

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC174108

1 of 43 Page:

FCC Radio Test Report FCC ID: 2ATUJ-BM5A

Original Grant

Report No. TB-FCC174108

Shenzhen TRIS VISION Technology Co., Ltd. **Applicant**

Equipment Under Test (EUT)

EUT Name Baby Monitor

Model No. BM5A

Series Model No. BM4.3,BM5B,BM5C,BM5D,BM5E,BM7A,BM7B,BM7C,Soothe 3

N/A **Brand Name**

Sample ID TBBJ-20200525-03-2#

2020-06-29 **Receipt Date**

Test Date 2020-06-29 to 2020-07-12

Issue Date : 2020-07-13

Standards : FCC Part 15, Subpart C 15.247

Test Method : ANSI C63.10: 2013

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Engineer

Engineer

Supervisor

Engineer Manager

Jack Deng

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Contents

CON	ITENI5	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	19
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	
8.	BANDWIDTH TEST	20
	8.1 Test Standard and Limit	20
	8.2 Test Setup	20
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	20

Report No.: TB-FCC174108 Page: 3 of 43

	8.5 EUT Operating Condition	20
	8.6 Test Data	
9.	PEAK OUTPUT POWER TEST	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	21
	9.3 Test Procedure	21
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Condition	21
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY TEST	22
	10.1 Test Standard and Limit	22
	10.2 Test Setup	22
	10.3 Test Procedure	22
	10.4 Deviation From Test Standard	
	10.5 EUT Operating Condition	
	10.6 Test Data	
11.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	23
	11.2 Deviation From Test Standard	23
	11.3 Antenna Connected Construction	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATTA	ACHMENT B RADIATED EMISSION TEST DATA	26
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND-EDGE TES	
	ACHMENT D BANDWIDTH TEST DATA	
ATTA	ACHMENT E PEAK OUTPUT POWER TEST DATA	41
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Report No.: TB-FCC174108 Page: 4 of 43

Revision History

Report No.	Version	Description	Issued Date
TB-FCC174108	Rev.01	Initial issue of report	2020-07-13
	COLUMN TO SERVICE STATE OF THE		ARTIC
	1 10		
	1		ω_{0Rr}
	Will.		6
		TODAY TO	
A C			W.
	W. T.		2 CM
Milita	10 W		
	1100		
			The second
The same	200	WURT UNIT	

Page: 5 of 43

1. General Information about EUT

1.1 Client Information

Applicant	Shenzhen TRIS VISION Technology Co., Ltd.	
		301 ,Chuangzeshi Factory, NO.81, Xincun, Songyuanxia Community Center, Guanhu Street, Longhua District ,Shenzhen City ,Guangdong Province, P.R. China
Manufacturer : Shenzhen TRIS VISION Technology Co.		Shenzhen TRIS VISION Technology Co., Ltd.
Address		301 ,Chuangzeshi Factory, NO.81, Xincun, Songyuanxia Community Center, Guanhu Street, Longhua District ,Shenzhen City ,Guangdong Province, P.R. China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Baby Monitor	Baby Monitor				
Models No.	:	BM5A,BM4.3,BM5B,B	BM5A,BM4.3,BM5B,BM5C,BM5D,BM5E,BM7A,BM7B,BM7C,Soothe 3				
Model Different		All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name and Exterior cover for commercial.					
		Operation Frequency:	2412MHz~2462MHz				
	5	Number of Channel:	11 channels see note(3)				
Product	1	RF Output Power:	8.80dBm				
Description		Antenna Gain:	2dBi Dipole Antenna				
		Modulation Type:	OFDM				
Power Rating	:	DC 5V from AC/DC Adapter(SAN-05015): Input: AC 100-240V, 50/60Hz. 0.35A MAX Output: DC 5V, 1.5A. DC 3.8V by 950mAh Li-ion battery					
Software Version	:	XM530_BMS50X20-WVGA_16M_20200622					
Hardware Version	:	BLK650FX2-153X86-BM V1.02					

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 v05r02 and KDB 662911 D01 Multiple Transmitter Output v02r01.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 43

(3) Channel List:

Channel	Frequency	Channel	Frequency	Channel	Frequency
Gilaillei	(MHz)	Chaine	(MHz)	Citatillei	(MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	80	2447		

(4) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Adapter	EUT		

1.4 Description of Support Units

Name	Model	S/N	Manufacturer	Used "√"
		A MULL		

Page: 7 of 43

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1 Charging with TX Mode					
Fo	or Radiated and RF Conducted Test				
Final Test Mode Description					
Mode 2	TX Mode Mode Channel 01/06/11				
Note : The adapter and antenna	gain provided by the applicant, the verified for the RF conduction test				

Note: The adapter and antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

RF Mode: OFDM (6 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile device; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 43

1.6 Description of Test Software Setting

During testing channel & Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of 2.4G module.

	Test Software: Xshell Test Mode: Continuously transmitting					
Mode	Data Rate	Channel				
	OFDM	01				
RF	OFDM	06				
	OFDM	11				

Page: 9 of 43

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Report No.: TB-FCC174108 Page: 10 of 43

Page:

2. Test Summary

FCC Part 15 Subpart C(15.247)							
Standard Section FCC	Test Item	Test Sample(s)	Judgment	Remark			
15.203	Antenna Requirement	TBBJ-20200525-03-2#	PASS	N/A			
15.207	Conducted Emission	TBBJ-20200525-03-2#	PASS	N/A			
15.205	Restricted Bands	TBBJ-20200525-03-2#	PASS	N/A			
15.247(a)(2)	6dB Bandwidth	TBBJ-20200525-03-2#	PASS	N/A			
15.247(b)	Peak Output Power	TBBJ-20200525-03-2#	PASS	N/A			
15.247(e)	Power Spectral Density	TBBJ-20200525-03-2#	PASS	N/A			
15.247(d)	Band Edge	TBBJ-20200525-03-2#	PASS	N/A			
15.247(d)&15.209	Transmitter Spurious Emission	TBBJ-20200525-03-2#	PASS	N/A			

Note: "/" for no requirement for this test item. N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC174108 Page: 11 of 43

4. Test Equipment

Conducted Emission Test							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 12, 2020	Jul. 11, 2021		
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 12, 2020	Jul. 11, 2021		
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 12, 2020	Jul. 11, 2021		
LISN	Rohde & Schwarz	ENV216	101131	Jul. 12, 2020	Jul. 11, 2021		
Radiation Emission T	est						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 12, 2020	Jul. 11, 2021		
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 12, 2020	Jul. 11, 2021		
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 12, 2020	Jul. 11, 2021		
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2021		
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2021		
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Aug.07, 2019	Aug. 06, 2020		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020		
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021		
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021		
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 27, 2019	Jul. 26, 2020		
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021		
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A		
Antenna Conducted I	Emission						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 12, 2020	Jul. 11, 2021		
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 12, 2020	Jul. 11, 2021		
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020		
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020		
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020		
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020		

Page: 12 of 43

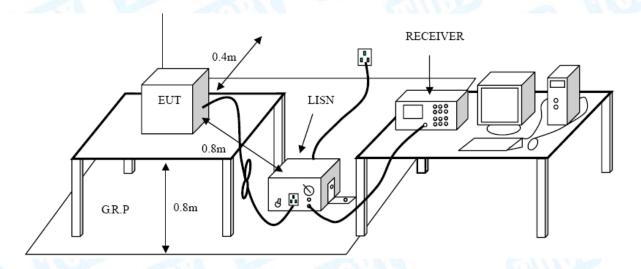
5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard

FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguenov	Maximum RF Lin	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 43

5.3 Test Procedure

- (1) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- (2) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (3)I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (4)LISN at least 80 cm from nearest part of EUT chassis.
- (5)The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 43

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209

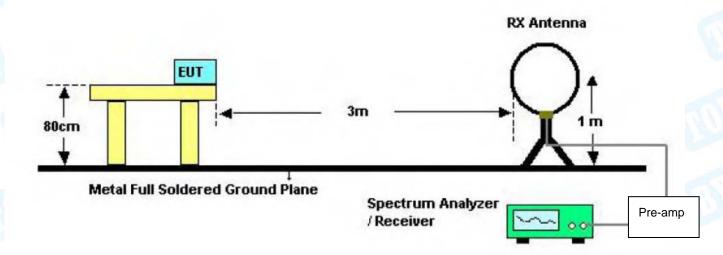
6.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

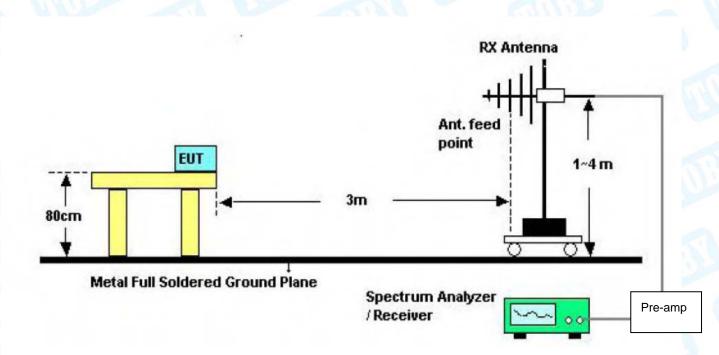
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m	(dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

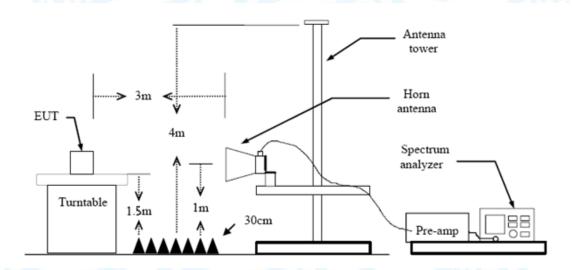

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 15 of 43

6.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 43

Above 1GHz Test Setup

6.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 43

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

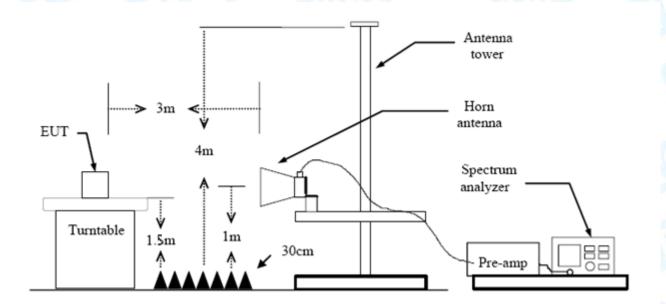
Page: 18 of 43

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.247(d)


FCC Part 15.209

FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance of	3m (dBuV/m)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

7.2 Test Setup

Page: 19 of 43

7.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency Below 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

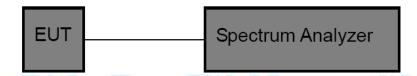
7.6 Test Data

Please refer to the Attachment C.

Page: 20 of 43

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Test Item Limit Frequency Range(MF			
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

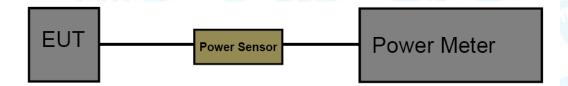
8.6 Test Data

Please refer to the Attachment D.

Page: 21 of 43

9. Peak Output Power Test

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247 (b)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit Frequency Range(MHz)				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

9.2 Test Setup

9.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 v05r02.

The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

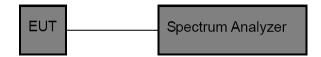
9.6 Test Data

Please refer to the Attachment E.

Page: 22 of 43

10. Power Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247 (e)

10.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit Frequency Range(MHz)				
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 D01 v05r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

Page: 23 of 43

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

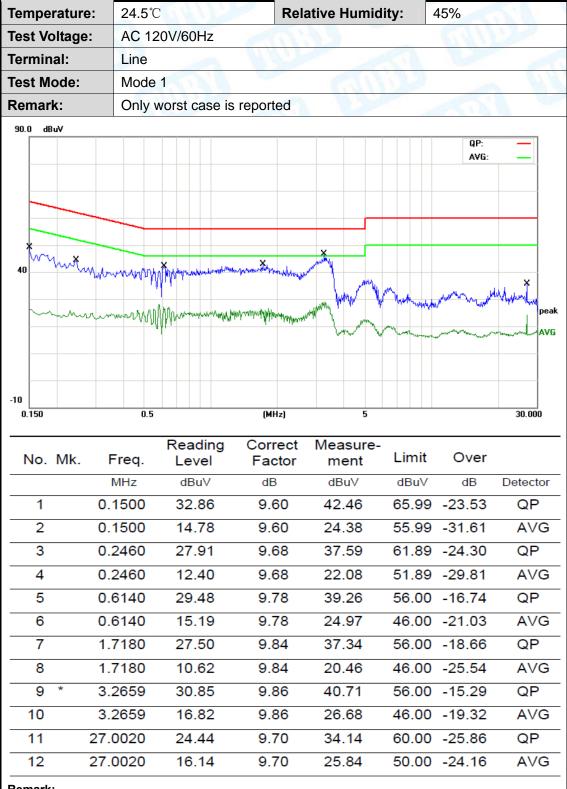
11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a Dipole Antenna. It complies with the standard requirement.

Antenna Type				
WURR I	⊠Permanent attached antenna			
Call B	Unique connector antenna			
	Professional installation antenna			



Page: 24 of 43

Attachment A-- Conducted Emission Test Data

Remark: All channels have been tested and Shows only the worst channels.

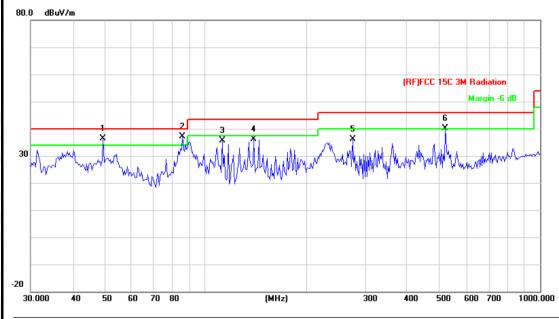
- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

					_		
Tempera	ature: 24.5°	C	Re	lative Humid	dity:	45%	
Test Vol	tage: AC 1	20V/60Hz		677	110	,	
Termina	I: Neut	Neutral					
Test Mo	de: Mode	Mode 1					
Remark	: Only	worst case is	reported		2.0		
40 dBuV	Manamana Ma	Marine and	regarden det de made production		Mary Mary Mary Mary Mary Mary Mary Mary	QP: AVG:	peak AVG
0.150	0.5	i	(MHz)	5			30.000
No. I		Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBu∨	dBuV	dB	Detector
1	0.1500	33.53	9.60	43.13		-22.86	QP
2	0.1500	17.42	9.60	27.02	55.99	-28.97	AVG
3	0.6140	32.16	9.78	41.94	56.00	-14.06	QP
4	* 0.6140	24.94	9.78	34.72	46.00	-11.28	AVG
5	1.4780	26.59	9.81	36.40	56.00	-19.60	QP
6	1.4780	16.12	9.81	25.93	46.00	-20.07	AVG
7	3.3380	29.95	9.85	39.80	56.00	-16.20	QP
8	3.3380	19.19	9.85	29.04	46.00	-16.96	AVG
9	5.0020	20.64	9.82	30.46	60.00	-29.54	QP
10	5.0020	13.92	9.82	23.74	50.00	-26.26	AVG
11	11.2980	13.51	9.86	23.37	60.00	-36.63	QP
12	11.2980	8.58	9.86	18.44	50.00	-31.56	AVG

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
 2. Margin (dB) = QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 26 of 43

Attachment B-- Radiated Emission Test Data


9KHz~30MHz

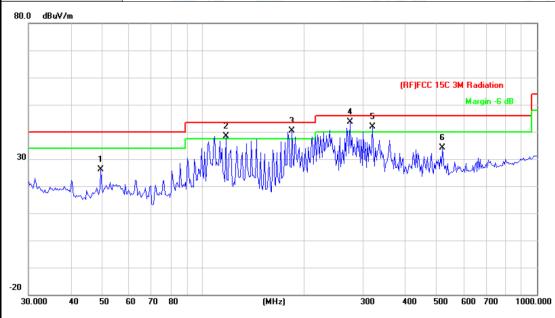
From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		MOS
Ant. Pol.	Horizontal		
Test Mode:	TX Mode 2412MHz	UM/III	
Remark:	Only worst case is reported.		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	İ	49.3594	59.39	-23.13	36.26	40.00	-3.74	QP
2	*	85.2980	59.41	-22.27	37.14	40.00	-2.86	QP
3		112.1305	58.03	-22.44	35.59	43.50	-7.91	QP
4		139.3613	58.66	-22.48	36.18	43.50	-7.32	QP
5		275.1570	52.62	-16.52	36.10	46.00	-9.90	QP
6	ļ	520.8882	49.91	-9.73	40.18	46.00	-5.82	QP


^{*:}Maximum data x:Over limit !:over margin

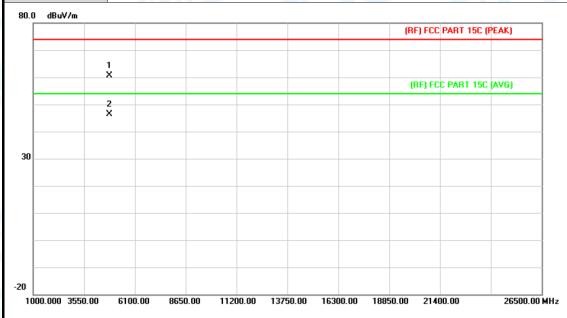
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Report No.: TB-FCC174108 Page: 27 of 43

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60HZ	CALLE:				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX Mode 2412MHz	TX Mode 2412MHz				
Remark:	Only worst case is report	ed.				

N	o. Mł	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	O∨er	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		49.3594	49.26	-23.13	26.13	40.00	-13.87	QP
2	ļ	116.9495	60.68	-22.36	38.32	43.50	-5.18	QP
3	İ	184.4898	60.23	-19.97	40.26	43.50	-3.24	QP
4	*	275.1569	60.11	-16.52	43.59	46.00	-2.41	QP
5	ļ	321.0607	57.20	-15.32	41.88	46.00	-4.12	QP
6		520.8881	43.74	-9.73	34.01	46.00	-11.99	QP

^{*:}Maximum data x:Over limit !:over margin

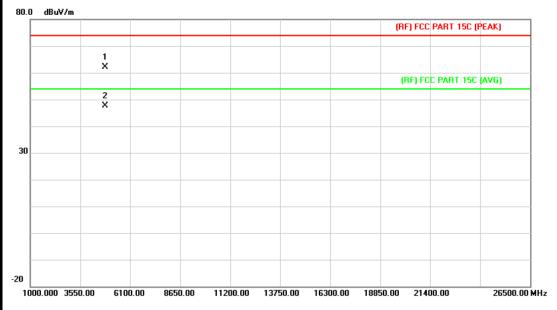

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TB-FCC174108 Page: 28 of 43

Above 1GHz

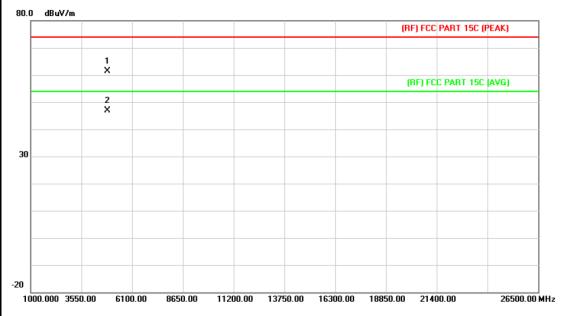
Temperature:	25℃	Relative Humidity:	35%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Horizontal	100.1	(40 P)
Test Mode:	TX Mode 2412MHz	THURSDAY	2 10
Remark:	No report for the emissi	ion which more than 1	5dB below the prescribed
	limit. Only show the wo	rst case ANT. A.	

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.935	47.08	13.49	60.57	74.00	-13.43	peak
2	*	4823.935	33.00	13.49	46.49	54.00	-7.51	AVG


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Report No.: TB-FCC174108 Page: 29 of 43

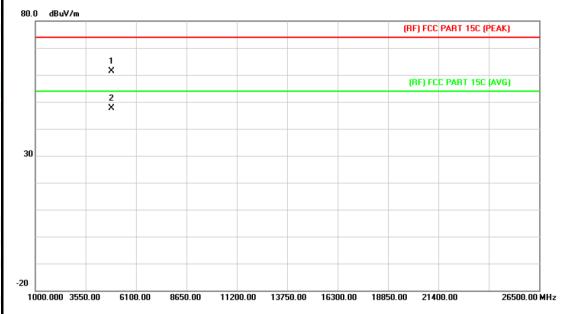
25℃	Relative Humidity:	35%			
AC 120V/60 Hz					
Vertical	Vertical				
TX Mode 2412MHz		CHO			
Remark: No report for the emission which more than 15dB below the					
prescribed limit. Only sho	ow the worst case ANT. A				
	AC 120V/60 Hz Vertical TX Mode 2412MHz No report for the emissio	AC 120V/60 Hz Vertical TX Mode 2412MHz			


No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4824.012	48.63	13.49	62.12	74.00	-11.88	peak
2	*	4824.012	34.07	13.49	47.56	54.00	-6.44	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	25℃	Relative Humidity:	35%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX Mode 2437MHz	11:30	U.H.				
Remark:	No report for the emission which more than 15dB below the						
	prescribed limit. Only sho	prescribed limit. Only show the worst case ANT. A.					

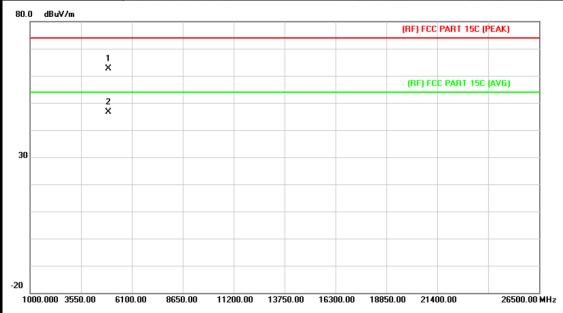
No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.458	47.80	13.54	61.34	74.00	-12.66	peak
2	*	4873.458	33.28	13.54	46.82	54.00	-7.18	AVG


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC174108 Page: 31 of 43

	10	DTT
		KV.
	LU	דע
100		

Temperature:	25℃	Relative Humidity:	35%			
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX Mode 2437MHz		DAIL S			
Remark:	No report for the emission which more than 15dB below the					
	prescribed limit. Only sh	now the worst case ANT. A				


No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4873.430	47.91	13.54	61.45	74.00	-12.55	peak
2	*	4873.430	33.99	13.54	47.53	54.00	-6.47	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

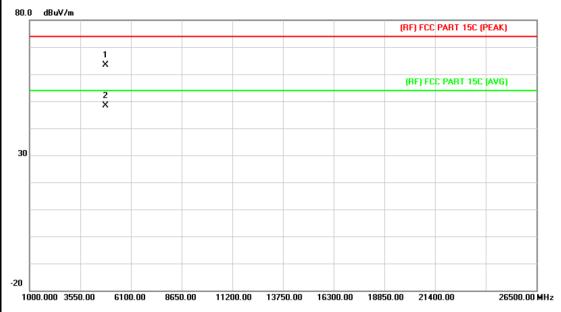
Report No.: TB-FCC174108 Page: 32 of 43

Temperature:	25℃	Relative Humidity:	35%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX Mode 2462MHz	J. 10	
Remark:	No report for the emissi	on which more than 15	dB below the
	prescribed limit. Only sh	now the worst case AN	Г. А.

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4924.066	48.99	13.58	62.57	74.00	-11.43	peak
2	*	4924.066	33.06	13.58	46.64	54.00	-7.36	AVG

Remark:

TOBY

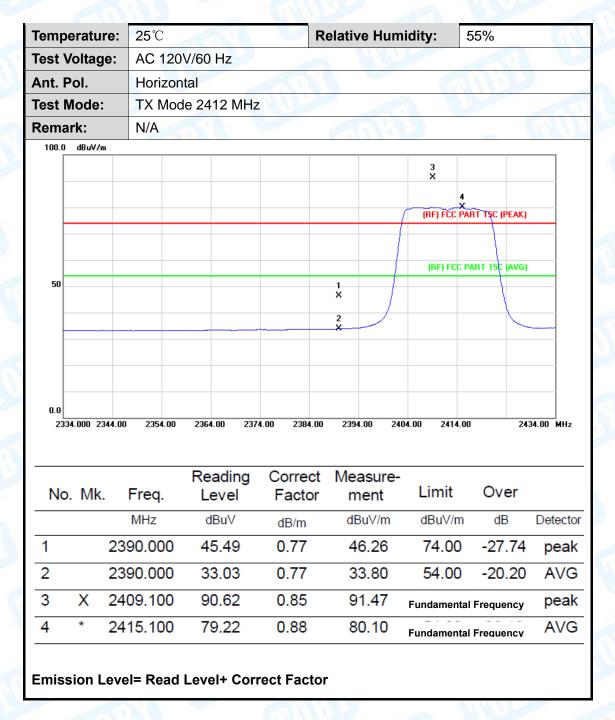

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC174108 Page: 33 of 43

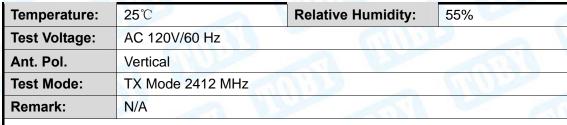
Temperature:	25℃	Relative Humidity:	35%
Test Voltage:	AC 120V/60 Hz		
Ant. Pol.	Vertical		
Test Mode:	TX Mode 2462MHz		U.A.D.
Remark:	No report for the emissi	on which more than 150	dB below the
	prescribed limit. Only sh	now the worst case ANT	. A.

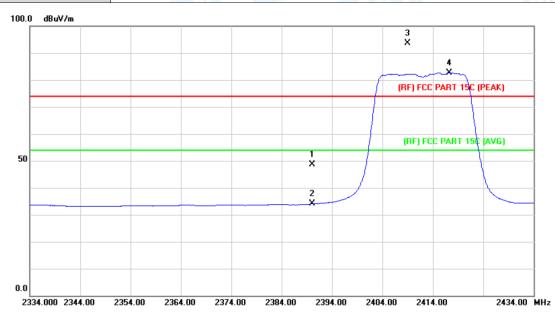
No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4823.412	49.94	13.49	63.43	74.00	-10.57	peak
2	*	4823.412	35.00	13.49	48.49	54.00	-5.51	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



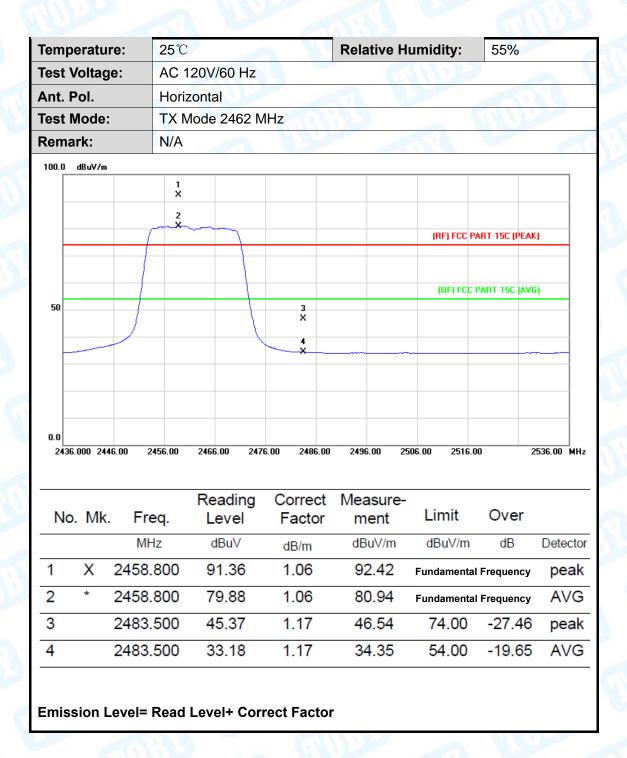
Report No.: TB-FCC174108 Page: 34 of 43


Attachment C-- Restricted Bands Requirement and Band-edge Test Data


(1) Radiation Test

35 of 43 Page:

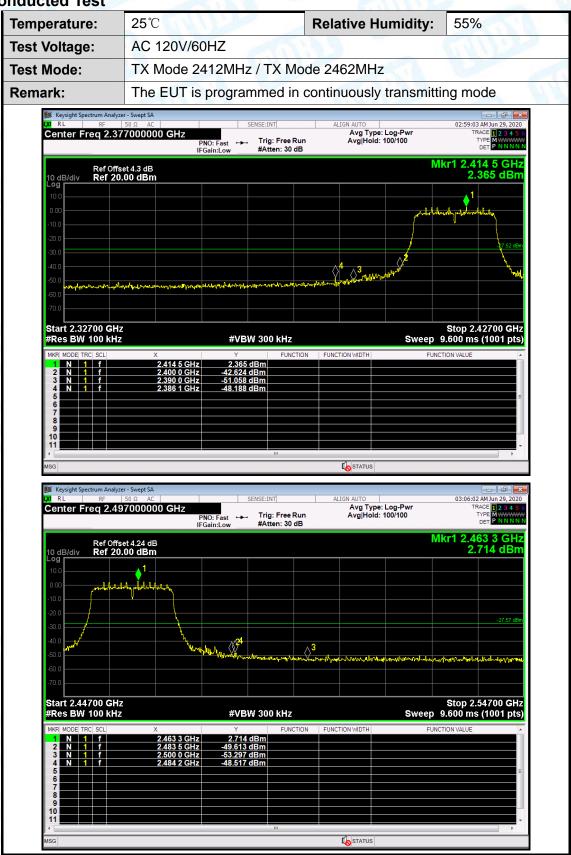
No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	47.95	0.77	48.72	74.00	-25.28	peak
2		2390.000	33.25	0.77	34.02	54.00	-19.98	AVG
3	X	2409.000	92.74	0.85	93.59	Fundamental	Frequency	peak
4	*	2417.300	81.79	0.89	82.68	- Fundamental	Frequency	AVG


Emission Level= Read Level+ Correct Factor

TOBY

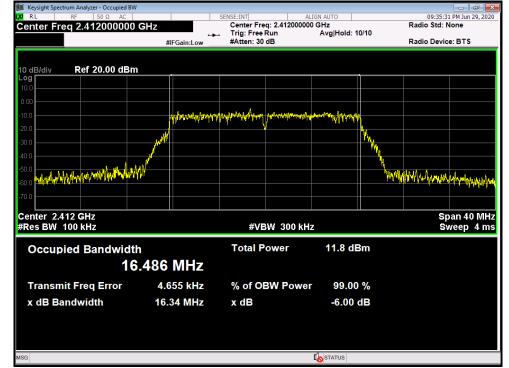
Page: 36 of 43

Report No.: TB-FCC174108 Page: 37 of 43

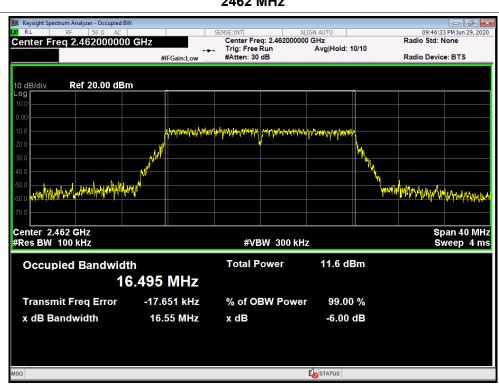

Tempera	ture:	25℃		R	elative Hun	nidity:	55%	
Test Volt	age:	AC 12	20V/60 Hz		6	THE		A.
Ant. Pol.		Vertica	al					A.
Test Mod	le:	TX Mo	ode 2462 M	Hz	130		DATE:	
Remark:		N/A	1	M. D.		200		
100.0 dBuV	7/m							
		X						
			2 X					
						(RF) FCC	PART 15C (PEAK)	
						(BE) EC	C PART 15C (AVG	
50				3 X		(nr) rc	C PART TOC AVO.	
				4 X				
-								
0.0	2442.00	2452.00	2402.00	70.00	2422.22			
2436.000	2446.00	2456.00	2466.00 24	76.00 2486.00	2496.00 2	2506.00 2516	.00 2:	36.00 MH
		_	Reading		Measure		0.40	
No. N	IK. H	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/n	n dB	Detecto
1 X	245	8.700	94.18	1.06	95.24	Fundamenta	al Frequency	peal
2 *	246	5.200	82.73	1.09	83.82	Fundamenta	al Frequency	AVC
3	248	3.500	48.16	1.17	49.33	74.00	-24.67	peal
	2/18	3.500	33.78	1.17	34.95	54.00	-19.05	AVC
4	240	,0.000						

Page: 38 of 43

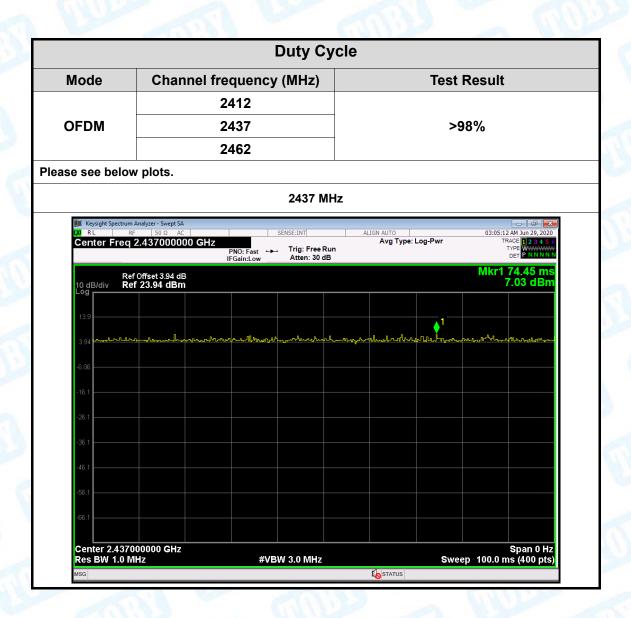
(2) Conducted Test



Attachment D-- Bandwidth Test Data


3 3 3 3	AC 120V/60HZ TX Mode y 6dB Bandwidth	OOM Devices	Carrier Services
Channel frequency		000/ Dandaridth	
•	y 6dB Bandwidth	OOO/ Danadaaidkla	
(MHz)		99% Bandwidth	Limit
	(MHz)	(MHz)	(MHz)
2412	16.43	16.486	
2437	16.15	16.466	>=0.5
2462	16.46	16.495	
	2412 N	1Hz	
Keysight Spectrum Analyzer- KRL RF 50 Center Freq 2.4120	Ω AC SENSE:INT	Run Avg Hold: 10/10	09:35:31 PM Jun 29, 2020 adio Std: None adio Device: BTS

2437 MHz 09:42:38 PM Jun 29, 2020 Radio Std: None Center Freq: 2.43700000 GHz
Trig: Free Run Avg|Hold: 10/10
#Atten: 30 dB Ref 20.00 dBm Center 2.437 GHz #Res BW 100 kHz Span 40 MHz Sweep 4 ms #VBW 300 kHz **Total Power** 11.3 dBm **Occupied Bandwidth** 16.466 MHz **Transmit Freq Error** -10.589 kHz % of OBW Power 99.00 % x dB Bandwidth 16.30 MHz x dB -6.00 dB STATUS 2462 MHz 09:46:33 PM Jun 29, 2020 Radio Std: None ROCLARI ALIGN AUTO
Center Freq: 2.462000000 GHz
Trig: Free Run
#Atten: 30 dB
ALIGN AUTO
AVg|Hold: 10/10 Center Freq 2.462000000 GHz



Page: 41 of 43

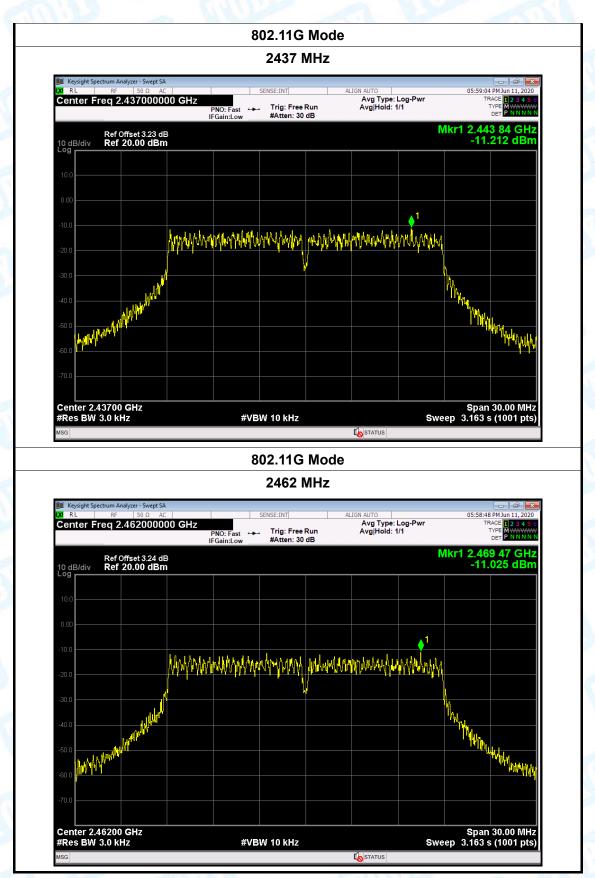
Attachment E-- Peak Output Power Test Data

Temperature:	25 ℃	Relative Humidit	y : 55%
Test Voltage:	AC 120/60Hz		
Channel	frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	8.56	
OFDM	2437	8.45	30
	2462	8.80	
	Resu	ılt: PASS	

Center 2.41200 GHz #Res BW 3.0 kHz Report No.: TB-FCC174108

Page: 42 of 43

Span 30.00 MHz Sweep 3.163 s (1001 pts)


Attachment F-- Power Spectral Density Test Data

emperature:	26 ℃		Tempera	ature:	26 ℃
est Voltage:	AC 120V	/60 Hz	A Y	No.	
est Mode:	TX Mode	10	17/1/1		CHINE STATE
Channel Fre	quency	Power	Density		Limit
(MHz))	(dBm/	3 kHz)		(dBm/3 kHz)
2412		-10.	.810		
2437		-11.	212		8
2462		-11.	025		
		802.110	G Mode	1	
		2412	MHz		
Keysight Spectrum Ana	alyzer - Swept SA				
Center Freq 2	50 Ω AC 412000000 GHz	SENSE:INT	ALIGN AUTO Avg Typ	e: Log-Pwr	05:59:22 PM Jun 11, 2020 TRACE 1 2 3 4 5 6
		PNO: Fast Trig: Fre	ee Run Avg Hol	d: 1/1	TYPE M WWWWW
		IFGain:Low #Atten:	30 dB		DET P N N N N
Ref O	ffset 3.3 dB	IFGain:Low #Atten:	30 dB		1kr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	ffset 3.3 dB 20.00 dBm	IFGain:Low #Atten:	30 dB		1kr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	ffset 3.3 dB 20.00 dBm	IFGain:Low #Atten:	30 dB		Ikr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	ffset 3.3 dB 20.00 dBm	IFGain:Low #Atten:	30 dB		1kr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	Ikr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	1kr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	1kr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	1kr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	Ikr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	1kr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	Ikr1 2.414 79 GHz -10.810 dBm
10 dB/div Ref 2 10.0 -10.0 -20.0 -40.0	20.00 dBm	IFGain:Low #Atten:	↓ 1	N	1kr1 2.414 79 GHz -10.810 dBm

#VBW 10 kHz

Page: 43 of 43

----END OF REPORT----