FCC TEST REPORT
FCC ID: 2ATU8-X15

Report Number:	ZKT-220216L0690-02
Date of Test	Feb. 10, 2022 – Feb. 21, 2022
Date of issue	Feb. 21, 2022
Total number of pages:	42
Test Result:	PASS
Testing Laboratory	Shenzhen ZKT Technology Co., Ltd.
Address:	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
Manufacturer's name:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
Test specification:	
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test procedure:	/
Non-standard test method:	N/A
Test Report Form No:	TRF-EL-110_V0
Test Report Form(s) Originator :	ZKT Testing
Master TRF:	Dated: 2020-01-06
test (EUT) is in compliance with the F identified in the report. This report shall not be reproduced e	The tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample accept in full, without the written approval of ZKT, this document may all only, and shall be noted in the revision of the document.
Product name:	
Trademark:	N/A
Model/Type reference:	X15, X08
Ratings	DC 3.7V from battery

Testing procedure and testing location:	
Testing Laboratory:	Shenzhen ZKT Technology Co., Ltd.
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Tested by (name + signature):	Arm. Ne
Reviewer (name + signature):	Joe. Lin
Approved (name + signature):	Approved

Table of Contents

		Page
1. VERSION	5	
2. SUMMARY OF TEST RESULTS	6	
2.1 TEST FACILITY	7	
2.2 MEASUREMENT UNCERTAINTY	7	
3. GENERAL INFORMATION	8	
3.1 GENERAL DESCRIPTION OF EUT	8	
3.2 DESCRIPTION OF TEST MODES	9	
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10	
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10	
3.5EQUIPMENTS LIST FOR ALL TEST ITEMS	11	
4. EMC EMISSION TEST	12	
4.1 CONDUCTED EMISSION MEASUREMENT	12	
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12	
4.1.2 TEST PROCEDURE	12	
4.1.3 DEVIATION FROM TEST STANDARD	12	
4.1.4 TEST SETUP 4.1.5 EUT OPERATING CONDITIONS	13 13	
4.1.6 TEST RESULT	14	
4.2 RADIATED EMISSION MEASUREMENT	16	
4.2.1 RADIATED EMISSION LIMITS	16	
4.2.2 TEST PROCEDURE	16	
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	17 17	
4.2.5 EUT OPERATING CONDITIONS	18	
4.2.6 TEST RESULTS	19	
5.RADIATED BAND EMISSIONMEASUREMENT	25	
5.1 TEST REQUIREMENT:	25	
5.2 TEST PROCEDURE	25	
5.3 DEVIATION FROM TEST STANDARD	25	
5.4 TEST SETUP	26	
5.5 EUT OPERATING CONDITIONS	26	
5.6 TEST RESULT	27	
6.POWER SPECTRAL DENSITY TEST	28	
6.1 APPLIED PROCEDURES / LIMIT	28	
6.2 TEST PROCEDURE	28	
6.3 DEVIATION FROM STANDARD	28	
6.4 TEST SETUP	28	
6.5 EUT OPERATION CONDITIONS	28	

6.6 TEST RESULT	29
7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH	31
7.1 APPLIED PROCEDURES / LIMIT	31
7.2 TEST PROCEDURE	31
7.3 DEVIATION FROM STANDARD	31
7.4 TEST SETUP	31
7.5 EUT OPERATION CONDITIONS	31
7.6 TEST RESULT	32
8.PEAK OUTPUT POWER TEST	34
8.1 APPLIED PROCEDURES/LIMIT	34
8.2 TEST PROCEDURE	34
8.3 DEVIATION FROM STANDARD	34
8.4 TEST SETUP	34
8.5 EUT OPERATION CONDITIONS	34
8.6 TEST RESULT	34
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	35
9.1 APPLICABLE STANDARD	35
9.2 TEST PROCEDURE	35
9.3 DEVIATION FROM STANDARD	35
9.4 TEST SETUP	35
9.5 EUT OPERATION CONDITIONS	35
9.6 TEST RESULTS	35
10. ANTENNA REQUIREMENT	41
11. TEST SETUP PHOTO	42
12. EUT CONSTRUCTIONAL DETAILS	42

1. VERSION

Report No.	Version	Description	Approved
ZKT-220216L0690-02	Rev.01	Initial issue of report	Feb. 21, 2022

2. SUMMARY OF TEST RESULTS

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Result	Remark		
FCC part 15.203/15.247 (c)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS			
FCC part 15.205/15.209	Spurious Emission	PASS			

Test procedures according to the technical standards:

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(<1G)	±4.68dB
5	All emissions radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

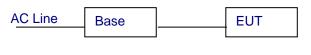
3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	TWS
Model No.:	X15
Model Different .:	appearance color is different
Hardware Version:	X08
Software Version:	V5.0
Sample(s) Status:	Engineer sample
Channel numbers:	40
Channel separation:	2402MHz~2480MHz
Modulation technology:	GFSK
Antenna Type:	chip antenna
Antenna gain:	1.8 dBi
Power supply:	DC 3.7V from battery

Operatio	Operation Frequency each of channel						
Channe I	Frequency	Chann el	Frequency	Chann el	Frequency	Chann el	Frequency
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:


Test channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode		
Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.			
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:			
Pre-scan all kind of data	a rate in lowest channel, and found the follow list which it was worst case.		

Test Software	BT Test Tool
	FCC Assist 1.0.2 FUE FUE <tr< td=""></tr<>
Power level setup	<3dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Emission

Conducted Spurious

AC Line EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Tablet PC	N/A	M10	N/A	EUT
2	Adapter	/	GAT-0501000 Input:AC100-240V 0.4A 50/60Hz Output:5.0V 1A	/	Provide by lab

ltem	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.

3.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 21, 2021	Sep. 22, 2022
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 21, 2021	Sep. 22, 2022
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 21, 2021	Sep. 22, 2022
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 21, 2021	Sep. 22, 2022
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 21, 2021	Sep. 22, 2022
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 21, 2021	Sep. 22, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 21, 2021	Sep. 22, 2022
8	Amplifier (1GHz-40GHz)	全聚达	DLE-161	097	Sep. 21, 2021	Sep. 22, 2022
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 21, 2021	Sep. 22, 2022
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 21, 2021	Sep. 22, 2022
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 21, 2021	Sep. 22, 2022
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 21, 2021	Sep. 22, 2022
13	CMW500 Test	R&S	CMW500	106504	Sep. 21, 2021	Sep. 22, 2022
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 21, 2021	Sep. 22, 2022
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 21, 2021	Sep. 22, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	/	\	λ
17	Software	Frad	EZ-EMC	FA-03A2 RE	\	λ

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Sep. 21, 2021	Sep. 22, 2022
2	LISN	CYBERTEK	EM5040A	E185040014 9	Sep. 21, 2021	Sep. 22, 2022
3	Test Cable	N/A	C01	N/A	Sep. 21, 2021	Sep. 22, 2022
4	Test Cable	N/A	C02	N/A	Sep. 21, 2021	Sep. 22, 2022
5	EMI Test Receiver	R&S	ESRP3	101946	Sep. 21, 2021	Sep. 22, 2022
6	Absorbing Clamp	DZ	ZN23201	N/A	Sep. 21, 2021	Sep. 22, 2022

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

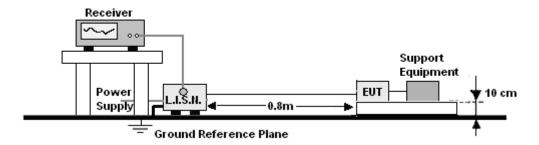
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (Standard	
FREQUENCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.

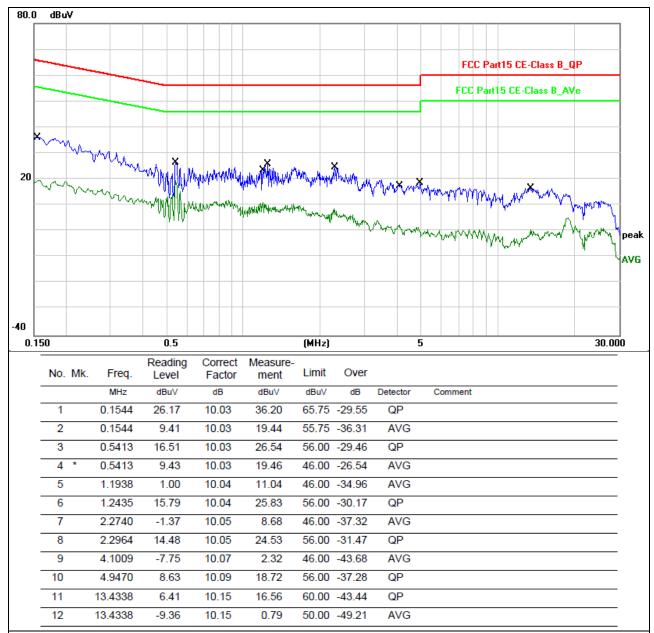

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

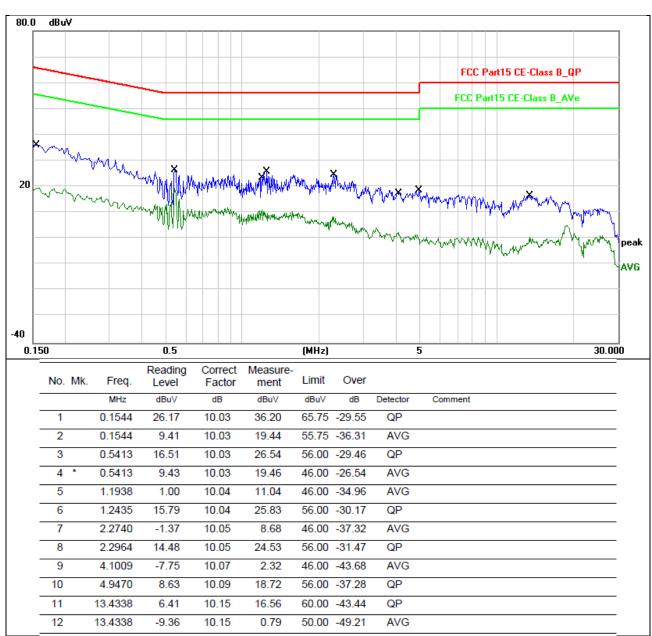

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V, the worst voltage was AC 120V and the data recording in the report.

4.1.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		


Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

Project No.: ZKT-211213L6860-02 Page 15 of 42

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
Mesurement Level = Reading level + Correct Factor

4.when charging, BT can not transmit

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz				
Test site:	Measurement Dista	nce: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
		Peak	1MHz	10Hz	Average

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74 54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

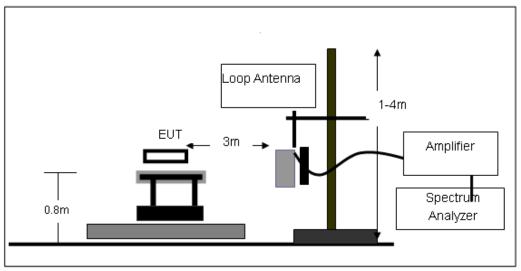
- a. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter semi-anechoiccamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of avariable-height antenna tower.

- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum valueof the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.

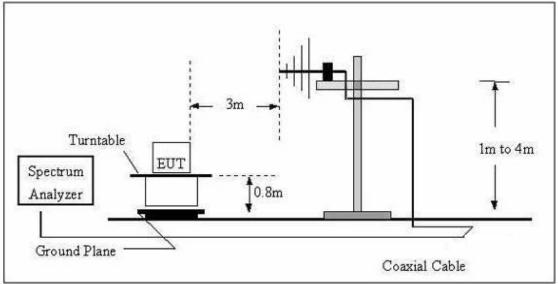
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber andchange form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

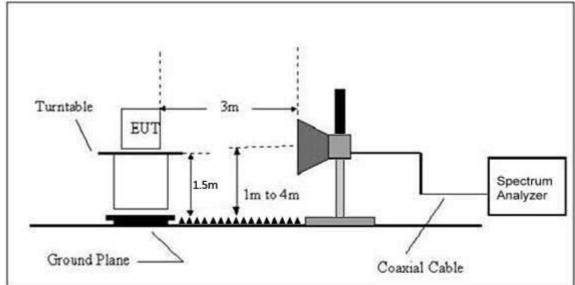
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD


No deviation

4.2.4 TEST SETUP

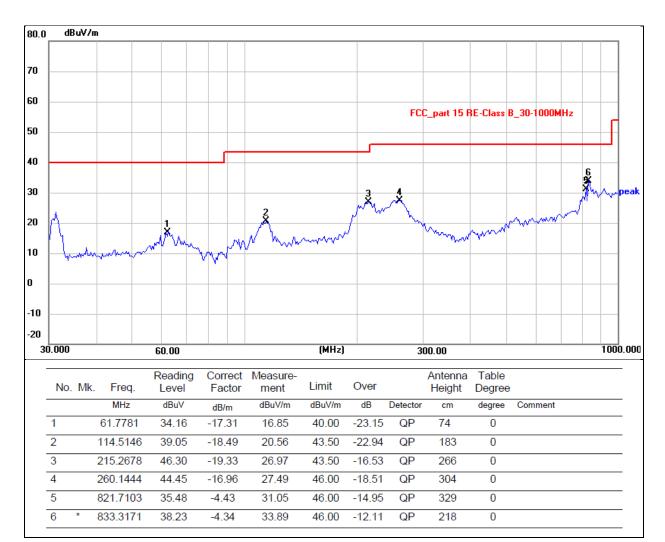

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

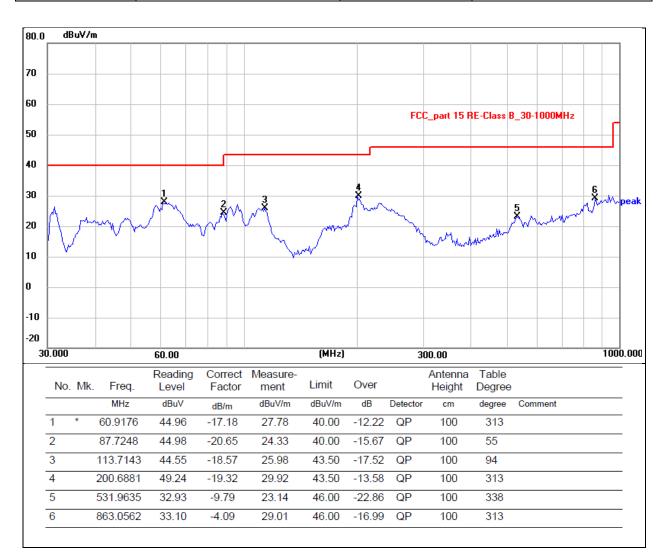
4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

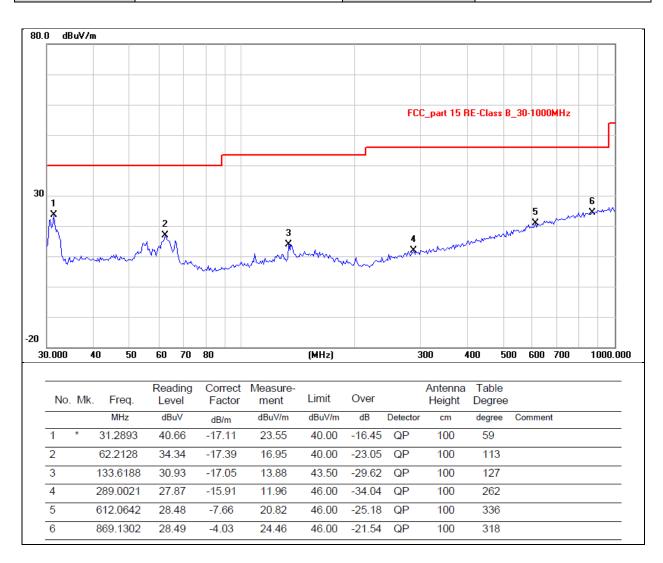

4.2.6 TEST RESULTS

Between 9KHz – 30MHz

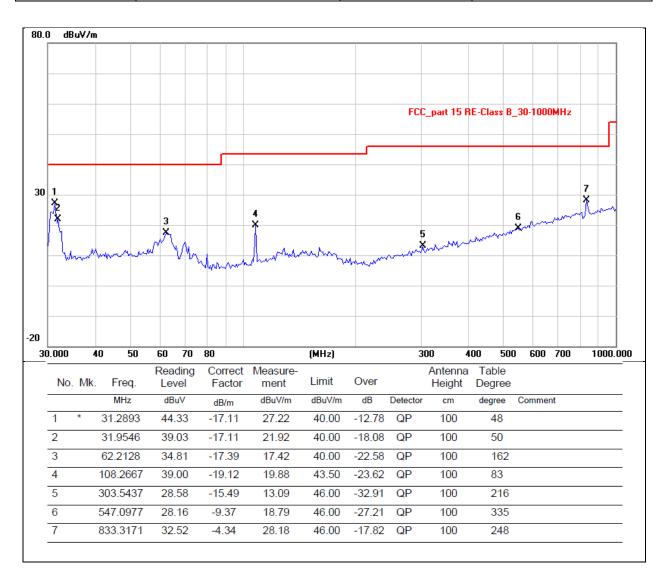
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Horizontal
Test Voltage:	DC 3.7V	Test mode	charging


Project No.: ZKT-211213L6860-02 Page 20 of 42

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 3.7V	Test mode	charging


Project No.: ZKT-211213L6860-02 Page 21 of 42

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Horizontal
Test Voltage:	DC 3.7V	Test mode	вт

Project No.: ZKT-211213L6860-02 Page 22 of 42

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 3.7V	Test mode	ВТ

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			L	ow Chan	nel:2402MH	z			
V	4824.00	56.38	30.55	5.77	24.66	56.26	74	-17.74	PK
V	4824.00	41.11	30.55	5.77	24.66	40.99	54	-13.01	AV
V	7236.00	54.62	30.33	6.32	24.55	55.16	74	-18.84	PK
V	7236.00	40.04	30.33	6.32	24.55	40.58	54	-13.42	AV
V	9648.00	56.10	30.85	7.45	24.69	57.39	74	-16.61	PK
V	9648.00	40.55	30.85	7.45	24.69	41.84	54	-12.16	AV
Н	4824.00	54.96	30.55	5.77	24.66	54.84	74	-19.16	PK
Н	4824.00	40.22	30.55	5.77	24.66	40.10	54	-13.90	AV
Н	7236.00	55.61	30.33	6.32	24.55	56.15	74	-17.85	PK
Н	7236.00	39.23	30.33	6.32	24.55	39.77	54	-14.23	AV
Н	9648.00	55.59	30.85	7.45	24.69	56.88	74	-17.12	PK
Н	9648.00	39.24	30.85	7.45	24.69	40.53	54	-13.47	AV

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Mi	ddle Cha	nnel:2440M	Hz			
V	4874.00	53.99	30.55	5.77	24.66	53.87	74	-20.13	PK
V	4874.00	39.22	30.55	5.77	24.66	39.10	54	-14.90	AV
V	7311.00	55.33	30.33	6.32	24.55	55.87	74	-18.13	PK
V	7311.00	40.74	30.33	6.32	24.55	41.28	54	-12.72	AV
V	9748.00	56.45	30.85	7.45	24.69	57.74	74	-16.26	PK
V	9748.00	41.63	30.85	7.45	24.69	42.92	54	-11.08	AV
Н	4874.00	54.27	30.55	5.77	24.66	54.15	74	-19.85	PK
Н	4874.00	38.67	30.55	5.77	24.66	38.55	54	-15.45	AV
Н	7311.00	55.58	30.33	6.32	24.55	56.12	74	-17.88	PK
Н	7311.00	40.33	30.33	6.32	24.55	40.87	54	-13.13	AV
Н	9748.00	53.79	30.85	7.45	24.69	55.08	74	-18.92	PK
Н	9748.00	41.52	30.85	7.45	24.69	42.81	54	-11.19	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Н	ligh Chan	nel:2480MH	z			
V	4924.00	55.22	30.55	5.77	24.66	55.10	74	-18.90	PK
V	4924.00	39.18	30.55	5.77	24.66	39.06	54	-14.94	AV
V	7386.00	54.68	30.33	6.32	24.55	55.22	74	-18.78	PK
V	7386.00	40.17	30.33	6.32	24.55	40.71	54	-13.29	AV
V	9848.00	54.60	30.85	7.45	24.69	55.89	74	-18.11	PK
V	9848.00	39.67	30.85	7.45	24.69	40.96	54	-13.04	AV
Н	4924.00	53.87	30.55	5.77	24.66	53.75	74	-20.25	PK
Н	4924.00	40.35	30.55	5.77	24.66	40.23	54	-13.77	AV
Н	7386.00	55.59	30.33	6.32	24.55	56.13	74	-17.87	PK
Н	7386.00	39.00	30.33	6.32	24.55	39.54	54	-14.46	AV
Н	9848.00	53.77	30.85	7.45	24.69	55.06	74	-18.94	PK
Н	9848.00	41.69	30.85	7.45	24.69	42.98	54	-11.02	AV

5.RADIATED BAND EMISSIONMEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above	Peak	1MHz	3MHz	Peak	
	1GHz	Average	1MHz	3MHz	Average	

5.1 TEST REQUIREMENT:

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

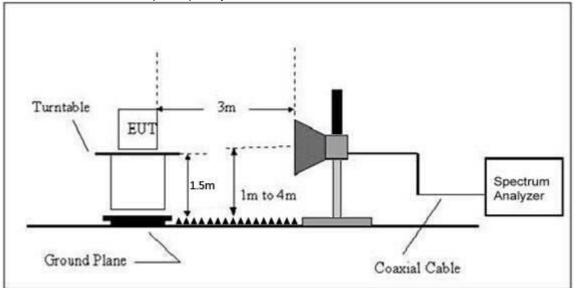
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.


g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

Polar (H/V)	Frequency (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector Type
				Low Cl	nannel 2402	ЛНz			
Н	2390.00	59.99	30.22	4.85	23.98	58.60	74.00	-15.4	PK
Н	2390.00	43.65	30.22	4.85	23.98	42.26	54.00	-11.74	AV
Н	2400.00	60.43	30.22	4.85	23.98	59.04	74.00	-14.96	PK
Н	2400.00	44.05	30.22	4.85	23.98	42.66	54.00	-11.34	AV
V	2390.00	61.26	30.22	4.85	23.98	59.87	74.00	-14.13	PK
V	2390.00	45.09	30.22	4.85	23.98	43.70	54.00	-10.3	AV
V	2400.00	55.93	30.22	4.85	23.98	54.54	74.00	-19.46	PK
V	2400.00	43.67	30.22	4.85	23.98	42.28	54.00	-11.72	AV
				High Ch	nannel: 2480	MHz			
Н	2483.50	58.86	30.22	4.85	23.98	57.47	74.00	-16.53	PK
Н	2485.50	49.40	30.22	4.85	23.98	48.01	54.00	-5.99	AV
Н	2483.50	60.15	30.22	4.85	23.98	58.76	74.00	-15.24	PK
Н	2485.50	43.42	30.22	4.85	23.98	42.03	54.00	-11.97	AV
V	2483.50	63.80	30.22	4.85	23.98	62.41	74.00	-11.59	PK
V	2485.50	45.08	30.22	4.85	23.98	43.69	54.00	-10.31	AV
V	2483.50	59.46	30.22	4.85	23.98	58.07	74.00	-15.93	PK
V	2485.50	47.19	30.22	4.85	23.98	45.80	54.00	-8.2	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v 05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS					

6.2 TEST PROCEDURE

1. Set analyzer center frequency to DTS channel center frequency.

2. Set the span to 1.5 times the DTS bandwidth.

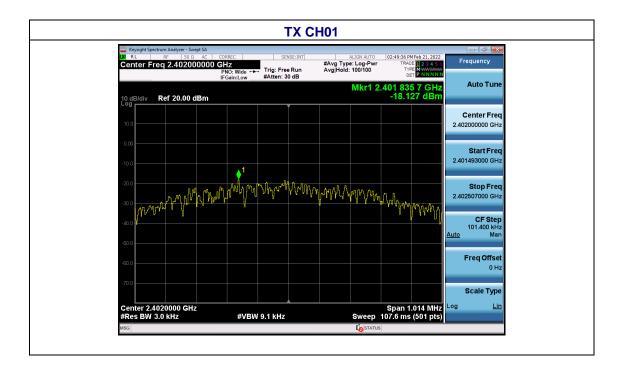
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

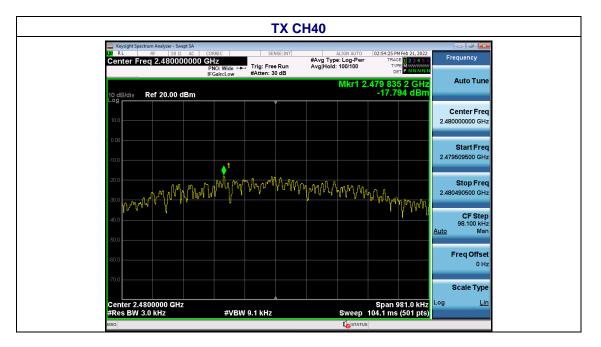
No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER


6.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.


6.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 3.7V
Test Mode :	GFSK		

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-18.127	8	PASS
2440 MHz	-18.082	8	PASS
2480 MHz	-17.794	8	PASS

7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Section Test Item Limit		Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

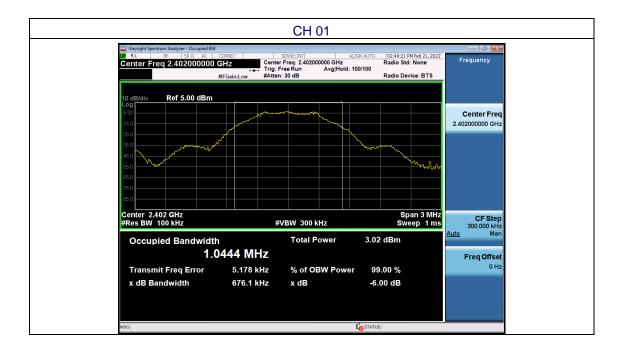
7.3 DEVIATION FROM STANDARD

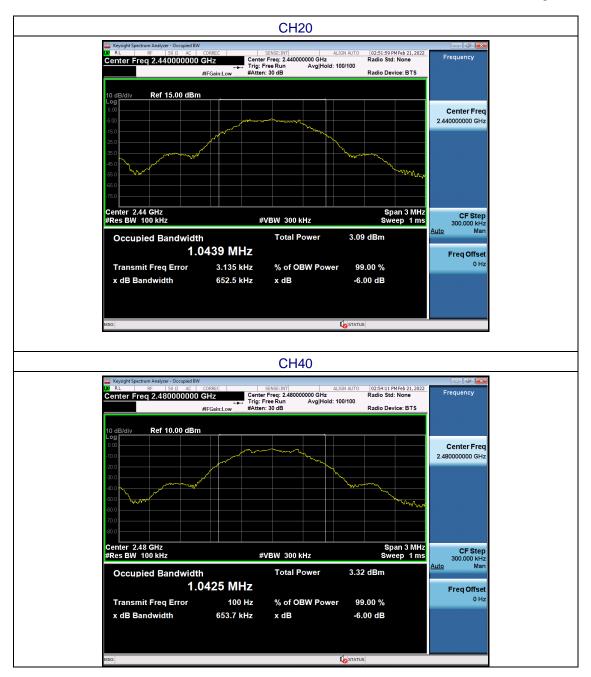
No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 3.7V
Test Mode :	GFSK		

Test CH	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.6761		
Middle	0.6525	>500	Pass
Highest	0.6537		

Test CH	99% Occupy Bandwidth (MHz)	Result
Lowest	1.0444	
Middle	1.0439	Pass
Highest	1.0425	

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES/LIMIT

FCC Part15 (15.247), Subpart C				
Section Test Item Limit Frequency Range (MHz) Result		Result		
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 3.7V

Test CH	Peak Output Power (dBm)		
Lowest	-2.49	Limit(dBm)	Result
Middle	-2.34		
Highest	-2.51	30.00	Pass

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS


Project No.: ZKT-211213L6860-02 Page 36 of 42

Test plot as follows:

Keysight Spectrum Analyzer - Swept SA							- 6 E
RL RF 50 Ω AC enter Freq 2.357125000	CORREC CORREC O GHZ PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 30 dB	#Av	ALIGN AUTO Type: RMS Hold: 100/100	02:49:39 PM Feb 21, 202 TRACE 2 3 4 TYPE M	Fr Fr	requency
0 dB/div Ref 20.00 dBm	IFGain:Low	#Atten: 50 dB		Mkr	2 2.400 00 GH -53.648 dBr		Auto Tun
					Ý		Center Fre 7125000 GH
0.0					-2350 at	2.31	Start Free
50.0 1.0 0	and and the stand start st	hannantainea	ha	enterioren estanter	nhandana ang tang tang tang tang tang tang ta	2.40	Stop Fre 4250000 GH
tart 2.31000 GHz Res BW 100 kHz	#VBW	/ 300 kHz		Sweep 9	Stop 2.40425 GH .067 ms (2001 pts	z 5) 9 Auto	CF Step 9.425000 MH Ma
2 N 1 1 2.4	390 00 GHz 400 00 GHz 401 80 GHz	-58.709 dBm -53.648 dBm -3.500 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		Freq Offse 0 H
7 8 9 10						Log	Scale Type
10				STATUS			

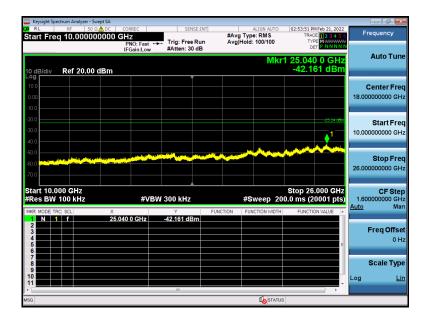
Lowest channel

Highest channel

Test plot as follows:

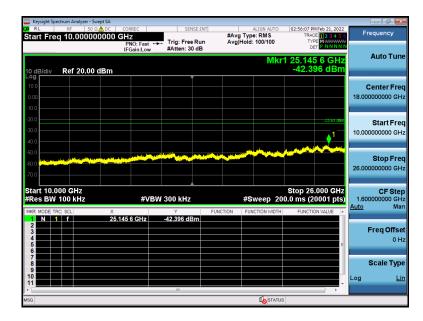
GFSK Lowest channel

Keysight Spectrum Analyzer - Swe	ept SA				
RL RF 50 Ω Start Freq 30.000000	0 MHz PNO: Fast +++	SENSE:INT	ALIGN AUTO #Avg Type: RMS Avg Hold: 100/100	02:50:52 PM Feb 21, 2022 TRACE 12 3 4 5 6 TYPE M	Frequency
10 dB/div Ref 20.00 c	IFGain:Low	#Atten: 30 dB	M	r1 3.191 5 GHz -50.135 dBm	Auto Tun
					Center Fre 5.015000000 GF
20.0				-23.34 dBm	Start Fre 30.000000 MH
50.0 60.0 70.0					Stop Fre 10.000000000 GF
Start 0.030 GHz #Res BW 100 kHz MKR MODE TRC SCL	х		#Sweep 20	Stop 10.000 GHz 0.0 ms (20001 pts) FUNCTION VALUE	CF Ste 997.000000 Mi <u>Auto</u> Ma
1 N 1 f 2 3 4 4 5 6	3.191 5 GHz	-50.135 dBm		E	Freq Offs 0 I
7 8 9 10					Scale Typ
< Isg		m	K STATUS	•	


Project No.: ZKT-211213L6860-02 Page 38 of 42

	Analyzer - Swept SA							_	
MIRL RI Start Freg 10	50 Q A DC	GHZ	SENSE:	#Avg	ALIGN AUTO Type: RMS	02:51:31 PM Feb 2 TRACE	3456	Frequ	iency
		PNO: Fast IFGain:Low	Trig: Free Ru #Atten: 30 dE		Hold: 100/100	TYPE MY DET P N	NNNN		
					Mkr	1 24.992 0		Αι	ito Tun
0 dB/div Re	f 20.00 dBm					-42.852 (IBm		
10.0								Cer	nter Fre
0.00								18.00000	0000 Gł
0.0									
0.0						-2	3.34 dBm	S	tart Fre
30.0							1	10.00000	0000 GH
10.0					1		No. of the local division of the local divis		
i0.0	An a subban the south of the	and the second se	and the second secon	with wheels	Strategy and the second se			S	top Fre
50.0		- Sector Sector						26.00000	0000 GI
0.0									
tart 10.000 0		-40.0				Stop 26.000			CF Ste
Res BW 100		#VE	SW 300 kHz			0.0 ms (2000		1.60000 <u>Auto</u>	0000 GF Ma
IKR MODE TRC SCI		92 0 GHz	۲ -42.852 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VAL	UE ^		
2								Fre	q Offs
4									01
6									
8								Sc	ale Typ
9								Log	L
			m				+		-
SG					STATUS	3			

GFSK Middle channel


www.www.com/analyzer - Swe						
RL RF 50 Ω Start Freq 30.00000) MHz	SENSE:I	#Avg	ALIGN AUTO Type: RMS	02:52:55 PM Feb 21, 202 TRACE 1 2 3 4 5 TYPE	Frequency
10 dB/div Ref 20.00 c	PNO: Fas IFGain:Lo			Hold: 100/100	r1 3.296 7 GH -51.503 dBn	Auto Tune
10.0 0.00 -10.0						Center Freq 5.015000000 GHz
-20.0 -30.0 -40.0	1				-23.24 uB	Start Free 30.000000 MHz
-50.0 -60.0 -70.0						Stop Fred 10.000000000 GHz
Start 0.030 GHz #Res BW 100 kHz	#	VBW 300 kHz			Stop 10.000 GH 0.0 ms (20001 pts	CF Step 997.000000 MH; Auto Mar
MKR MODE TRC SCL	× 3.296 7 GHz	√ -51.503 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 3 4 5 6						Freq Offset
7 8 9 11 1 11 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						Scale Type
10 11						Log <u>Lir</u>
MSG				STATUS		

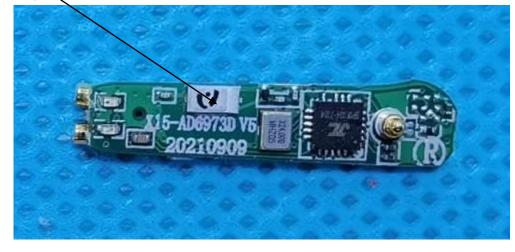
GFSK Highest channel

www. Keysight Spectrum Analyzer - Swe						
RL RF 50 Ω Start Freq 30.00000		SENSE	#Av	ALIGN AUTO g Type: RMS	02:55:20 PM Feb 21, 202 TRACE 1 2 3 4	Frequency
	PNO: F. IFGain:L	ast ↔ Trig: Free R .ow #Atten: 30 d		Hold: 100/100	TYPE MWWW DET P NNNN r1 5.151 6 GH -53.070 dBr	Auto Tune
10 dB/div Ref 20.00 c						Center Frec 5.015000000 GHz
-20.0 -30.0 -40.0			1		-23.63 dE	Start Free 30.000000 MHz
-50.0 -60.0 -70.0						Stop Fred 10.000000000 GHz
Start 0.030 GHz #Res BW 100 kHz	3	#VBW 300 kHz		#Sweep 20	Stop 10.000 GH 0.0 ms (20001 pt	Z CF Step 5) 997.000000 MH; Auto Mar
MKR MODE TRC SCL	× 5.151 6 GH	√ -53.070 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 3 4 5 6						Freq Offset
7						Scale Type
10						Log <u>Lin</u>
MSG				STATU:	3	

10. ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
4E-000 requirements	

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is chip antenna, the best case gain of the antennas are 1.8dBi, reference to the below photo for details ANT for BT/BLE

11. TEST SETUP PHOTO

Please refer to the report NO.: ZKT-211213L6860-01

12. EUT CONSTRUCTIONAL DETAILS

Reference to the external photos file and internal photos file for details.

******* END OF REPORT ******