оті	1+		tA	
U H		测	TY	汊

Page 17 of 36

7.5 Spurious Emission at Antenna Terminal

Test Requirement:	Part 2.1051/Part 2.1057
Test Method:	TIA-603-E-2016 Clause 2.2.13
Test Setup:	Refer to section 4 for details
Measurement Procedure:	The transmitter output was connected to a calibrated coaxial cable, attenuator and Spectrum analyzer, the other end of which was connected to a Base Station Simulator. The Base Station Simulator was set to force the EUT to its maximum power setting. The tests were performed at three frequencies (low channel and high channel).the equipment operates below 10GHz: to the tenth harmonic of the highest fundamental frequency or to 40GHz.whichever is lower, the resolution bandwidth of the spectrum analyzer was set at 100kHz for spurious emissions below 1 GHz, and 1 MHz for spurious emissions above 1GHz.the video bandwidth of the spectrum analyzer was set at thrice the resolution bandwidth. Detector Mode was set to mean or average power.
Instruments Used:	Refer to section 6 for details
Limit:	Attenuated at least 43+10log(P)
Test Results:	Refer to Appendix A
•) (6*)	

۲				
CTI	1+		12	
		汉	TY	沢

Page 18 of 36

7.6 Frequency Stability

Test Requirement:	Part 2.1055					
Test Method:	TIA-603-E-2016 Clause 2.2.2					
Test Setup:	Refer to section 4 for details					
Measurement Procedure:	d to a calibrated coaxial cable and a Base Simulator was set to force the EUT to its were performed at three frequencies (low was place in the temperature chamber, exited the chamber though an opening the equipment in standby conditions for temperature was varied from -30°C to 0°C The frequency stability was read from and carried, battery powered equipment, at ed from 3.8V(primary supply voltage) to y stability and input voltage was record.					
Instruments Used:	Refer to section 6 for details					
	Operation Band	Frequency stability Limit(ppm)				
Limit:	GSM/GPRS 850	±2.5ppm				
	GSM/GPRS 1900					
Test Results:	Refer to Appendix A					

۲				
CTI	1+		12	
UN		沢	TY	

Page 19 of 36

7.7 Effective Radiated Power of Transmitter (ERP/EIRP)

Test Requirement:	Part 2.1046(a)/Part 22.913(a)/Part 24.232(c)							
Test Method:	TIA-603-E-2016 Clause 2.2.1/ KDB 971168 D01v03r01							
Test Setup:	Refer to section	Refer to section 4 for details						
	Mode	GSM/GPRS 850	GSM/GPRS 1900					
Limit:	Frequency	824 – 849MHz	1850 – 1910MHz					
	Limit	38.45dBm(ERP)	33.01dBm (EIRP)					
Measurement Procedure: Calculate power in dBm by the following formula: ERP(dBm) = Conducted output powe(dBm) + antenna gain (d EIRP(dBm) = Conducted output powe(dBm) + antenna gain (d EIRP=ERP+2.15dB)								
Instruments Used:	Refer to section 6 for details							
Test Results:	Refer to Append	lix A						

CTI华测检测

Page 20 of 36

Report No.: EED32N80430701

7.8 Field strength of spurious radiation

						-
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1GHz	Peak	120kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Measurement Procedure:	 Scan up to 10th harmon The technique used to antenna substitution m actual ERP/EIRP emis Test procedure as below: The EUT was powered ON Anechoic Chamber. The and length. modulation mode of the transmitter under test interference-receiving anter antenna tower. The disturbance of the trans and lowering from 1m to 4n turntable. After the fundam was made. Steps 1) to 3) were perform horizontal polarization. The transmitter was then re antenna was approximatel A signal at the disturbance radiating cable. With both th polarized, the receive anter the test receiver. The level strength level in step 3) is of The output power into the sist Steps 6) and 7)were repeat Calculate power in dBm by ERP(dBm) = Pg(dE EIRP(dBm) = Pg(dE) EIRP(dBm) = Pg(dE) EIRP(dBm)	inc, find the max find the Spurior rethod. Substitu sion levels of the l and placed on intenna of the tra and the measu st. (above 18GHz ma, which was insmitter was may in the receive an ental emission ned with the EU emoved and rep y at the same lo was fed to the the substitution nna was raised of the signal ge obtained for this substitution anter the following for Bm) – cable loss Bm) – cable loss Bm) – cable loss an tput power into channel, the m its are performer is positioning wh until all frequen	kimum radia us Emissior tion method e EUT. a 1.5m high ansmitter war ring receive the distance mounted of ximized on netenna and was maximi T and the rec and lowere enerator war s set of cond enna was the netennas poli- ormula: s (dB) + ant s (dB) + ant the substitu- iddle channed d in X, Y, Z ich it is wor cies measu	ation frequents of the trains of the test receives anternal be reshall be the test receives anternal be receive anternal be received anternal	ency to measu insmitter was rmed to deter t a 3 meter ful d to its maxim uned to the fro r) away from t f a variable-he ceiver display through 360° d strength mea enna in both v tenna. The ce f the transmitt y means of a nas horizontal a maximum r until the meas red. (dBd) (dBi) na. est channel oning for EUT implete.	J rre. the mine the ly ium equency he eight by raising the asurement ertical and nter of the er. non- ly eading at sured field
Limit:	Attenuated at least 43+10	og(P)				

Measurement Data

Remark: Only the worst case was recorded in the report.

(C.)			C. 201				16.2	
Mode: GSM		GSM Traffic					C	e
Band	:	850		Channel:		128		
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	40.0900	150	102	-73.99	-13.00	60.99	Pass	Horizontal
2	120.0340	150	357	-75.26	-13.00	62.26	Pass	Horizontal
3	184.2609	150	126	-78.54	-13.00	65.54	Pass	Horizontal
4	270.0260	150	151	-74.73	-13.00	61.73	Pass	Horizontal
5	367.2394	150	134	-77.51	-13.00	64.51	Pass	Horizontal
6	619.4899	150	61	-75.02	-13.00	62.02	Pass	Horizontal
7	1673.0673	150	208	-40.07	-13.00	27.07	Pass	Horizontal
8	2510.1510	150	313	-56.26	-13.00	43.26	Pass	Horizontal
9	5020.6010	150	185	-53.66	-13.00	40.66	Pass	Horizontal
10	7665.9833	150	175	-51.14	-13.00	38.14	Pass	Horizontal
11	11869.1935	150	45	-47.45	-13.00	34.45	Pass	Horizontal
12	14369.8185	150	121	-43.62	-13.00	30.62	Pass	Horizontal

Mode	e:	GSM Tra	affic	(e e	
Band	l:	850		Channel:		128		
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	42.0304	150	26	-67.55	-13.00	54.55	Pass	Vertical
2	62.5985	150	235	-68.89	-13.00	55.89	Pass	Vertical
3	184.2609	150	202	-71.89	-13.00	58.89	Pass	Vertical
4	239.9500	150	357	-72.95	-13.00	59.95	Pass	Vertical
5	411.4803	150	62	-71.95	-13.00	58.95	Pass	Vertical
6	730.0920	150	357	-69.11	-13.00	56.11	Pass	Vertical
7	1673.4673	150	9	-55.93	-13.00	42.93	Pass	Vertical
8	2685.5686	150	202	-58.04	-13.00	45.04	Pass	Vertical
9	5029.6015	150	325	-53.23	-13.00	40.23	Pass	Vertical
10	7500.2250	150	272	-51.38	-13.00	38.38	Pass	Vertical
11	9923.5962	150	260	-48.34	-13.00	35.34	Pass	Vertical
12	14372.0686	150	3	-44.04	-13.00	31.04	Pass	Vertical

CTI华测检测

Report No.: EED32N80430701

Page 22 of 36

Mode	e:	GSM Tr	affic	1	6			
Band		850	(N)	Channel:		190	6	
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	40.0900	150	199	-76.13	-13.00	63.13	Pass	Horizontal
2	62.4045	150	322	-74.89	-13.00	61.89	Pass	Horizontal
3	80.0620	150	357	-73.24	-13.00	60.24	Pass	Horizontal
4	166.0212	150	248	-77.32	-13.00	64.32	Pass	Horizontal
5	270.0260	150	199	-73.38	-13.00	60.38	Pass	Horizontal
6	612.1164	150	19	-74.37	-13.00	61.37	Pass	Horizontal
7	1672.8673	150	182	-41.30	-13.00	28.30	Pass	Horizontal
8	2509.9510	150	289	-56.73	-13.00	43.73	Pass	Horizontal
9	4655.3328	150	283	-55.10	-13.00	42.10	Pass	Horizontal
10	7019.4510	150	56	-52.04	-13.00	39.04	Pass	Horizontal
11	9703.0852	150	240	-47.85	-13.00	34.85	Pass	Horizontal
12	14361.5681	150	283	-44.09	-13.00	31.09	Pass	Horizontal
		1	6	0 /				

Mode	e:	GSM Tra	affic		-07		12	
Band		850	12	Channel:	$\langle V \rangle_{c}$	190		
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	41.8364	150	151	-67.80	-13.00	54.80	Pass	Vertical
2	62.4045	150	151	-69.77	-13.00	56.77	Pass	Vertical
3	129.9300	150	12	-75.55	-13.00	62.55	Pass	Vertical
4	184.2609	150	40	-72.12	-13.00	59.12	Pass	Vertical
5	284.9670	150	0	-72.44	-13.00	59.44	Pass	Vertical
6	411.4803	150	357	-72.22	-13.00	59.22	Pass	Vertical
7	1673.0673	150	357	-49.71	-13.00	36.71	Pass	Vertical
8	3029.2515	150	259	-57.06	-13.00	44.06	Pass	Vertical
9	5008.6004	150	195	-54.60	-13.00	41.60	Pass	Vertical
10	6930.1965	150	227	-52.58	-13.00	39.58	Pass	Vertical
11	11420.6710	150	347	-46.73	-13.00	33.73	Pass	Vertical
12	14394.5697	150	78	-44.27	-13.00	31.27	Pass	Vertical
						10.3		10.3

CTI华测检测

Report No.: EED32N80430701

Page 23 of 36

Mode	e:	GSM Tr	affic					
Band		850	(N)	Channel:		251	6	
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	40.2841	150	297	-73.92	-13.00	60.92	Pass	Horizontal
2	80.0620	150	357	-74.99	-13.00	61.99	Pass	Horizontal
3	137.1094	150	188	-75.45	-13.00	62.45	Pass	Horizontal
4	270.0260	150	357	-73.55	-13.00	60.55	Pass	Horizontal
5	436.1232	150	122	-76.66	-13.00	63.66	Pass	Horizontal
6	659.4619	150	286	-75.22	-13.00	62.22	Pass	Horizontal
7	1672.8673	150	40	-39.30	-13.00	26.30	Pass	Horizontal
8	2509.5510	150	297	-57.48	-13.00	44.48	Pass	Horizontal
9	5027.3514	150	273	-54.29	-13.00	41.29	Pass	Horizontal
10	7360.7180	150	13	-51.71	-13.00	38.71	Pass	Horizontal
11	10282.8641	150	306	-47.75	-13.00	34.75	Pass	Horizontal
12	12448.9724	150	273	-46.84	-13.00	33.84	Pass	Horizontal
	0	1	10	0				0

Mode:		GSM Traffic						
Band:		850		Channel:		251		
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	41.6423	150	51	-69.05	-13.00	56.05	Pass	Vertical
2	62.5985	150	297	-68.83	-13.00	55.83	Pass	Vertical
3	129.9300	150	357	-75.47	-13.00	62.47	Pass	Vertical
4	184.2609	150	62	-71.35	-13.00	58.35	Pass	Vertical
5	411.4803	150	161	-71.36	-13.00	58.36	Pass	Vertical
6	750.0780	150	42	-69.05	-13.00	56.05	Pass	Vertical
7	1673.0673	150	305	-51.97	-13.00	38.97	Pass	Vertical
8	2787.9788	150	6	-58.10	-13.00	45.10	Pass	Vertical
9	5009.3505	150	178	-54.65	-13.00	41.65	Pass	Vertical
10	7569.2285	150	270	-51.49	-13.00	38.49	Pass	Vertical
11	11176.1588	150	99	-46.93	-13.00	33.93	Pass	Vertical
12	14419.3210	150	78	-44.79	-13.00	31.79	Pass	Vertical

Page 24 of 36

Mode	Mode:		GSM Traffic					
Band	Band:		1900		Channel:		512	
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	40.2841	150	96	-74.55	-13.00	61.55	Pass	Horizontal
2	80.0620	150	357	-75.52	-13.00	62.52	Pass	Horizontal
3	137.1094	150	238	-74.70	-13.00	61.70	Pass	Horizontal
4	258.7718	150	80	-72.54	-13.00	59.54	Pass	Horizontal
5	375.0010	150	238	-77.45	-13.00	64.45	Pass	Horizontal
6	750.0780	150	61	-71.28	-13.00	58.28	Pass	Horizontal
7	1257.4257	150	1	-46.34	-13.00	33.34	Pass	Horizontal
8	3759.7880	150	45	-43.38	-13.00	30.38	Pass	Horizontal
9	5640.1320	150	110	-44.87	-13.00	31.87	Pass	Horizontal
10	9207.3104	150	325	-49.41	-13.00	36.41	Pass	Horizontal
11	13160.0080	150	348	-43.78	-13.00	30.78	Pass	Horizontal
12	21777.3511	150	202	-53.21	-13.00	40.21	Pass	Horizontal

Mode:		GSM Traffic						
Band:		1900		Channel:		512		
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	42.0304	150	26	-66.25	-13.00	53.25	Pass	Vertical
2	62.5985	150	132	-68.20	-13.00	55.20	Pass	Vertical
3	184.2609	150	291	-71.39	-13.00	58.39	Pass	Vertical
4	239.9500	150	357	-70.39	-13.00	57.39	Pass	Vertical
5	411.4803	150	1	-72.52	-13.00	59.52	Pass	Vertical
6	730.6741	150	357	-49.76	-13.00	36.76	Pass	Vertical
7	1283.2283	150	238	-45.97	-13.00	32.97	Pass	Vertical
8	3759.7880	150	13	-46.92	-13.00	33.92	Pass	Vertical
9	5640.1320	150	294	-37.60	-13.00	24.60	Pass	Vertical
10	9400.0700	150	208	-47.17	-13.00	34.17	Pass	Vertical
11	13160.7580	150	306	-41.49	-13.00	28.49	Pass	Vertical
12	21521.7009	150	62	-54.11	-13.00	41.11	Pass	Vertical

