

TEST REPORT

Applicant Name :	SHENZHEN COBAN ELECTRONICS CO.,LTD			
Address :	5/F, Block 22, Wisdomland Business Park, Guankou 2nd Road, Nantou			
	Nanshan District, Shenzhen, Guangdong, China. 518052			
Report Number :	SZXX1220301-06489E-RF			
FCC ID:	2ATUKBN-311			
Test Standard (s)				
FCC PART 22H; FCC PART 2	4E			
Sample Description				
Product Type:	GPS TRACKER			
Model No.:	311,311ABC,311A,311B,311C,GPS-311A,GPS-311B,GPS-311C,			
Trade Mark:	GPS-311ABC,BN-311,BN-311A,BN-311B,BN-311C,BN-311ABC BAANOOL, DI QIU TU XING			
Date Received:	2022-03-01			
Report Date:	2022-04-13			
Test Result:	Pass*			

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Bluek Ow

Black Ding EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk *.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 2: 2021-11-09

Fax: +86 755-26503396 Page 1 of 38 Shenzhen Accurate Technology Co., Ltd.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS SUPPORT CABLE DESCRIPTION	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	8
FCC §1.1307 (B) – RF EXPOSURE	10
FCC §2.1047 - MODULATION CHARACTERISTIC	12
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	13
APPLICABLE STANDARD	13
TEST PROCEDURE	
TEST DATA	13
FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH	16
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC § 2.1053; § 22.917 (A); § 24.238 (A) - SPURIOUS RADIATED EMISSIONS	
Applicable Standard Test Procedure	
TEST PROCEDURE	
FCC § 22.917 (A);§ 24.238 (A) - BAND EDGES	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	33
FCC § 2.1055; § 22.355; § 24.235 - FREQUENCY STABILITY	36
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	GPS TRACKER
Trade Mark	BAANOOL, DI QIU TU XING
Tested Model	311
Multiple Model	311ABC,311A,311B,311C,GPS-311A,GPS-311B,GPS-311C, GPS-311ABC,BN-311,BN-311A,BN-311B,BN-311C,BN-311ABC
Model difference	Please refer to DOS letter.
Frequency Range	GSM 850: 824-849MHz(TX); 869-894MHz(RX) PCS 1900: 1850-1910MHz(TX); 1930-1990MHz(RX)
Maximum Output Power (Conducted power)	GSM 850: 33.26dBm PCS 1900: 29.78dBm
Modulation Technique	GMSK
Antenna Specification*	Internal Antenna: 0 dBi*
Voltage Range	DC12V-24V or DC3.7V backup by battery. Typical testing voltage: Normal Voltage 12V DC; Low Voltage 10.8 V DC; High Voltage 13.2V DC
Sample serial number	SZXX1220301-06489E-RF-S1 (Assigned by ATC)
Received date	2022-03-01
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communication Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability and band edge.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 22 Subpart H - Public Mobile Services Part 24 Subpart E - Personal Communication Services

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Cha	nnel Bandwidth	$\pm 5\%$	
RF output por	wer, conducted	±0.73dB	
Unwanted Emi	ssion, conducted	±1.6dB	
RF Frequency		$\pm 0.082^{*10^{-7}}$	
	30MHz - 1GHz	±4.28dB	
Emissions, Radiated	1GHz - 18GHz	±4.98dB	
Radiated	18GHz - 26.5GHz	±5.06dB	
Temperature		±1 °C	
Humidity		$\pm 6\%$	
Supply	voltages	$\pm 0.4\%$	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

Shenzhen Accurate Technology Co., Ltd.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The final qualification test was performed with the EUT operating at normal mode.

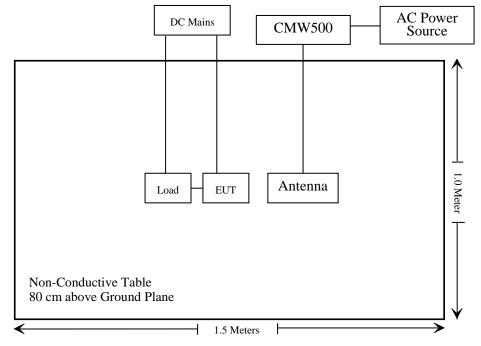
The test items were performed with the EUT operating at testing mode. Test was performed with channels as below table:

Band	Channel Bandwidth	Frequency
GSM 850	0.3 MHz	824.2MHz, 836.6MHz, 848.8MHz
PCS 1900	0.3 MHz	1850.2MHz, 1880.0MHz, 1909.8MHz

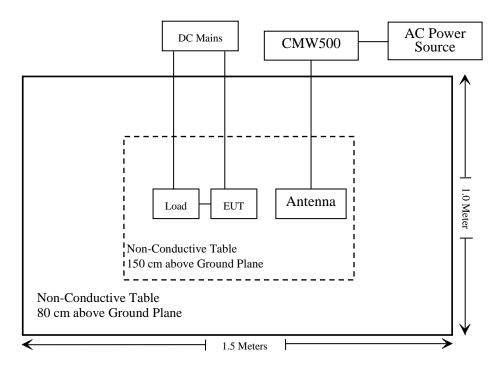
Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	154606
Shenzhen Coban Electronics Co.,Ltd	Load	Unknown	Unknown

Support Cable Description


Cable Description	Length (m)	From / Port	То
Unshielded Detachable AC cable	1.2	AC Power	CMW500
Unshielded Detachable DC cable	2.0	DC Power	EUT
Unshielded Detachable DC cable	0.5	Load	EUT
Unshielded Detachable DC cable	2.0	DC Power	Load

Block Diagram of Test Setup

For Below 1GHz:

For Above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307 (b)	RF Exposure	Compliant
§2.1046; § 22.913 (a); § 24.232 (c);	RF Output Power	Compliant
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; § 22.905; § 22.917; § 24.238;	Occupied Bandwidth	Compliant
§ 2.1051; § 22.917 (a); § 24.238 (a);	Spurious Emissions at Antenna Terminal	Compliant
§ 2.1053; § 22.917 (a); § 24.238 (a);	Field Strength of Spurious Radiation	Compliant
§ 22.917 (a); § 24.238 (a);	Band Edge	Compliant
§ 2.1055; § 22.355; § 24.235;	Frequency stability	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Emission Test							
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101949	2021/12/13	2022/12/12		
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	154606	2021/12/13	2022/12/12		
Agilent	Signal Generator	N5183A	MY51040755	2021/12/13	2022/12/12		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08		
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10		
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08		
Schwarzbeck	Bilog Antenna	VULB9163	9163-194	2020/01/05	2023/01/04		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-655	2020/01/05	2023/01/04		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
PASTERNACK	Horn Antenna	PE9852/2F-20	1120 (ATC-BA-024-1)	2020/01/05	2023/01/04		
PASTERNACK	Horn Antenna	PE9852/2F-20	1120 (ATC-BA-025-1)	2020/01/05	2023/01/04		
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13		
	Radiated Em	nission Test Softw	vare: e3 19821b(V9))			

Shenzhen Accurate Technology Co., Ltd.

Report No.: SZXX1220301-06489E-RF

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
	Radiated Emission Test								
Unknown	Band Reject Filter	MSF1850-191 0MS-1148	ATCE-142	2021/12/14	2022/12/13				
Unknown	Band Reject Filter	MSF824-862 MS-1147	ATCE-141	2021/12/14	2022/12/13				
Unknown	High Pass Filter	HPM-1.2/18G -60	110	2021/12/14	2022/12/13				
		RF Conducted	Test						
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12				
Rohde& Schwarz	Test Receiver	ESR	101817	2021/12/13	2022/12/12				
Rohde & Schwarz	Wideband Radio Communication Tester	CMW500	154606	2021/12/13	2022/12/12				
Mini-Circuits	Power Splitter	DC-18000MHz	SF10944151S	2021/12/13	2022/12/12				
UNI-T	DC Power Supply	UTP8305B	10584	NCR	NCR				
Gongwen	Temp. & Humid. Chamber	HSD-500	109	2021/12/14	2022/12/13				
Unknown	RF Coaxial Cable	No.32	RF-02	Each time					
Unknown	RF Coaxial Cable	No.33 RF-03		Each	time				
Fluke	Desktop Multi Meter	45	7664009	2021/12/14	2022/12/13				
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13				

* Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) – RF EXPOSURE

Applicable Standard

According to §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.3.1-SAR-Based Exemption:

A more comprehensive exemption, considering a variable power threshold that depends on both the separation distance and power, is provided in § 1.1307(b)(3)(i)(B). This exemption is applicable to the frequency range between 300 MHz and 6 GHz, with test separation distances between 0.5 cm and 40 cm, and for all RF sources in fixed, mobile, and portable device exposure conditions.

Accordingly, a RF source is considered an RF exempt device if its available maximum time-averaged (matched conducted) power or its effective radiated power (ERP), whichever is greater, are below a specified threshold. This exemption threshold was derived based on general population 1-g SAR requirements and is detailed in Appendix C.

$$P_{th} (mW) = \begin{cases} ERP_{20 cm} (d/20 cm)^{x} & d \le 20 cm \\ \\ ERP_{20 cm} & 20 cm < d \le 40 cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20} cm\sqrt{f}}\right) \text{ and } f \text{ is in GHz};$$

and

$$ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$$

d = the separation distance (cm);

Result

For worst case:

Mode	Frequency	Maximum Time based Average Power	Antenna Gain		ERP	ERP _{20cm}	Distance	Excl	Based usion shold	SAR-Based Exclusion
	(MHz)	(dBm)	(dBi)	(dBd)	(dBm)	(mW)	(mm)	(mW)	(dBm)	
GSM850	824-849	26	0	-2.15	23.85	2040f	200	1680	32.25	Yes
PCS1900	1850-1910	23	0	-2.15	20.85	3060	200	3060	34.85	Yes

Note 1: 0dBd=2.15dBi.

Note 2: f = frequency in GHz.

Note 3: The tune-up power was declared by the applicant.

Mode	Tune-up Conducted Power (dBm)	Time based Average Power (dBm)
GSM 850	33.5	24.5
PCS 1900	30	21

Mode	Tune-up Conducted Power (dBm)Time based Average Pow (dBm)				ower			
	1 slot	2 slots	3 slots	4 slots	1 slot	2 slots	3 slots	4 slots
GPRS 850	33	32	30	29	24	26	25.75	26
GPRS 1900	30	29	27	26	21	23	22.75	23

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

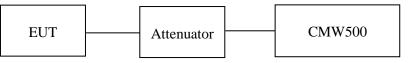
FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.


According to FCC §2.1046 and §24.232 (c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB.

Test Procedure

Conducted method:

The RF output of the transmitter was connected to the CMW500 through sufficient attenuation.

Radiated method:

ANSI C63.26-2015 Section 5.5.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa

The testing was performed by Key. Pei on 2022-04-12.

Shenzhen Accurate Technology Co., Ltd.

Conducted Power

Mode	Channel	Frequency (MHz)	Average Output Power (dBm)	ERP(dBm)	Limit (dBm)
	128	824.2	33.26	31.11	38.45
GSM	190	836.6	33.19	31.04	38.45
	251	848.8	33.03	30.88	38.45

Cellular Band (Part 22H)

Mode	Channel	Frequency	requency (dBm)			ERP(dBm)				Limit	
Mode	Channel	(MHz)	1 slot	2 slots	3 slots	4 slots	1 slot	2 slots	3 slots	4 slots	(dBm)
	128	824.2	32.85	31.60	29.71	28.45	30.7	29.45	27.56	26.3	38.45
GPRS	190	836.6	32.65	31.46	29.54	28.48	30.5	29.31	27.39	26.33	38.45
	251	848.8	32.58	31.40	29.26	28.70	30.43	29.25	27.11	26.55	38.45

Note: ERP(dBm) = Conducted Power(dBm) + Antenna Gain(dBd) For GPRS 850: Antenna Gain = 0dBi* = -2.15dBd (0dBd=2.15dBi) Limit: ERP≤38.45dBm

PCS Band (Part 24E)

Mode	Channel	Frequency (MHz)	Average Output Power (dBm)	EIRP(dBm)	Limit (dBm)
	512	1850.2	29.59	29.59	33
GSM	661	1880.0	29.61	29.61	33
	810	1909.8	29.78	29.78	33

Mode	Channel	Frequency	Av			Average Output Power (dBm)		EIRP(dBm)				Limit
		(MHz)	1 slot	2 slots	3 slots	4 slots	1 slot	2 slots	3 slots	4 slots	(dBm)	
	512	1850.2	29.20	28.18	26.20	25.10	29.20	28.18	26.20	25.10	33	
GPRS	661	1880.0	29.21	28.21	26.22	25.12	29.21	28.21	26.22	25.12	33	
	810	1909.8	29.40	28.42	26.45	25.31	29.40	28.42	26.45	25.31	33	

Note: EIRP(dBm) = Conducted Power(dBm) + Antenna Gain(dBi) For GPRS 1900: Antenna Gain = 0dBi* Limit: EIRP≤33dBm

Peak-to-average ratio (PAR)

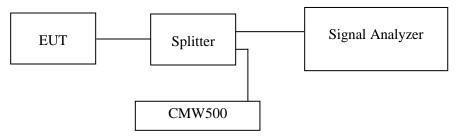
Cellular Band

Mode	Channel	PAR (dB)	Limit (dB)	
	Low	3.14	13	
GSM	Middle	3.51	13	
	High	3.21	13	

PCS Band (Part 24E)

Mode	Channel	PAR (dB)	Limit (dB)	
	Low	3.22	13	
GSM	Middle	3.11	13	
	High	3.45	13	

FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH


Applicable Standard

FCC 47 §2.1049, §22.917, §22.905, and §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 1% to 5% of the anticipated emission bandwidth and the 26 dB & 99% bandwidth was recorded.

Test Data

Environmental Conditions

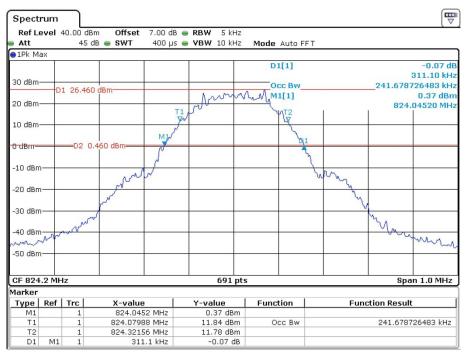
Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa

The testing was performed by Key.Pei on 2022-04-13.

EUT operation mode: Transmitting

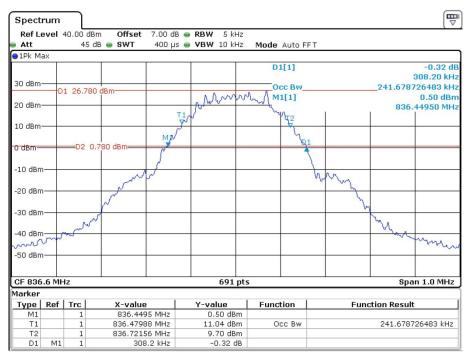
Test Result: Pass

Mode	Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emission Bandwidth (kHz)
	128	824.2	241.68	311.10
GSM (GMSK)	190	836.6	241.68	308.20
· · · ·	251	848.8	240.23	303.90

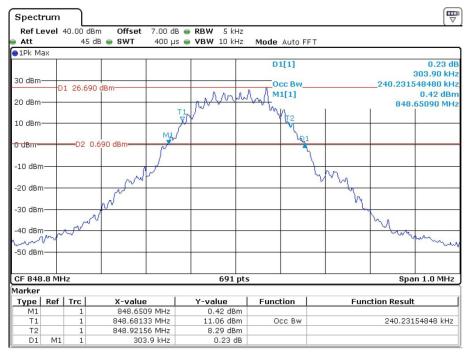

Cellular Band (Part 22H)

PCS Band (Part 24E)

Mode	Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emission Bandwidth (kHz)
	512	1850.2	241.68	315.50
GSM (GMSK)	661	1880.0	243.13	315.50
	810	1909.8	243.13	314.00


Cellular Band (Part 22H)

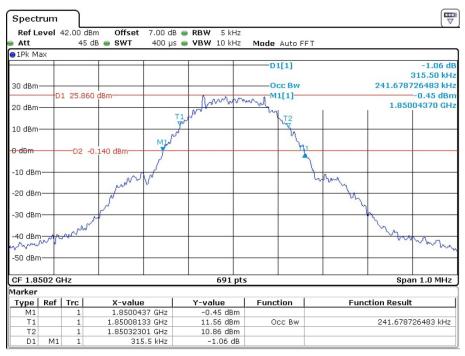
26 dB Emissions &99% Occupied Bandwidth for GSM(GMSK) Mode, Low channel


Date: 13.APR.2022 19:54:15

Version 2: 2021-11-09

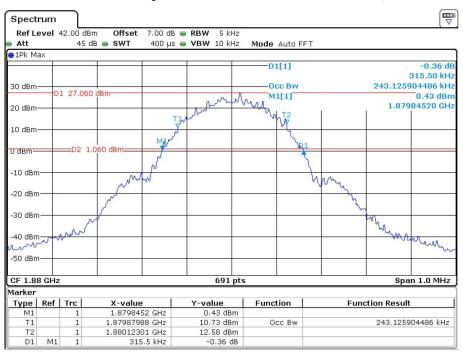
26 dB Emissions &99% Occupied Bandwidth for GSM(GMSK) Mode, Middle channel

Date: 13.APR.2022 19:55:28

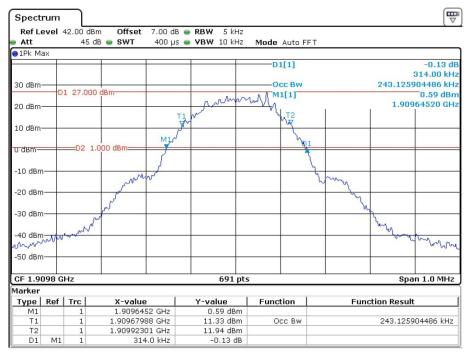


26 dB Emissions &99% Occupied Bandwidth for GSM(GMSK) Mode, High channel

Date: 13.APR.2022 19:56:36


PCS Band (Part 24E)

26 dB Emissions &99% Occupied Bandwidth for GSM(GMSK) Mode, Low channel



Date: 13.APR.2022 20:01:12

26 dB Emissions &99% Occupied Bandwidth for GSM(GMSK) Mode, Middle channel

Date: 13.APR.2022 20:02:08

26 dB Emissions &99% Occupied Bandwidth for GSM(GMSK) Mode, High channel

Date: 13.APR.2022 20:03:04

Shenzhen Accurate Technology Co., Ltd.

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051, §22.917(a) & §24.238(a).

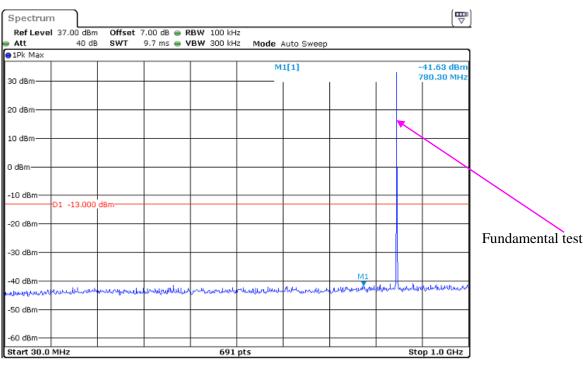
The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

Test Data

Environmental Conditions

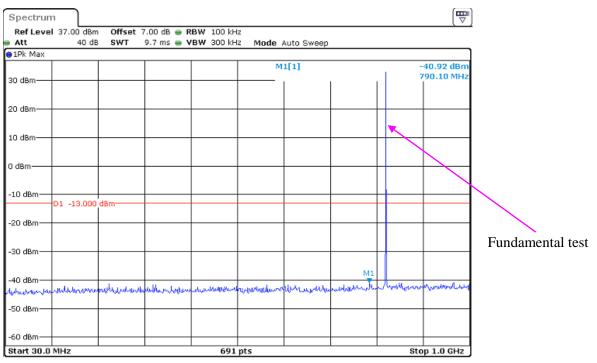

Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa

The testing was performed by Key.Pei on 2022-04-12.

EUT operation mode: Transmitting

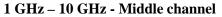
Test result: Pass

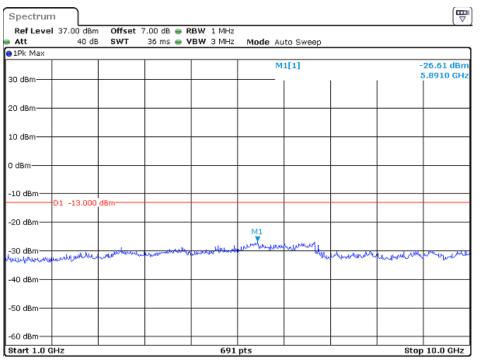
Cellular Band (Part 22H) GSM Mode


Date: 12.APR.2022 13:15:49

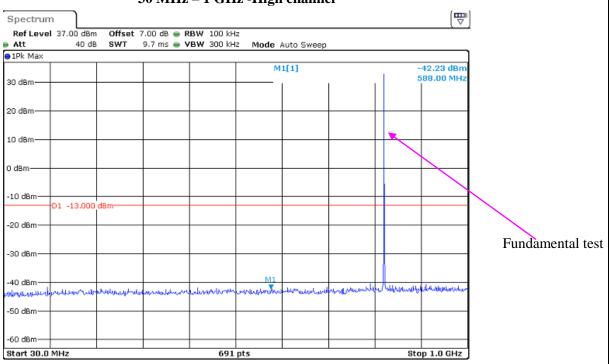
1 GHz – 10 GHz -Low channel

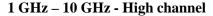
Ref Level Att	37.00 dBn 40 dB		7.00 dB 👄 R 36 ms 👄 V	BW 1 MHz BW 3 MHz	Mode A	uto Sweep			
1Pk Max					noue n	10 011000			
30 dBm					м	1[1]	1		27.49 dBm 6.6720 GHz I
20 dBm									
10 dBm									
) dBm									
10 dBm	D1 -13.000	dBm							
20 dBm						M1			
30 dBm	whaten	mutally	anter tomorty	whentowed	Hallbergene	Inclower	بالمعنى ووالدار والمعالم	Hunnhunn	wan sh
40 dBm									
50 dBm									
60 dBm									

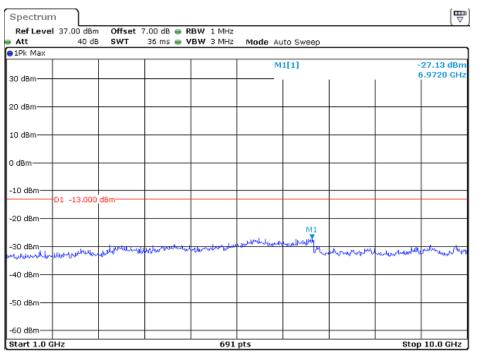

Date: 12.APR.2022 13:17:18


Version 2: 2021-11-09

30 MHz - 1 GHz -Middle channel

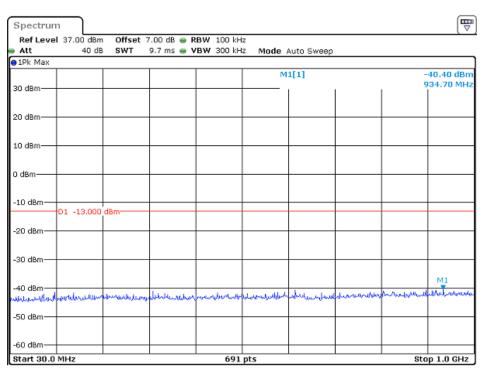

Date: 12.APR.2022 13:19:36


Date: 12.APR.2022 13:20:25


Version 2: 2021-11-09

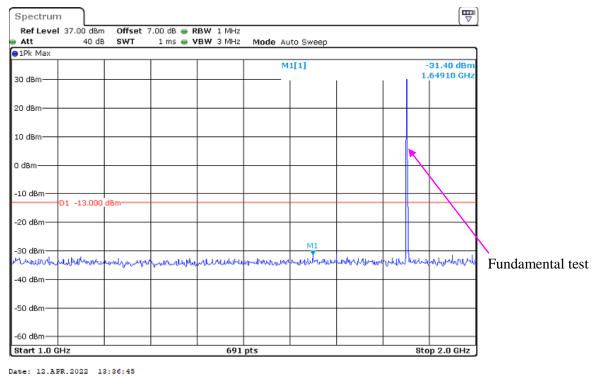
30 MHz – 1 GHz -High channel

)ate: 12.APR.2022 13:21:37

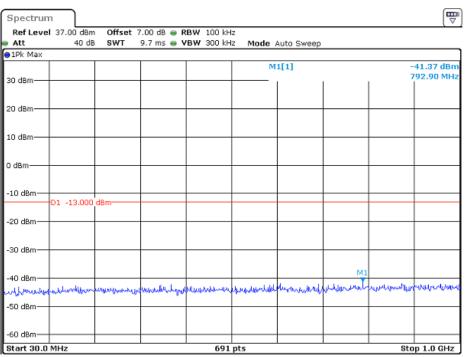


Date: 12.APR.2022 13:23:50

PCS Band (Part 24E)


GSM Mode

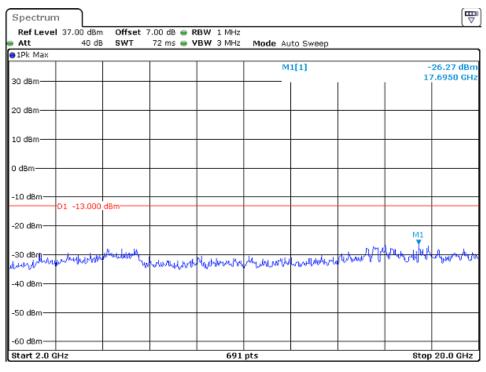
Date: 12.APR.2022 13:35:07



Spectrum	,								Ē
	37.00 dBm		.00 dB 👄 R						
Att 1Pk Max	40 dB	SWT	72 ms 👄 V	BW 3 MHz	Mode Au	ito Sweep			
30 dBm					M	1[1]	1		25.70 dBm 7.6950 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	D1 -13.000	d8m							
-20 dBm								M1	
-30 dBm	with the second	بالاستان میں انہیں	www.portor	housedel	munu	yper warth	nound Vit	Marcall	Amerilly March
-40 dBm									
-50 dBm									
-60 dBm									
Start 2.0 G	Hz			691	pts			Stop	20.0 GHz

2.0 GHz – 20 GHz -Low channel

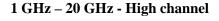
Date: 12.APR.2022 13:37:52


30 MHz - 1 GHz - Middle channel

Date: 12.APR.2022 13:40:25

Spectrum Image: Constraint of the sector of th	
Att 40 dB SWT 1 ms VBW 3 MHz Mode Auto Sweep • 1Pk Max • 32.07 dBm • - 32.07 dBm 30 dBm • 1 ms • 1 ms • 172140 GHz 20 dBm • 1 ms • 1 ms • 1 ms	
O dBm O	
30 dBm	
30 dBm	
20 dBm	
10 dBm	
0 d8m	
-10 dBm	
-20 dBm Func	damental tes
-30 dBm	Jamentai tes
-40 dBm	
-50 dBm	
-60 dBm	
Start 1.0 GHz 691 pts Stop 2.0 GHz	

Date: 12.APR.2022 13:41:17


Date: 12.APR.2022 13:41:43

Version 2: 2021-11-09

Spectrum	<u> </u>								Ē
	37.00 dBm		7.00 dB 👄 R						
Att	40 dB	SWT	9.7 ms 😑 V	'BW 300 kH	z Mode	Auto Sweep			
1Pk Max					м	1[1]			-40.88 dBm 917.90 MHz
30 dBm									917.90 MHZ
20 dBm									
LO dBm									
dBm									
-10 dBm	D1 -13.000	dBm							
20 dBm									
-30 dBm									
40 dBm									M1
hudwalakin	يعان المعالي المعالي	unprove	wharmulium	manna	uniorthim	notralmonsalmle	هوليدروهاي اردامه	ununu	Nanwyalu
50 dBm									
60 dBm									
Start 30.0	MHz			691	pts			Ste	pp 1.0 GHz

30 MHz – 1 GHz - High channel

Date: 12.APR.2022 13:39:58

Spectrum									
Ref Level	37.00 dBm		7.00 dB 😑 R	BW 1 MHz					
Att	40 dB	SWT	72 ms 😑 V	BW 3 MHz	Mode Au	ito Sweep			
1Pk Max									
30 dBm					м	1[1] 	I		25.46 dBm 5.0010 GHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm	01 -13.000	d8m							
-20 dBm							M1		
-30 dBm	andreaded	many lup	way your	umundu	phynitian	instants	harrowter	Solutionspects	<u>an an an an an</u>
-40 dBm									
-50 dBm									
-60 dBm									
Start 2.0 G	Hz			691	pts			Stop	20.0 GHz

2 GHz – 20 GHz -High channel

Date: 12.APR.2022 13:38:25

FCC § 2.1053; § 22.917 (a); § 24.238 (a) - SPURIOUS RADIATED EMISSIONS

Applicable Standard

FCC § 2.1053, §22.917(a) & § 24.238(a).

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the receiving antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa

The testing was performed by Key.Pei on 2022-04-12.

EUT operation mode: Transmitting (Worst case record in the reports)

The worst case is as below:

30MHz - 20GHz:

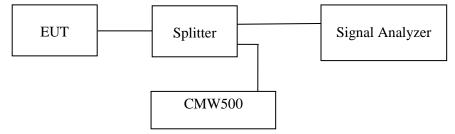
Frequency	Recei	ver	Turnta	Rx Ant	tenna	Substituted	Absolute	Limit	Mongin	
(MHz)	Reading (dBm)	PK/QP/ Ave.	ble Degree	Height (m)	Polar (H/V)	Factor (dB)	Level (dBm)	(dBm)	Margin (dB)	
GSM 850,Low Channel										
629.75	-74.49	РК	113	1.8	Н	10.26	-64.23	-13	-51.23	
171.69	-60.37	РК	71	1.7	V	0.84	-59.53	-13	-46.53	
1648.4	-44.93	PK	129	1.4	Н	3.52	-41.41	-13	-28.41	
1648.4	-45.43	PK	267	1.6	V	3.1	-42.33	-13	-29.33	
			G	SM 850, N	liddle Cl	nannel				
629.75	-73.48	PK	40	1.5	Н	10.26	-63.22	-13	-50.22	
171.69	-61.19	PK	184	1.6	V	0.84	-60.35	-13	-47.35	
1673.2	-45.75	PK	2	1.9	Н	3.78	-41.97	-13	-28.97	
1673.2	-46.51	PK	128	1.8	V	3.1	-43.41	-13	-30.41	
			(GSM 850, 1	High Cha	annel				
629.75	-74.00	PK	140	1.8	Н	10.26	-63.74	-13	-50.74	
171.69	-62.53	PK	19	1.9	V	0.84	-61.69	-13	-48.69	
1697.6	-45.69	PK	261	1.3	Н	4.07	-41.62	-13	-28.62	
1697.6	-45.51	PK	195	1.4	V	3.1	-42.41	-13	-29.41	
]	PCS 1900,	Low Cha	annel				
629.75	-74.54	РК	116	1.5	Н	10.26	-64.28	-13	-51.28	
171.69	-62.58	РК	192	1.7	V	0.84	-61.74	-13	-48.74	
3700.4	-48.97	PK	316	1.3	Н	4.72	-44.25	-13	-31.25	
3700.4	-50.29	PK	154	1.6	V	4.61	-45.68	-13	-32.68	
			P	CS 1900, N	/iddle Cl	nannel				
629.75	-73.68	PK	154	1.7	Н	10.26	-63.42	-13	-50.42	
171.69	-62.13	PK	177	2.0	V	0.84	-61.29	-13	-48.29	
3760	-50.35	PK	102	1.4	Н	4.94	-45.41	-13	-32.41	
3760	-50.33	PK	357	1.1	V	4.85	-45.48	-13	-32.48	
			H	PCS 1900,	High Cha	annel				
629.75	-74.34	PK	343	1.5	Н	10.26	-64.08	-13	-51.08	
171.69	-61.50	PK	278	1.2	V	0.84	-60.66	-13	-47.66	
3819.6	-50.73	PK	194	1.3	Н	5.25	-45.48	-13	-32.48	
3819.6	-50.90	РК	95	2.1	V	5.08	-45.82	-13	-32.82	

Note:

Absolute Level = Reading Level + Substituted Factor Substituted Factor contains: SG Level - Cable loss+ Antenna Gain Margin = Absolute Level - Limit Shenzhen Accurate Technology Co., Ltd.

FCC § 22.917 (a);§ 24.238 (a) - BAND EDGES

Applicable Standard


According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to \$24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Test Procedure

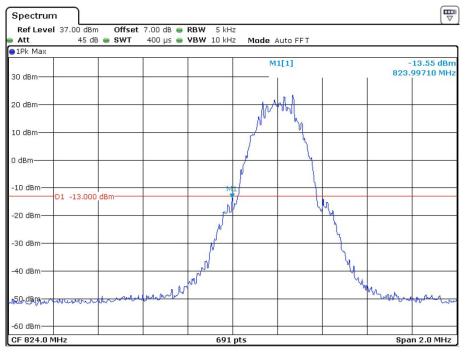
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency

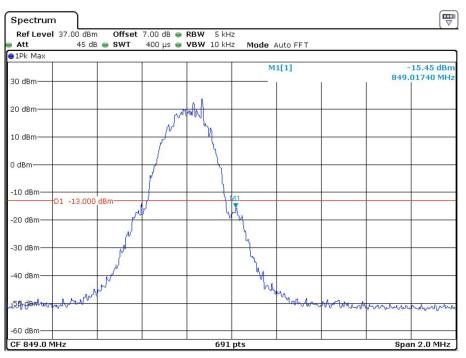
Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa


The testing was performed by Key.Pei on 2022-04-12..

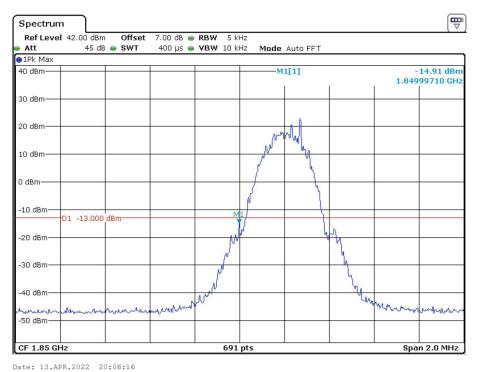
EUT operation mode: Transmitting (Worst case)


Test Result: Pass

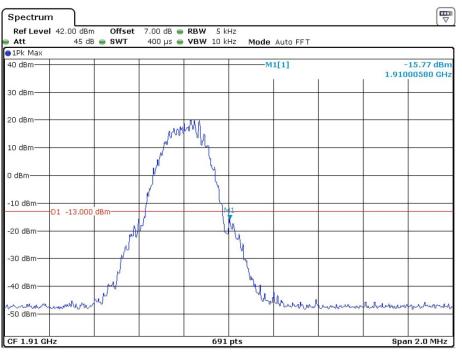
Cellular Band (Part 22H)

Left Band Edge for GSM(GMSK) Mode

Date: 13.APR.2022 19:52:19



Right Band Edge for GSM(GMSK) Mode


Date: 13.APR.2022 19:51:39

PCS Band (Part 24E)

Left Band Edge for GSM(GMSK)Mode

Version 2: 2021-11-09

Right Band Edge for GSM (GMSK) Mode

Date: 13.APR.2022 20:07:11

FCC § 2.1055; § 22.355; § 24.235 - FREQUENCY STABILITY

Applicable Standard

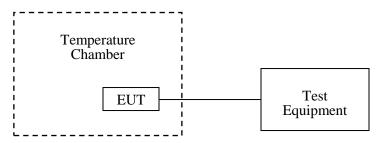
FCC § 2.1055, §22.355, §24.235.

According to FCC §2.1055, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤ 3 watts (ppm)	Mobile > 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Frequency Tolerance for Transmitters in the Public Mobile Services


According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The AC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: For hand carried, battery powered equipment; reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa

The testing was performed by Key.Pei on 2022-04-12.

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the following tables.

Note: The worst case was DC 12V was recorded.

Cellular Band (Part 22H)

GSM Mode

	Middle Channel, f _o =836.6MHz									
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)						
-30		4	0.0048	2.5						
-20		5	0.0060	2.5						
-10		7	0.0084	2.5						
0		4	0.0048	2.5						
10	12V	6	0.0072	2.5						
20		5	0.0060	2.5						
30		7	0.0084	2.5						
40		6	0.0072	2.5						
50		8	0.0096	2.5						
20	10.8V	4	0.0048	2.5						
20	13.2V	6	0.0072	2.5						

PCS Band (Part 24E)

GSM Mode

	Middle Channel, f _o =1880.0 MHz									
Temperature (°C)	Voltage Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Result						
-30		-2	-0.0011	pass						
-20		-6	-0.0032	pass						
-10		-5	-0.0027	pass						
0		-7	-0.0037	pass						
10	12V	-4	-0.0021	pass						
20		-1	-0.0005	pass						
30		-3	-0.0016	pass						
40		-5	-0.0027	pass						
50		-4	-0.0021	pass						
20	10.8V	-3	-0.0016	pass						
20	13.2V	-6	-0.0032	pass						

***** END OF REPORT *****