Page 1 of 50

TEST REPORT

Model:	HDW845, HDW135845CAI
Rating(s):	DC 12V
Trademark:	STONKAM
Standards:	47 CFR PART 15 Subpart C section 15.247
FCC ID:	2ATW7-HDW845
Data of Receipt:	2024-06-18
Date of Test:	2024-06-18~2024-07-15
Date of Issue:	2024-07-15
Test Result	Pass*

* In the configuration tested, the test item complied with the standards specified above.

 Authorized for issue by:
 Reviewed by:

 Test by:
 Jul. 15, 2024

 Jul. 15, 2024
 Chivas Tsang

 Project Engineer
 Jul. 15, 2024

 Date
 Name/Position

 Signature
 Date

Possible test cas	e verdicts:	
test case does not apply to the test object:		N/A
test object does m	neet the requirement:	P (Pass)
test object does n	ot meet the requirement:	F (Fail)
Testing Laborato	ory information:	
Testing Laboratory Name:		ITL Co., Ltd
Address		No. 8 Jinqianling Street 5, Huangjiang Town, Dongguan, Guangdong, 523757 P.R.C.
Testing location	:	Same as above
Tel	:	0086-769-39001678
Fax	:	0086-20-62824387
E-mail	:	itl@i-testlab.com

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report would be invalid test report without all the signatures of testing technician and approver. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

General product information:

The models HDW845, HDW135845CAI are identical to each other except for model names. All tests were performed on the model HDW135845CAI as representative.

1 Test Summary

Test	Test Requirement	Test method	Result	
Antenna Requirement	FCC PART 15 C section 15.247 (c) and Section 15.203	FCC PART 15 C section 15.247 (c) and Section 15.203	PASS	
Occupied Bandwidth (-20dB)	FCC PART 15 C section 15.247 (a)(1);	ANSI C63.10:2013	PASS	
Carrier Frequencies Separated	FCC PART 15 C section 15.247(a)(1);	ANSI C63.10:2013	PASS	
Hopping Channel Number	FCC PART 15 C section 15.247(a)(1)(iii)	ANSI C63.10:2013	PASS	
Dwell Time	FCC PART 15 C section 15.247(a)(1)(iii);	ANSI C63.10:2013	PASS	
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(1);	ANSI C63.10:2013	PASS	
Conducted Spurious Emission (30 MHz to 25 GHz)	FCC PART 15 C section 15.247(d);	ANSI C63.10:2013	PASS	
Radiated Spurious Emission (9 kHz to 25 GHz)	FCC PART 15 C section 15.247(d);	ANSI C63.10:2013	PASS	
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205	ANSI C63.10:2013	PASS	
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207;	ANSI C63.10:2013	N/A	
Radiated Emissions which fall in the restricted bands	FCC PART 15 C section 15.209	ANSI C63.10:2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 5.247(b)(4)&TCB Exclusion List	ANSI C63.10:2013	PASS	
Remark:				

RF: In this whole report RF means Radio Frequency. ANSI C63.10:2013 the detail version is ANSI C63.10:2013 in the whole report.

ITL

2 Contents

ΤE	ST RE	PORT	1
1	TES	T SUMMARY	
2	CON	ITENTS	
3	GEN	IERAL INFORMATION	5
	3.1	CLIENT INFORMATION	
	3.2	GENERAL DESCRIPTION OF E.U.T.	5
	3.3	DETAILS OF E.U.T.	5
	3.4	DESCRIPTION OF SUPPORT UNITS	
	3.5	TEST LOCATION	5
	3.6	DEVIATION FROM STANDARDS	6
	3.7	ABNORMALITIES FROM STANDARD CONDITIONS	6
	3.8	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
	3.9	TEST FACILITY	6
	3.10	MEASUREMENT UNCERTAINTY	6
4	INST	RUMENTS USED DURING TEST	7
5	TES	T RESULTS	
-	TES 5.1	T RESULTS	
-			
-	5.1	E.U.T. TEST CONDITIONS	
_	5.1 5.2	E.U.T. TEST CONDITIONS	
-	5.1 5.2 5.3	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED	
-	5.1 5.2 5.3 5.4	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH	
	5.1 5.2 5.3 5.4 5.5	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER	
	5.1 5.2 5.3 5.4 5.5 5.6	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER DWELL TIME	
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER DWELL TIME MAXIMUM PEAK OUTPUT POWER	
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER DWELL TIME MAXIMUM PEAK OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS RADIATED SPURIOUS EMISSIONS	
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER DWELL TIME MAXIMUM PEAK OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS RADIATED SPURIOUS EMISSIONS	
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER DWELL TIME MAXIMUM PEAK OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS RADIATED SPURIOUS EMISSIONS Harmonic and other spurious emissions	
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9 5.9.1 5.10	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER DWELL TIME MAXIMUM PEAK OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS RADIATED SPURIOUS EMISSIONS Harmonic and other spurious emissions. RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
-	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.9 5.10 5.11	E.U.T. TEST CONDITIONS ANTENNA REQUIREMENT OCCUPIED BANDWIDTH CARRIER FREQUENCIES SEPARATED HOPPING CHANNEL NUMBER DWELL TIME MAXIMUM PEAK OUTPUT POWER CONDUCTED SPURIOUS EMISSIONS RADIATED SPURIOUS EMISSIONS Harmonic and other spurious emissions RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS BAND EDGES REQUIREMENT CONDUCTED EMISSIONS AT MAINS TERMINALS 150 KHZ TO 30 MHZ	

3 General Information

3.1 Client Information

Applicant:	STONKAM CO., LTD
Applicant.	STONKAW CO., LTD

Address of Applicant: 1/F.,#6 Building, Huangzhou Industrial Park, Chebei Rd.,Tianhe, Guangzhou, Guangdong, China

3.2 General Description of E.U.T.

Name:	1080P crane hoist 30x zoom camera
Model No.:	HDW135845CAI

Operating Frequency: 2408 MHz to 2478 MHz

19 channels

channel	Frequency	channel	Frequency	channel	Frequency	channel	Frequency
1	2408	6	2425	11	2448	16	2468
2	2411	7	2428	12	2452	17	2472
3	2415	8	2432	13	2455	18	2475
4	2418	9	2442	14	2458	19	2478
5	2422	10	2445	15	2465		

Modulation Technique: Frequency Hopping Spread Spectrum (FHSS)

Type of Modulation	16QAM/QPSK/BPSK
Dwell time	Per channel is less than 0.4s.
Antenna Type	RP-SMA
Antenna gain:	3.0 dBi

1

3.3 Details of E.U.T.

Channels:

EUT Power Supply:	DC 12V
	The program used to control the EUT for staying in continuous transmitting and
	receiving mode is programmed. Channel lowest (2408MHz), middle
Test mode:	(2445MHz) and highest (2478MHz) are chosen for full testing.

Power cord:

3.4 Description of Support Units

The EUT has been tested as an independent unit for fixed frequency by testing lab.

Details of Support Equipment(s)

Description	Manufacturer	Model No.	Connection	Working state
/	/	/	/	/

3.5 Test Location

All tests were performed at:

ITL

ITL Co., Ltd No. 8 Jinqianling Street 5, Huangjiang Town, Dongguan, Guangdong, 523757 P.R.C. 0086-769-39001678 itl@i-testlab.com No tests were sub-contracted.

3.6 Deviation from Standards

None.

3.7 Abnormalities from Standard Conditions

None.

3.8 Other Information Requested by the Customer

None.

3.9 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- CNAS Lab code:L9342
- FCC Designation No.:CN5035
- IC Registration NO.: 12593A
- NVLAP LAB CODE: 600199-0

3.10 Measurement Uncertainty

The below measurement uncertainties given below are based on a 95% confidence level (base on a coverage factor (k=2).)

Parameter	Uncertainty
Radio frequency	2.25%
total RF power, conducted	±1.34 dB
RF power density , conducted	±1.49 dB
All emissions, radiated	±2.72 dB
Temperature	±5.02 dB
Humidity	±0.8°C
DC and low frequency voltages	±1.5 %

4 Instruments Used during Test

No.	Test Equipment	Manufacturer	Model	Serial No.	Cal Data	Due Date
DGITL-301	Semi-Anechoic chamber	ETS•Lindgren	9*6*6	CT000874- 1181	2023.08.02	2026.08.02
DGITL-307	EMI test receiver	SCHWARZBEC K	ESVS10	833616 /003	2024.03.15	2025.03.15
DGITL-376	Wideband Radio Communication Tester	SCHWARZBEC K	CMW500	LR114195	2024.03.15	2025.03.15
DGITL-349a	Vector Signal Generator	ROHDE&SCHW ARZ	SMBV100A	259268	2024.03.15	2025.03.15
DGITL-306	Spectrum Analyzer	Agilent Technologies	N9010A	MY542003 34	2024.03.15	2025.03.15
DGITL-352	Pre Amplifier	MInI-CIrcuits	ZFC- 1000HX	SN2928011 10	2024.03.15	2025.03.15
DGITL-375	Spectrum Analyzer	SCHWARZBEC K	FSV40-N	6625-01- 588-5515	2024.03.15	2025.03.15
DGITL-309	Horn Antenna	ETS Lindgren	3117	SN0015226 5	2023.05.14	2025.05.14
DGITL-308	Bilog Antenna	ETS · Lindgren	3142E	156975	2023.05.14	2025.05.14
DGITL-350	Wideband Amplifier Super Ultra	MInI-CIrcuits	ZVA-183X- S+	SN9864014 26	2024.03.15	2025.03.15
DGITL-371	Pre Amplifier	teramicrowave	TALA- 0040G35	18081001	2024.03.15	2025.03.15

5 Test Results

5.1 E.U.T. test conditions

Test Voltage:	Input: DC 24V
Temperature:	20.0 -25.0 °C
Humidity:	38-50 % RH
Atmospheric Pressure:	1000 -1010 mbar
Test frequencies and frequency range:	According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

According to the 15.33 (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in the following table:

Frequency range in	Number of	Location in frequency range				
which	frequencies	of operation				
1 MHz or less	1	Middle				
1 MHz to 10 MHz	2	1 near top and 1 near bottom				
More than 10 MHz	3	1 near top, 1 near middle and 1				
	, , , , , , , , , , , , , , , , , , ,	near bottom				

Number of fundamental frequencies to be tested in EUT transmit band

Frequency range of radiated emission measurements

Lowest frequency generated	Upper frequency range of measurement
9 kHz to below 10 GHz	10th harmonic of highest fundamental frequency or to 40 GHz,
At or above 10 GHz to below	5th harmonic of highest fundamental frequency or to 100 GHz,
At or above 30 GHz	5th harmonic of highest fundamental frequency or to 200 GHz,

channel	Frequency	channel	Frequency	channel	Frequency	channel	Frequency
1	2408	6	2425	11	2448	16	2468
2	2411	7	2428	12	2452	17	2472
3	2415	8	2432	13	2455	18	2475
4	2418	9	2442	14	2458	19	2478
5	2422	10	2445	15	2465		

EUT channels and frequencies list:

Test frequencies are the Lowest Channel: 1 channel (2408 MHz), Middle Channel: 10 channel (2445 MHz) and Highest Channel: 19 channel (2478 MHz)

5.2 Antenna requirement

Standard requirement

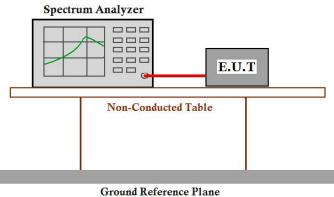
15.203 requirements:

For intentional device: According to 15.203. An intentional radiator shall be designed to Ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.247(c) (1) (I) requirement:

(I) Systems operating in the 2400-2483.5 MHz bands that are used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna


The antenna is an RP-SMA Antenna and no consideration of replacement. The best case gain of the antenna is 3.0 dBi.

Test result: The unit does meet the FCC requirements.

5.3 Occupied Bandwidth

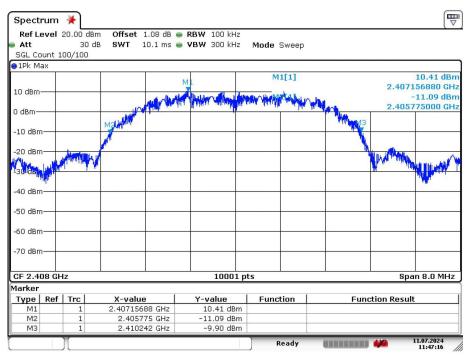
Test Requirement:	FCC Part 15 C section 15.247
	(a)(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10:2013
Test Status:	Test the EUT in continuous transmitting mode at the lowest, middle and Highest Channel.

Test Configuration:

Ground Reference Pla

Test Procedure:

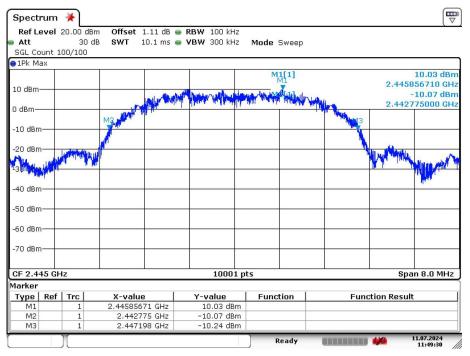
- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centring on a hopping channel;
- Set the spectrum analyzer: RBW ≥ 1% of the 20dB bandwidth VBW ≥ RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB points bandwidth.



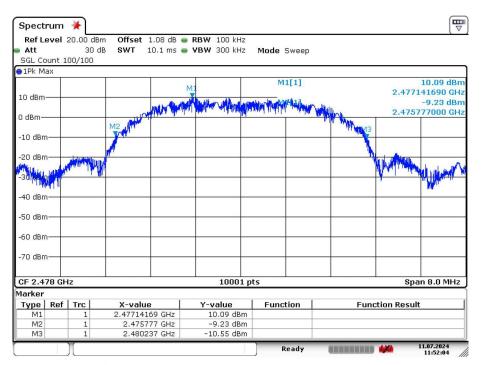
Test result (-20dB bandwidth):

Test Channel	Bandwidth(MHz)	2/3 bandwidth(MHz)			
Lowest	4.46	2.98			
Middle	4.42	2.94			
Highest	4.46	2.97			

Result plot as follows:


Lowest Channel:

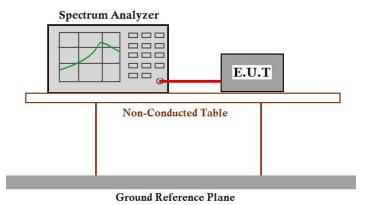
Date: 11.JUL.2024 11:47:15


ITL

Middle Channel:

Date: 11.JUL.2024 11:49:29

Highest Channel:



Date: 11.JUL.2024 11:52:04

5.4 Carrier Frequencies Separated

Test Requirement:	FCC Part 15 C section 15.247
	(a),(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10:2013
Test Status:	Test the EUT in continuous transmitting mode at the lowest, middle and Highest Channel

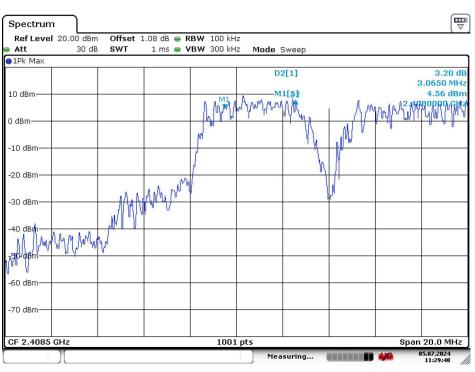
Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW \geq 1% of the span, VBW \geq RBW, Sweep = auto; Detector

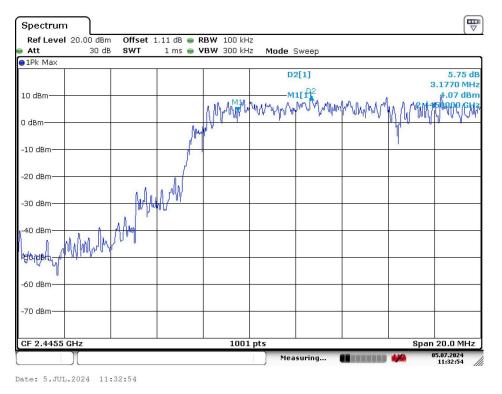
Function = Peak. Trace = Max, hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

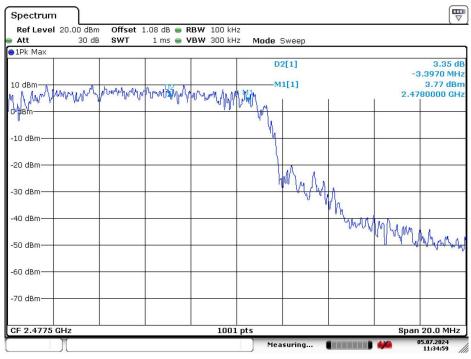


Test result:

Test Channel	Carrier Frequencies Separated	Pass/Fail			
Lower Channels	3.065 MHz	Pass			
Middle Channels	3.177 MHz	Pass			
Upper Channels	3.397 MHz	Pass			
Remark: The limit is maximum two-th	irds of the 20 dB bandwidth: 2.98 MHz				


Carrier Frequencies Separated plot:

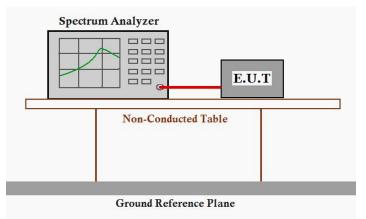
Lowest Channels:



Date: 5.JUL.2024 11:29:48

Middle Channels:

Highest Channels



Date: 5.JUL.2024 11:34:59

5.5 Hopping Channel Number

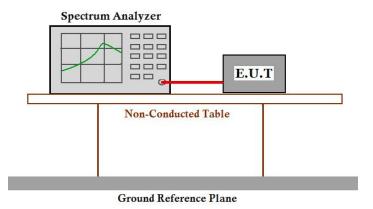
Test Requirement:	FCC Part15 C section 15.247
	(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use
	at least 15 channels.
Test Method:	ANSI C63.10:2013
Test Status:	Test the EUT in hopping mode.


Test Configuration:

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100 kHz. VBW = 300 kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. In order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: start frequency = 2400 MHz. stop frequency = 2483.5 MHz. Submit the test result graph.

Test result: Total channels are 19 channels.



Test result: The unit does meet the FCC requirements.

5.6 Dwell Time

Test Requirement:	FCC Part 15 C section 15.247
	(a)(1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10:2013
Test Status:	Test the EUT in continuous transmitting mode at the lowest, middle and Highest Channel

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0 MHz centre on a hopping channel;

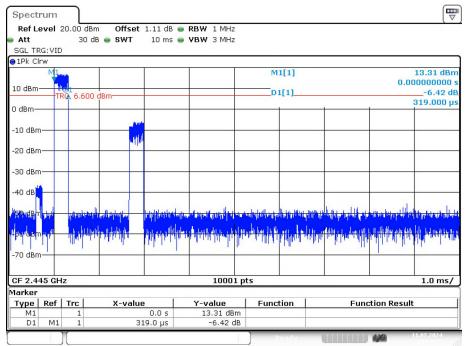
3.Set RBW = 1 MHz and VBW = 3 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = View;

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g. data rate. modulation format. etc.). Repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

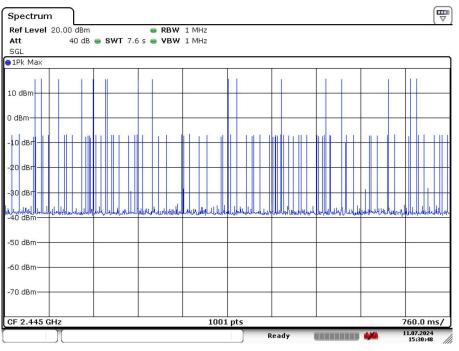
Test Result:

Frequency (MHz)	Pulse Time (ms)	Observed pluses	Total Dwell Time (ms)	Limit (ms)	Verdict	
		in 7.6s				
2408	0.319	10	3.19	400	Pass	
2445	0.319	17	5.42	400	Pass	
2478	0.319	9	2.87	400	Pass	

Lowest Channel (2.408 GHz):

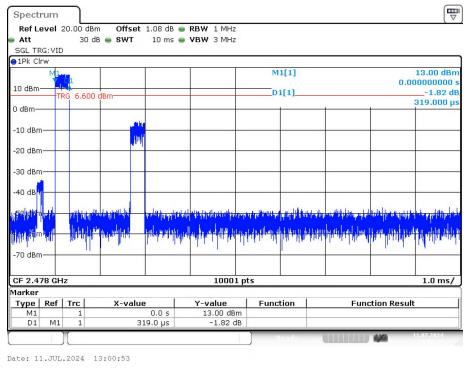

Ref Le	vel a	20.00 d	IBm Of	set	1.08 dB (RBW	1 MH;	Z							
Att		30	dB 👄 SW	/т	10 ms (VBW	1 MH:	z							
SGL TR	G: VID														
1Pk Cl	W														
		liste							M	1[1]					9.36 dB
10 dBm-	M	D <mark>1</mark>							_					0.0	000000000
to abiii			00 dBm						D:	1[1]_					0.56 0
) dBm—				_										1	319.000
-10 dBm		_		. ALIA											
-20 dBm		-				_							_		_
-30 dBm		-		_		_			_				_		
40 dBm				-					_		-		_		-
														1.	
al idem	lutin	il Martin	dial attack		I LI WALLING	14 14.1 14.1			n. albah	11.4.14	dila di	a hall the state	li la	Albert States Clark	and the state strengt
		10 - 10 P -			an an an a		-		1.1			e e una se	1.10	the second second	all a series
te _n n fr	hill the	Infili	defini, Jahit	-	add yn ddydio	di ili di di di	i i i i i i i i i i i i i i i i i i i	district	T'Y T	1111	harth	h fillun	11		
I have 1		11.	I. A. M. M.	·	1	a la la	ייין די	In La	1.00	1		1111	i III	the set	ullahua
-70 dBm															
CF 2.40)8 GH	z				_	1000	1 pts							1.0 ms
1arker															
Type	Ref	Trc	X-1	alue	1	Y-1	value	1	Funct	tion	1	Function Result			lt
M1		1			0.0 s		9.36 dE								
D1	M1	1		31	9.0 µs		0.56	dB							

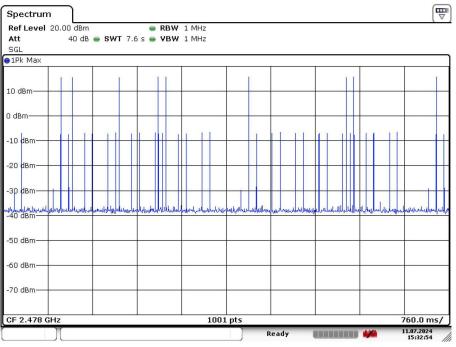
Date: 11.JUL.2024 12:25:52


Spectrum															₽
	dBm 0 dB 👄 SV	∀T 7.6	● RI s ● VI												
SGL 1Pk Max															
10 dBm													\square		
) dBm															
10 dBm			\square							-	H	T F	H	H	+
20 dBm															_
30 dBm															
hippy (publica) 40 dBm	water	Wherefore	guthidududu	arthat	her	ultideenint	a hairdawy hadama da ol	will	uninterne	Ventrated	shuddar	likaldu	the for the state of the state	adredd	usulan
50 dBm															
60 dBm															
70 dBm														-	
CF 2.408 GHz						1001	L pts							/ 760.0	ms/
							F	lea	dy			110		11.07.20 15:31	024 :11

Date: 11.JUL.2024 15:31:10

Middle channel (2.445 GHz):

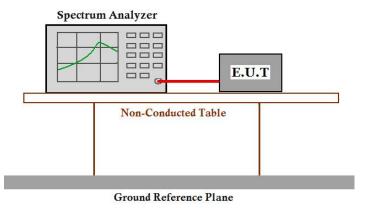



Date: 11.JUL.2024 12:59:39

Date: 11.JUL.2024 15:30:48

Highest Channel (2.478 GHz):

Date: 11.JUL.2024 15:32:53

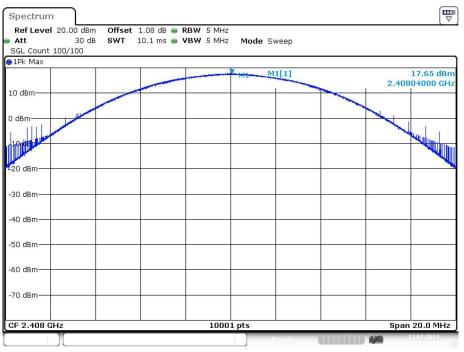

The results are not greater than 0.4 seconds

The unit does meet the FCC requirements.

5.7 Maximum Peak Output Power

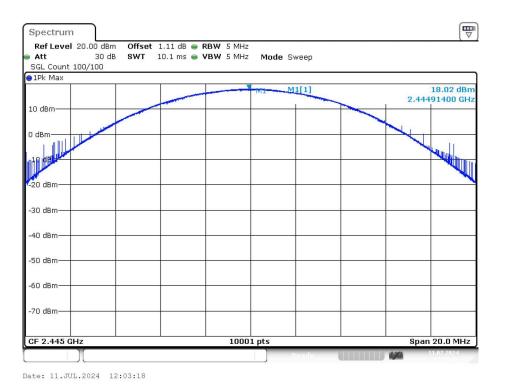
Test Requirement:	FCC Part 15 C section 15.247
	(b)(1)For frequency hopping systems operating in the 2400-2483.5
	MHz band employing at least 75 non-overlapping hopping channels,
	and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.
	For all other frequency hopping systems in the 2400-2483.5 MHz band:
	0.125W
	Refer to the result "Hopping channel number" of this document. The 1 watt (30.0 dBm) limit applies.
Test Method:	ANSI C63.10:2013
Test Limit:	
Test mode:	Test the EUT in continuous transmitting mode at the lowest, middle and
	Highest Channel.

Test Configuration:

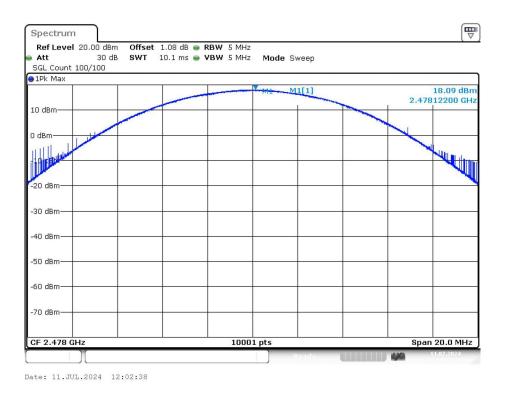

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer parameters as below:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW \geqslant RBW
 - 4) Sweep: Auto
 - 5) Detector function: Peak
 - 6) Trace: Max hold
- 3. Keep the EUT in transmitting at lowest, medium and Highest Channel individually. Record the max value.

Test Result:											
Test Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result							
Lowest	2408	17.65	21	Pass							
Middle	2445	18.02	21	Pass							
Highest	2478	18.08	21	Pass							


Test result plot as follows:

Lowest Channel:

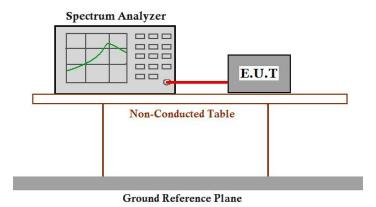


Date: 11.JUL.2024 12:03:55

Middle Channel:

Highest Channel:

Test result: The unit does meet the FCC requirements.


ITL

Page 25 of 50

5.8 Conducted Spurious Emissions

Test Requirement:	FCC Part15 C section 15.247
	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Based on either an RF conducted or a radiated measurement. Provided the transmitter
	demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10:2013
Test Status:	Test the EUT in continuous transmitting mode at the lowest, middle and Highest Channel.

Test Configuration:

Test Procedure:

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100 kHz. VBW \geq RBW. Sweep = auto; Detector Function = Peak (Max. hold).

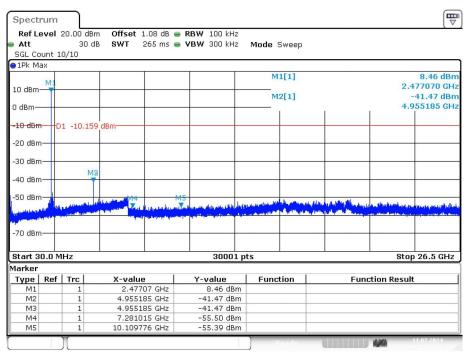
Test result plot as follows

Lowest Channel:

Spectrum									
Ref Level	20.00 dE	m Offset 1.08	dB 🔵 RBV	✔ 100 kHz					
Att	30 (dB SWT 265	ms 👄 VBV	V 300 kHz	Mode 9	Sweep			
SGL Count	10/10								
1Pk Max									
					M	1[1]			1.45 dBn
10 dBm									2.407370 GH
M1					M	2[1]			-37.27 dBn
) dBm 🕂									4.815776 GH
10 dBm									
20 dBm	D1 -15.09	97 dBm							
-20 ubiii									
30 dBm									
	м	8							
40 dBm									
-50 dBm	. der nat		MS		and a started	But added a	And to the selender	and the state	12
CHINA STATES	alegia de la cila	and the state of t	the second second			diate and	And the state of the	and the second	ang
and the second s		and the second se	ALC: NO.						
-70 dBm									
Start 30.0 M	MHz			30001	ots			_	Stop 26.5 GHz
larker									
Type Ref	Trc	X-value	l Y	-value	Funct	tion	F	unction R	tesult
M1	1	2.40737 G	Hz	1.45 dBm					
M2	1	4.815776 G	Hz -	-37.27 dBm					
MЗ	1	4.815776 G		-37.27 dBm					
M4	1	7.32425 G		-54.89 dBm					
M5	1	9.610375 G	Hz -	-55.79 dBm					
T.)[) ,	andu		4.96	02.07.2024

Date: 2.JUL.2024 11:27:08

Middle Channel


Spectrum L DO dBm Offset 1.11 dB 🖷 RBW 100 kHz 30 dB SWT 265 ms 🖶 VBW 300 kHz Mode Sweep Ref Level 20.00 dBm Att SGL Count 10/10 ⊖1Pk Max 7.83 dBm 2.444420 GHz M1[1] 10 dBm-M2[1] -46.03 dBm 4.888127 GHz 0 dBm--10 dBm— D1 -12.934 dBm--20 dBm -30 dBm--40 dBm· Y -50 dBm -70 dBm Start 30.0 MHz 30001 pts Stop 26.5 GHz Marker
 Type
 Ref
 Trc

 M1
 1

 M2
 1
 Y-value 7.83 dBm -46.03 dBm Function Result X-value Function 2.44442 GHz 4.888127 GHz 4.888127 GHz 7.168959 GHz 9.894487 GHz -46.03 dBm -55.16 dBm -54.93 dBm МЗ 1 M4 1 M5

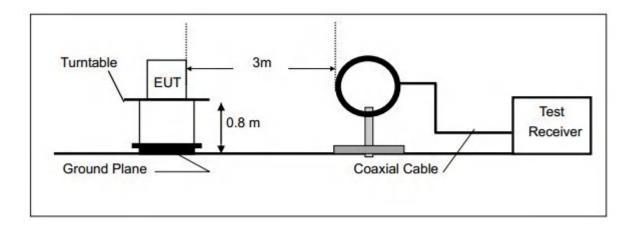
Date: 2.JUL.2024 11:32:26

Highest Channel

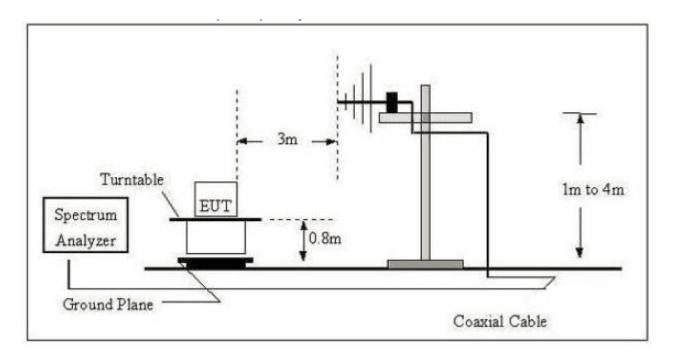
Date: 11.JUL.2024 12:23:11

Test result: The unit does meet the FCC requirements.

5.9 Radiated Spurious Emissions

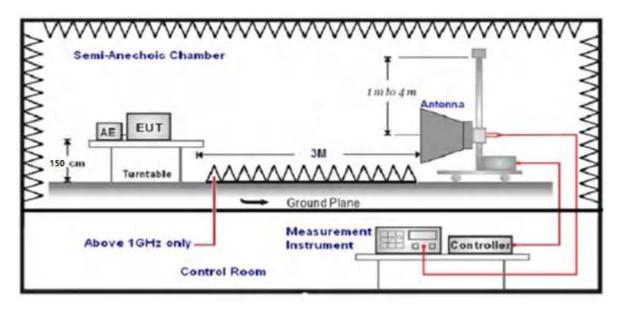

Test Requirement:	FCC Part15 C section 15.247
	 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating. The radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that Contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, and provided the transmitter demonstrates compliance with the peak conducted power limits.
Test Method:	ANSI C63.10:2013
Test Status:	Test the EUT in continuous transmitting mode at the lowest, middle and
	Highest Channel.
Detector:	For PK value: RBW = 1 MHz for f \ge 1 GHz, 100 kHz for f < 1 GHz, 9k Hz for <30 MHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold For AV value: RBW = 1 MHz for f \ge 1 GHz, 100 kHz for f < 1 GHz, 9k Hz for <30 MHz VBW =10 Hz
	Sweep = auto
	Detector function = peak
	Trace = max hold

15.209 Limit:


Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Test Configuration:

1) 9k Hz to 30 MHz emissions:



2) 30 MHz to 1 GHz emissions:

3) 1 GHz to 40 GHz emissions:

ITL

Test Procedure: The receiver was scanned from 9 kHz to 25GHz. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. After pre-test, it was found that the worse radiation emission was get at the X position. So the data shown was the X position only. The worst case emissions were reported.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log (dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

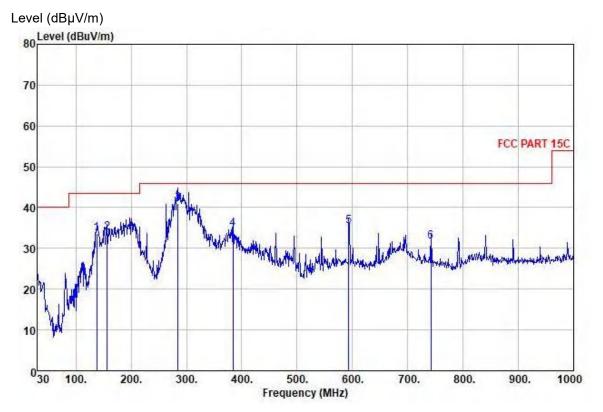
For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

5.9.1 Harmonic and other spurious emissions

The monitor and camera work at the same time

Worst case Channel


9 kHz~30 MHz Test result

The Low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not report

30 MHz~1 GHz Spurious Emissions .Quasi-Peak Measurement

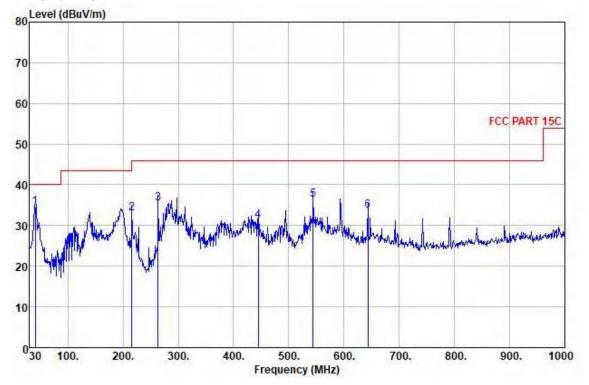
Horizontal:

Peak scan

Quasi-peak measurement

No.	Freq MHz	Read Level dBuV	Antenna Factor dB	Cable Loss dB	Preamp Factor dB	Level dBuV/m	Limit Line dBuV/s	Over Limit m dB	Pol/Phase	Remark
		-								
1	137.670	50.86	8.51	1.10	27.17	33.63	13.50	-9.87	HORIZONTAL	QF
2	157.070	51.32	8.04	1.50	27.07	33,79	13.50	-9.71	HORIZONTAL	QP
3	285.110	52.11	13.25	2.06	26.64	41.11	16.00	-4.89	HORIZONTAL	QP
4	384,050	14.35	15.38	2.39	27.28	34, 81	16.00	-11.16	HORIZONTAL	QP
5	593.570	11.91	18.47	3.01	27.96	35. 19	16.00	-10.51	HORIZONTAL	QF
6	711,980	35.68	20, 13	3.12	27.92	31.61	16,00	-14,39	HORIZONTAL	QP

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor


ITL

Page 32 of 50

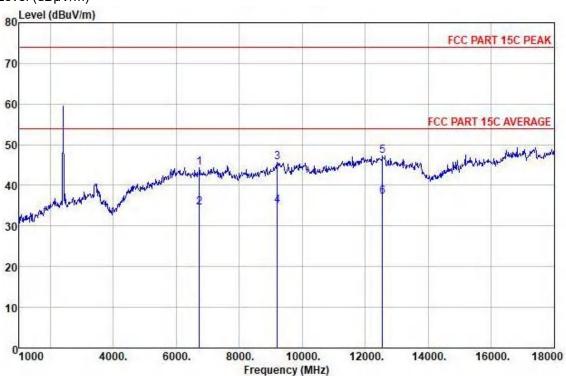
Vertical:

Peak scan

Level (dBµV/m)

Quasi-peak measurement

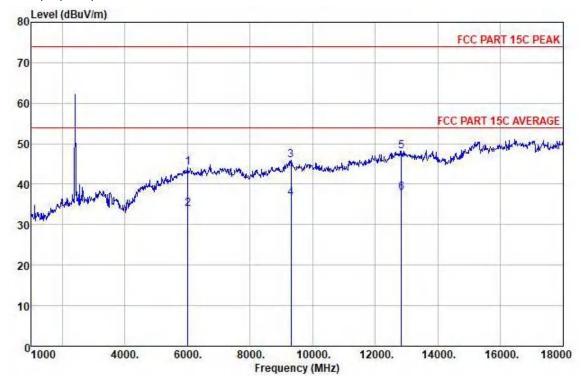
No.	Freq MHz	Read Level dBuV	Antenna Factor dB	Cable Loss dB	Preamp Factor dB	Level dBuV/m	Limit Line dBuV/	Over Limit m dB	Pol/Phase	Remark
315	10.670 216.240 263.770 115.160 514.100 613.010	16.23 47.65 17.12 10.12 13.87 39.27	11.95 10.47 12.99 16.05 17.58 19.26	0.72 1.78 1.98 2.61 2.90 3.18	27.11 26.81 26.69 27.68 27.98 27.95	31, 19 35, 06 35, 10 31, 10 36, 37 33, 76	10.00 46.00 46.00 16.00 16.00 16.00	-5.51 -12.91 -10.60 -14.90 -9.63 -12.24	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	QP QP QP QP QP QP QP QP QP QP QP QP
Leve	el=Read	Level +	Antenna	Factor	r + Cabl	e Loss -	Pream	p Facto	r	


Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

Spurious emissions above 1GHz Test at Lowest Channel in transmitting status

Peak scan

Level (dBµV/m)

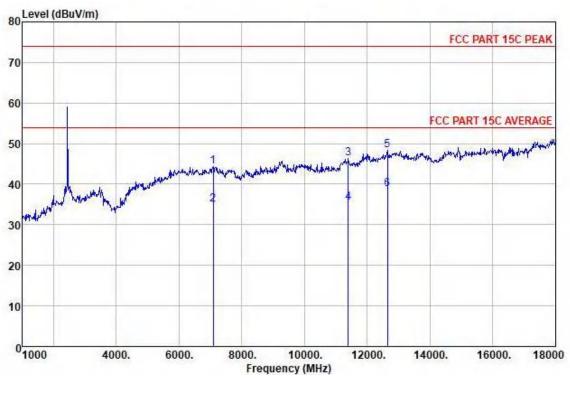

Freq MHz	Read Level dBuV	Antenna Factor dB	Loss dB	Preamp Factor dB	Level dBuV/m	Limit Line dBuV/	Over Limit m dB	Pol/Phase	Remark
6729.000	21.16	35.91	11.65	27.36	11.36	74.00	-29,64	HORIZONTAL	Peak
6729.000	14.35			27.36	31. 55		-19. 15	HORIZONTAL	
9211.000	19,98	38.80	14.08	27.18	15.68	71.00	-28,32	HORIZONTAL	Peak
9211.000	9.38	38.80	11.08	27.18	35.08	51,00	-18,92	HORIZONTAL	Average
12513.000	17.10		16.81	26.66	17.15	74,00	-26,85	HORIZONTAL	Peak
12543.000	7.12	39.60	16.81	26.66	37.17	51.00	-16.83	HORIZONTAL	Average

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

Vertical:

Peak scan

Level (dBµV/m)

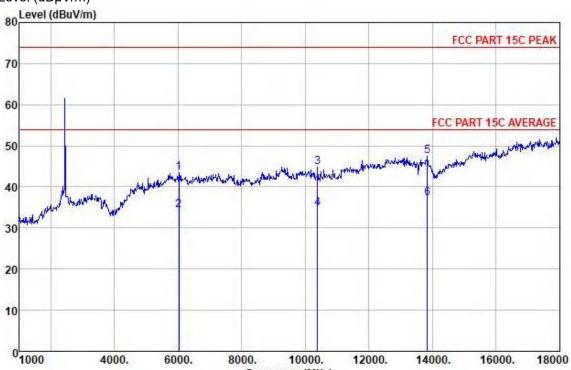

Freq MHz	Read Level dBuV	Antenna Factor dB	a Cable Loss dB	Preamp Factor dB	Level dBuV/m	Limit Line dBuV/	Over Limit m dB	Pol/Phase	Remark
6015.000	24.55	35.99	10.92	27.42	14.04	74.00	-29.96	VERTICAL	Peak
6015,000	11.31	35.99	10.92	27.42	33,80	51.00	-20, 20	VERTICAL	Average
9313,000	20.06	38.80	14.17	27.17	15.86	74.00	-28, 14	VERTICAL	Peak
9313,000	10.75	38,80	11.17	27.17	36.55	54.00	-17.45	VERTICAL	Average
12832,000	17.39	10.30	17.05	26.55	18, 19	74.00	-25.81	VERTICAL	Peak
12832.000	7.08		17.05	26.55	37.88	51.00	-16.12	VERTICAL	Average
Level=Read	Level +	Antenna	Factor	+ Cabl	e Loss -	Pream	p Facto	r	

Test at Middle Channel in transmitting status

Horizontal:

Peak scan

Level (dBµV/m)


Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Pol/Phase	Remark
MHz	dBuV	dB	dB	dB	dBuV/m	dBuV/			
7086.000 7086.000 11387.000 11387.000 12645.000 12645.000	23, 10 13, 71 17, 85 7, 06 18, 24 8, 64	36, 54 39, 51 39, 51 39, 51 39, 85		27, 34 27, 34 26, 98 26, 98 26, 62 26, 62	44, 31 34, 92 46, 25 35, 46 48, 37 38, 77	74.00 54.00 74.00	-29,69 -19,08 -27,75 -18,54 -25,63 -15,23	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	Average Peak Average Peak

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

Vertical:

Peak scan

Level (dBµV/m)

Frequency	(MHz)
-----------	-------

Freq MHz	Read Level .dBuV	Antenna Factor dB	a Cable Loss dB	Preamp Factor dB	Level dBuV/m	Limit Line dBuV/	Over Limit m dB	Pol/Phase	Remark
6032,000 6032,000 10384,000 10384,000 13835,000 13835,000	24.06 14.85 15.18 8.23 16.47 6.18	38.69 38.69 39.16	10.93 10.93 14.97 14.97 17.81 17.81 17.84	27. 42 27. 42 27. 08 27. 08 27. 08 26. 25 26. 25	13, 51 34, 33 14, 76 34, 81 17, 52 37, 23		-30, 16 -19, 67 -29, 24 -19, 19 -26, 48 -16, 77	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL	Peak Average Peak Average Peak Average

Test at Highest Channel in transmitting status

MHz	dBuV	dB	dB	dB	dBuV/m	dBuV/	m dB		
7545.000 7545.000 11965.000 11965.000 15484.000	11,92 18,69 8,67 16,26	37.18 37.18 39.60 39.60 39.42	16.33 16.33 19.13	27.32 27.32 26.85 26.85 25.99	11.39 31.21 17.77 37.75 18.82	54,00 74,00 54,00 74,00	-29.61 -19.76 -26.23 -16.25 -25.18	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL	Average Peak Average Peak
15484,000	5,91	39, 12	19,13	25, 99	38, 47	51,00	-15, 53	HORIZONTAL	Average

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

Note: The emission above limit is fundamental emission, which is not subject to the limit.

Vertical:

Peak scan

Level (dBµV/m)

Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor

16.36

16.86

Note: The emission above limit is fundamental emission, which is not subject to the limit.

26.61

26.64

17.98

38.18

-26,02

-15.82

51.00

VERTICAL

VERTICAL

Peak

Average

Remark:

12594.000

12594.000

18.03

8.23

39.73

1). The field strength is calculated by adding the Antenna Factor. Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Loss – Preamplifier Factor.

- 2). As shown in Section, for frequencies above 1000 MHz. the above field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.
- 3). The test only perform the EUT in transmitting status since the test frequencies were over 1GHz only required transmitting status.

Test result: The unit does meet the FCC requirements.

5.10 Radiated Emissions which fall in the restricted bands

Test Requirement:	FCC Part15 C Section 15.247				
	(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).				
Test Method:	ANSI C63.10:2013 Clause 6.4, 6.5 and 6.6				
Test Status:	Test the EUT in continuous transmitting mode at the lowest (2408MHz) and highest (2478 MHz) channel.				

Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit:

Section 15.209(a)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

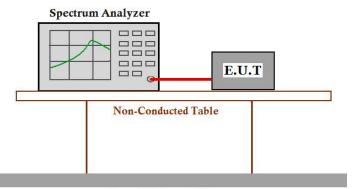
Detector:

For PK value:

RBW = 1 MHz for f \ge 1 GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold For AV value: RBW = 1 MHz for f \ge 1 GHz, 100 kHz for f < 1 GHz VBW =10 Hz Sweep = auto Detector function = peak Trace = max hold

Frequency (MHz)	Reading Level (dBµV/m)	Correct (dB/m)	Emission Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Antenna polarization	Detector	
Low Channel								
2310.000	32.39	6.54	38.73	74.00	35.27	Н	PK	
2310.000	15.26	6.54	24.21	54.00	29.79	Н	AV	
2390.000	28.54	6.61	36.13	74.00	37.87	V	PK	
2390.000	14.87	6.61	24.38	54.00	29.62	V	AV	
			Hig	h Channel				
2483.500	29.54	6.70	39.04	74.00	34.96	Н	PK	
2483.500	14.72	6.70	23.87	54.00	30.13	Н	AV	
2500.000	27.51	6.72	37.19	74.00	36.81	V	PK	
2500.000	16.40	6.72	21.62	54.00	32.38	V	AV	

Test Result:


Remark: No any other emission which falls in restricted bands can be detected and be reported.

Test result: The unit does meet the FCC requirements.

5.11 Band Edges Requirement

Test Requirement:	FCC Part15 C section 15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205 (c)).
Frequency Band:	2400 MHz to 2483.5 MHz
Test Method: Test Status:	ANSI C63.10:2013 Clause 6.9 Test the EUT in continuous transmitting mode at the lowest (2408 MHz), and
	highest (2478 MHz) channel and hopping mode

Test Configuration:

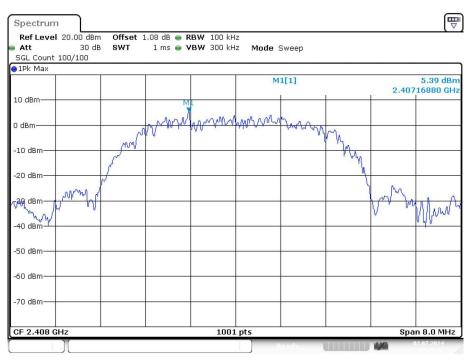
Ground Reference Plane

Test Procedure:

Set RBW of spectrum analyzer to 100 kHz and VBW of spectrum analyzer to 300 kHz with suitable frequency span including 10MHz bandwidth from band edge.

The band edges were measured and recorded Result:

The Lower Edges attenuated more than 20dB.


The Upper Edges attenuated more than 20dB.

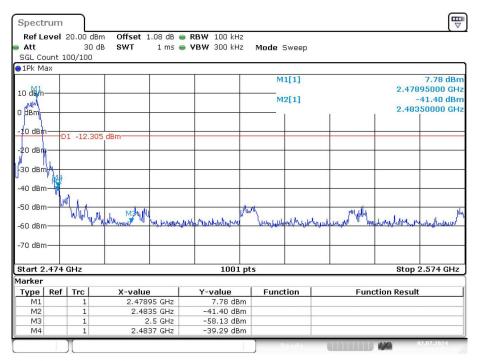
The graph as below:

Represents the emissions take for this device.

Fixed Mode:

Lowest Channel:

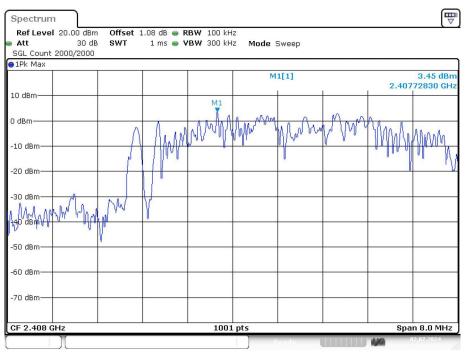
Date: 2.JUL.2024 11:26:12


Ref Le	um uol	20.00	Bm Offcot	1 00 dp 👄	RBW 100 kHz			
Att	ver		dB SWT		VBW 300 kHz	Mode Sweep		
SGL COL	int 1			1 1113	FDW JOU KHZ	Mode Sweep		
1Pk Ma		00/100						
JIN MO	<u> </u>					M1[1]		3.95 dBn
						wittil		2.40855000 GH
10 dBm-						M2[1]		-51.02 dBn
) dBm—						to the first		2.40000000MH
јавт—								
-10 dBm-								
		1 -14.6	i11 dBm	-			_	
20 dBm-	_			-				
30 dBm-	-			-				- Nº °
in in								
40 dBm-								
-50 dBm-							M4	MAN N
oo abiii							1 July 13	new
50 Hehu	WH WHAN	allehung	Sandysmithe	monormals	unter and the second states of the	all the second states and the second states of the	amental and and a first	MANNO '
70 dBm-	-			-				
Start 2.	312	GHz			1001 pt:	5		Stop 2.412 GHz
1arker								
Туре	Ref	Trc	X-valı	1e	Y-value	Function	Func	tion Result
M1		1	2.40	855 GHz	3.95 dBm			
M2		1		2.4 GHz	-51.02 dBm			
MЗ		1		2.39 GHz	-58.76 dBm			
M4		1	2.3	892 GHz	-53.17 dBm			

Date: 2.JUL.2024 11:26:16

Highest Channel:

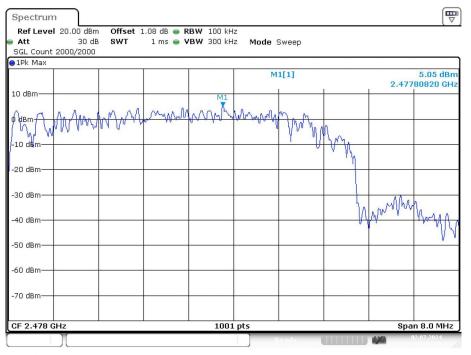
₽ Spectrum Ref Level 20.00 dBm Offset 1.08 dB 👄 RBW 100 kHz 30 dB 1 ms 👄 **VBW** 300 kHz Mode Sweep Att SWT SGL Count 100/100 🔵 1 Pk Max M1[1] 7.70 dBm 2.47716880 GHz 10 dBmphonen r www. mypen JAN 0 dBm N -10 dBm -20 dBmmy MM -3p.dent MW 40 dBm--50 dBm--60 dBm--70 dBm-1001 pts CF 2.478 GHz Span 8.0 MHz


Date: 2.JUL.2024 11:35:18

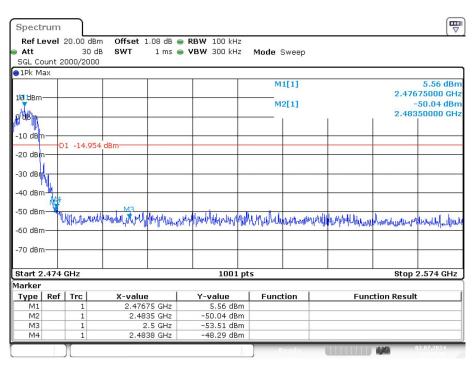
Date: 2.JUL.2024 11:35:22

Hopping Mode:

Lowest Channel



Date: 2.JUL.2024 11:39:58


Spectrum								
Ref Level			B 👄 RBW 100 kH	-				
Att	30		s 👄 VBW 300 kH	z Mode Sw	еер			
SGL Count :	2000/200	IU						
●1Pk Max					. 7			1.10.10
				M1[1]			4.18 dBn 5000 GH;
10 dBm				M2[11			3.57 dan
				mzt	-1			0000 000
0 dBm						T I		10 Million
-10 dBm								1
-20 dBm	D1 -16.54	47 dBm				_		
-30 dBm —								
								M
-40 dBm								1
-50 dBm			M4				MAL	Uí 🛛 🖉
		all and a state of the state of	T	the second second		M3	and hadler	
-60 dBm	opposition	wohnwhichertena	and and the particular states and	hand the second s	instanceshilly	and the second of the second o	endparatiline.	
-70 dBm						-		
Start 2.312	GHz		1001	l pts			Stop 2	.412 GHz
larker								
Type Ref	Trc	X-value	Y-value	Functio	n	Fund	tion Result	
M1	1	2.40875 GH	z 4.18 dB	Im				
M2	1	2.4 GH						
MЗ	1	2.39 GH		1010				
M4	1	2.3552 GH	z -53.34 dB	Sm				
				Rea	dv		120	.07.2024

Date: 2.JUL.2024 11:40:22

Highest Channel

Date: 2.JUL.2024 12:02:27

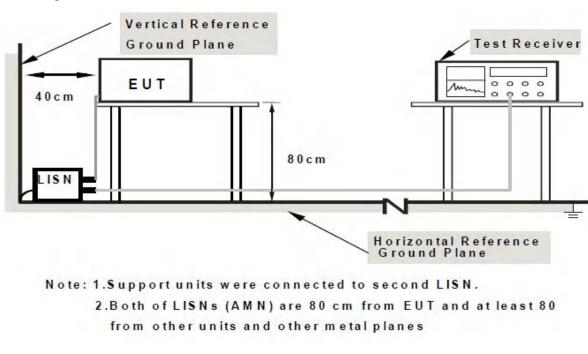
Date: 2.JUL.2024 12:02:41

Test result: The unit does meet the FCC requirements.

Page 46 of 50

5.12 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

Test Requirement:	FCC Part 15 C section 15.207
Test Method:	ANSI C63.10:2013 Clause 6.2
Test Voltage: Frequency Range:	N/A 150 kHz to 30 MHz
Detector:	Peak for pre-scan (9 kHz Resolution Bandwidth)


Test Limit

Limits for conducted disturbance at the mains ports of class B

Frequency Range	Class B Limit dB(µV)						
	Quasi-peak	Average					
0.15 to 0.50	66 to 56	56 to 46					
0.50 to 5	56	46					
5 to 30	60	50					
NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz.							

EUT Operation: Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Test procedure:

1. The mains terminal disturbance voltage test was conducted in a shielded room.

2. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

Test Configuration:

5.12.1 Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected. For EUT the communicating was worst case mode.

The following Quasi-Peak and Average measurements were performed on the EUT Live line

Peak Scan:

Level (dBµV)

Quasi-peak and Average measurement

/

1

Neutral Line

Peak Scan:

Level (dBµV)

Quasi-peak and Average measurement

/

/

ITL

Page 50 of 50

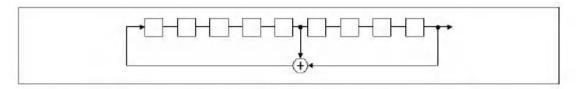
5.13 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: 47 CFR Part 15C Section 15.247 (a) (1), (h) requirement

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

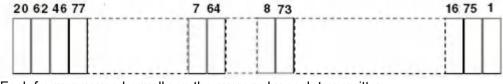
Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted.


The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

The pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONE s; i.e. the shift register is initialized with nine ones.


Number of shift registers stages: 9

- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

The system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

The system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

The system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

--End of Report--