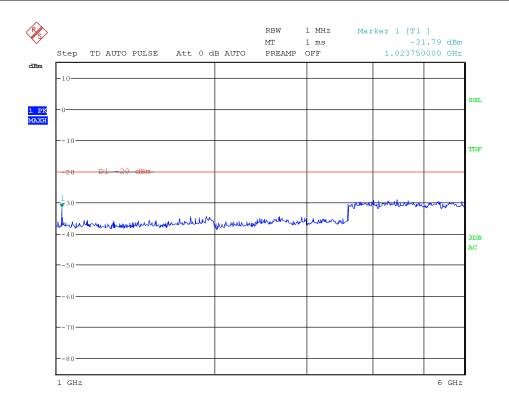
Date: 9.JAN.2024 12:25:32

Conducted spurious emissions with modulation FM 12.5 kHz at 467 MHz



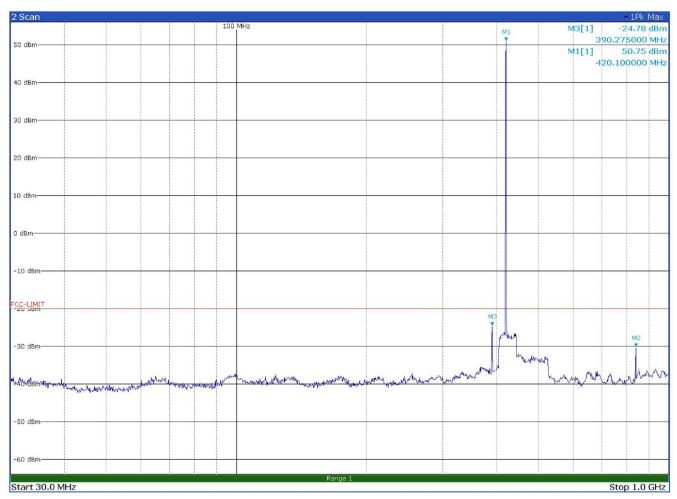
Date: 9.JAN.2024 17:09:13

Conducted spurious emissions with modulation FM 12.5 kHz at 467 MHz



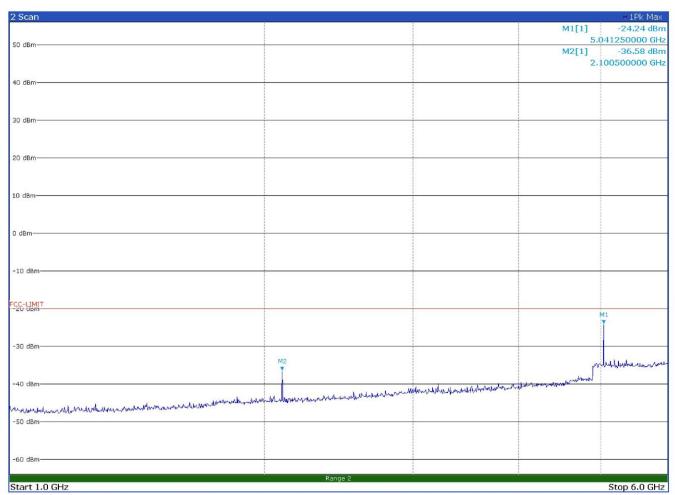
Date: 9.JAN.2024 12:27:36

Conducted spurious emissions with modulation FM 12.5 kHz at 511.9 MHz



Date: 9.JAN.2024 17:42:00

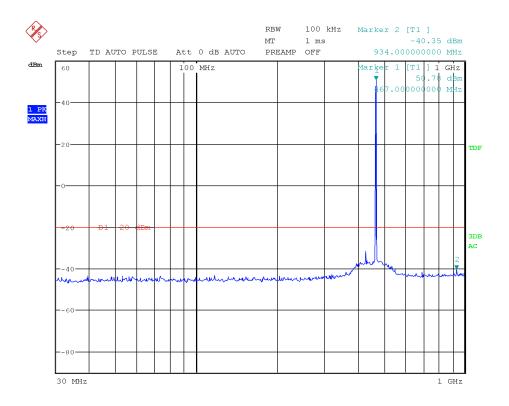
Conducted spurious emissions with modulation FM 12.5 kHz at 511.9 MHz



12:09:43 PM 02/19/2024 Page 1/2

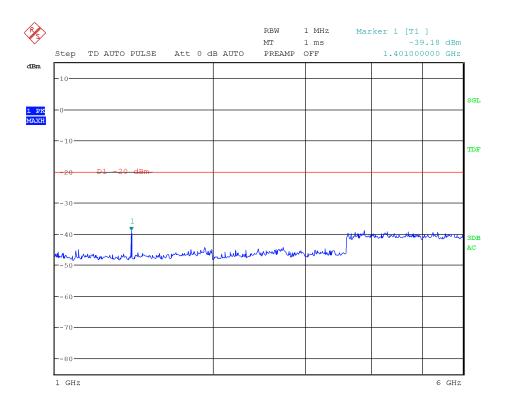
Marker Table								
Wnd	Type	Ref	Trc	X-value	Y-value			
Scan	M1		1	420.1 MHz	50.75 dBm			
Scan	M2		1	840.2 MHz	-30.49 dBm			
Scan	M3		ī	390.275 MHz	-24.78 dBm			

Conducted spurious emissions with modulation FM 25 kHz at 420.1 MHz



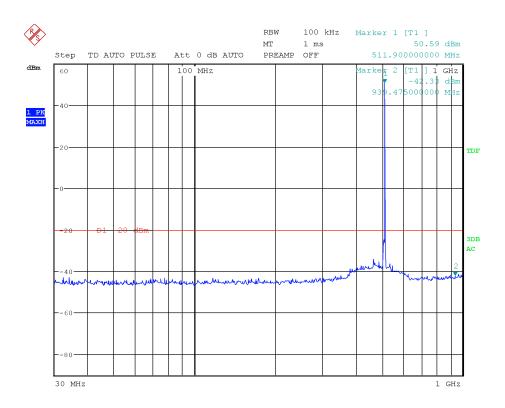
12:26:52 PM 02/19/2024 Page 1/1

Conducted spurious emissions with modulation FM 25 kHz at 420.1 MHz



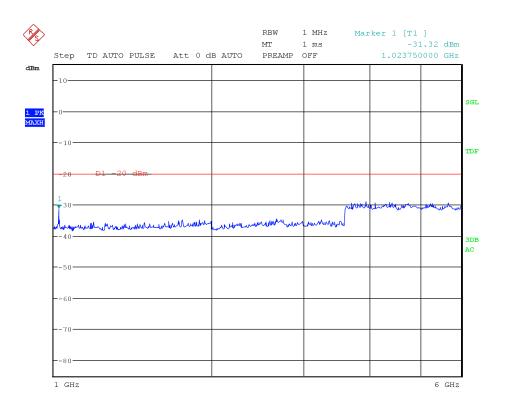
Date: 9.JAN.2024 12:19:34

Conducted spurious emissions with modulation FM 25 kHz at 467 MHz



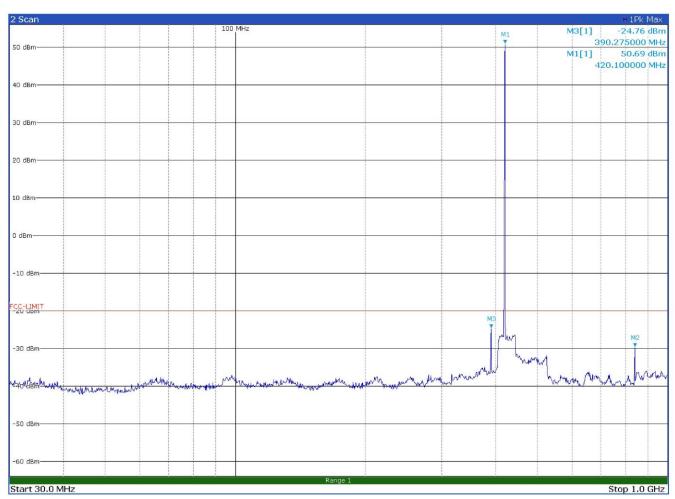
Date: 9.JAN.2024 17:10:27

Conducted spurious emissions with modulation FM 25 kHz at 467 MHz



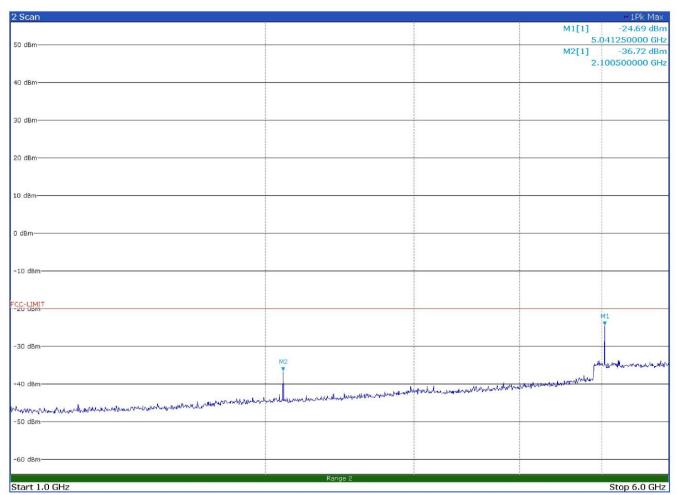
Date: 9.JAN.2024 12:21:32

Conducted spurious emissions with modulation FM 25 kHz at 511.9 MHz



Date: 9.JAN.2024 17:40:55

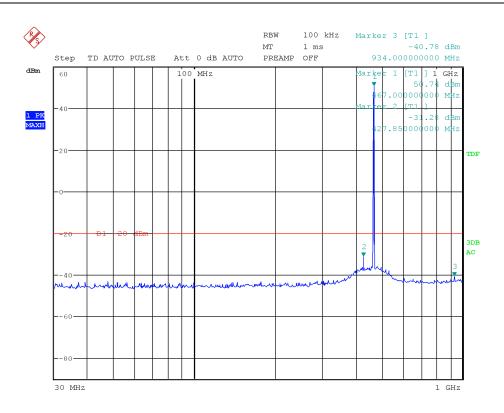
Conducted spurious emissions with modulation FM 25 kHz at 511.9 MHz



12:11:05 PM 02/19/2024 Page 1/2

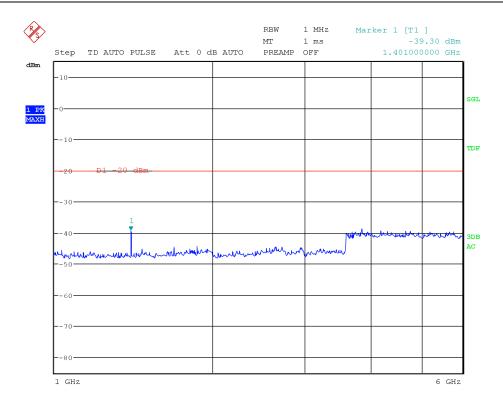
3 Marker Table	3 Marker Table									
Wnd	Type	Ref	Trc	X-value	Y-value					
Scan	M1		1	420.1 MHz	50.69 dBm					
Scan	M2		1	840.2 MHz	-29.81 dBm					
Scan	M3		1	390.275 MHz	-24.76 dBm					

Conducted spurious emissions with modulation P25 C4FM at 420.1 MHz



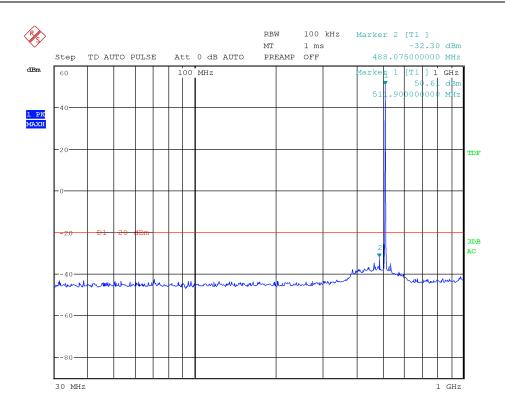
12:25:14 PM 02/19/2024 Page 1/1

Conducted spurious emissions with modulation P25 C4FM at 420.1 MHz



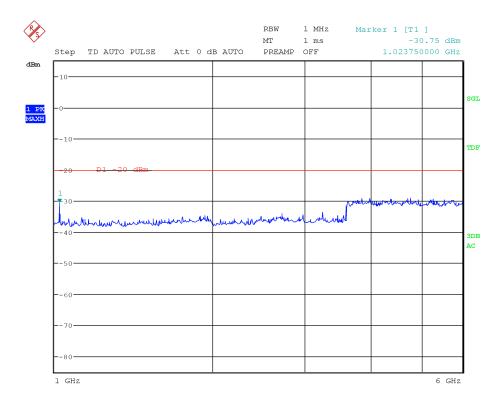
Date: 9.JAN.2024 12:32:22

Conducted spurious emissions with modulation P25 C4FM at 467 MHz



Date: 9.JAN.2024 17:32:40

Conducted spurious emissions with modulation P25 C4FM at 467 MHz



Date: 9.JAN.2024 12:34:03

Conducted spurious emissions with modulation P25 C4FM at 511.9 MHz

Date: 9.JAN.2024 17:40:03

Conducted spurious emissions with modulation P25 C4FM at 511.9 MHz

2 Scan

50 dBm

Test data, continued

-24.69 dBm 390.250000 MHz

3 Marker Table					
Wnd	Type	Ref	Trc	X-value	Y-value
Scan	M1		1	420.1 MHz	50.69 dBm
Scan	M2		1	840.2 MHz	-30.2 dBm
Scan	M3		1	390.25 MHz	-24.69 dBm

Conducted spurious emissions with modulation CST 4FSK at 420.1 MHz