DP	246 246	
	Report No.: POCE240425009F	₹L001
	RF TEST REPORT	
	TECHNOLOGY (SHENZHEN) CO., LTD	
	oduct Name: Wireless Earphone Test Model(s).: T16	
Report Reference No.	: POCE240425009RL001	
FCC ID	: 2ATU8-T16	
Applicant's Name	: BESING TECHNOLOGY (SHENZHEN) CO., LTD	
Address	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China	
Testing Laboratory	: Shenzhen DACE Testing Technology Co., Ltd.	
Address	 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China 	,
Test Specification Standard	: 47 CFR Part 15.247	
Date of Receipt	: April 25, 2024	
Date of Test	: April 25, 2024 to April 30, 2024	
Data of Issue	: April 30, 2024	
Result	: Pass	
Testing Technology Co., Ltd. T	eproduced except in full, without the written approval of Shenzhen DACE his document may be altered or revised by Shenzhen DACE Testing Technolo hall be noted in the revision section of the document. The test results in the sample	ogy

Web: http://www.dace-lab.com

1

Tel: +86-755-23010613

)DC

Report No.: POCE240425009RL001

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE240425009RL001	April 30, 2024
	20	. 6	
		200	
		U	

NOTE1:

DAG

DΔ

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Ben Jang

Ben Tang /Test Engineer

Tom Chen Tom Chen / Project Engineer

Supervised by:

Approved by:

ø

Machael MJ

Machael Mo / Manager

4

DAG

NE

AC

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

NE

26

٩

CONTENTS

		Report No.: POCE240425009RL
	CONTENTS	
	CONTENTS	
TEST SUMMARY		2F
	ULT	
	E (EUT)	
	Nodes	
2.4 DESCRIPTION OF SUPPO	RT UNITS	
	ING THE TEST	
	ASUREMENT UNCERTAINTY	
	ING LABORATORY	
	LUATION)	
3.1 ANTENNA REQUIREMENT	<u>~</u>	
3.1.1 Conclusion:		
RADIO SPECTRUM MATTER	TEST RESULTS (RF)	
	AT AC POWER LINE	
	on:	
4.1.1 E.U.I. Operation	pn: gram:	
-	-	
	on:	
	gram:	
	DUTPUT POWER	
•	on:	
	gram:	
	on:	
-	gram:	
	REQUENCIES	
	on:	
	gram:	
	~	
•	on:	
	gram:	
	RICTED FREQUENCY BANDS	
•	on:	
	gram:	
4.7.3 Test Data:		
	(RADIATED)	
4.8.1 E.U.T. Operation	on:	

DγG

2

DAE

٩.

4.8.2 Test Setup Diagram:	
4.8.3 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.9.1 E.U.T. Operation:	
4.9.2 Test Data:	
4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	
4.10.1 E.U.T. Operation:	
4.10.2 Test Data:	
5 TEST SETUP PHOTOS	38
6 PHOTOS OF THE EUT	
APPENDIX-L	
1200B BANDWIDTH	52
2. 99% Occupied Bandwidth	
3. PEAK OUTPUT POWER	
4. SPURIOUS EMISSIONS	
5. BANDEDGE	
7. NUMBER OF HOPPING CHANNEL (HOPPING)	
8. DWELL TIME (HOPPING)	
APPENDIX-R	93
120DB BANDWIDTH	
1200B BANDWIDTH 2. 99% Occupied Bandwidth	
3. PEAK OUTPUT POWER	
4. SPURIOUS EMISSIONS	
5. BANDEDGE	
6. CARRIER FREQUENCIES SEPARATION (HOPPING)	
7. NUMBER OF HOPPING CHANNEL (HOPPING)	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

)DE

)DE

DAG

DE

-

1 TEST SUMMARY

1.1 Test Standards

DVC

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

	.0	Report No.: POCE240425009RL001
2 GENERAL IN	IFC	
2.1 Client Informatio	n	
Applicant's Name	:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address	:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
Manufacturer	:	BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address	:	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
		e

2.2 Description of Device (EUT)

Product Name:	Wireless Earphone
Model/Type reference:	T16
Series Model:	N/A
Trade Mark:	N/A
Power Supply:	DC 5V/1A from adapter Battery:DC3.7V 65mAH
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type:	GFSK, π/4 DQPSK
Antenna Type:	Chip antenna
Antenna Gain:	1.8dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark: The Antenna Gain is supplied by the customer. DACE is not responsible for This data and the related calculations associated with it)

Operation	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32 🗸	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz	
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

Report No.: POCE240425009RL001

16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

DA

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
rest channel	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

V1.0

No	Title	Description			
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.			
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.			
ТМ3	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.			
TM4 TX-Pi/4DQPSK (Hopping) Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.					
Remar	(11 0)	t and right earphones are different, but the components they use are			

Remark: The PCB boards of the left and right earphones are different, but the components they use a the same. Only the data of the worst mode would be recorded in this report.

2.4 Description of Support Units

NE

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI	P0005	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

C

NE

2.5 Equipments Used During The Test

DAG

Conducted Emission a	at AC power line	200			5
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
loop antenna	EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	16
Cable	SCHWARZ BECK	/	/	2024-03-20	2025-03-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch	Anritsu	MP59B	M20531	1	1
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11

Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	/
High Pass filter	High Pass filter ZHINAN		6210075	1	/
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	DAC
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11
			1		1

-

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

Page 8 of 134

Report No.: POCE240425009RL001

DVC

2

DAE

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
Positioning Controller	<u> </u>	MF-7802	C 1	1	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

)DE

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

DE

DA

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Neter (1) This uppertainty represents on a	incorded uncertainty eveneseed at enprovimetally the OEV

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,
Address:	Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,
Address:	Tangtou, Shiyan, Bao′ an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

DΔC

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

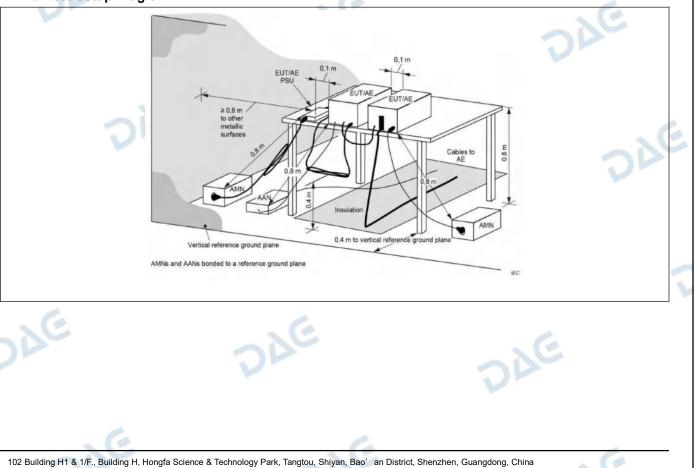
3.1.1 Conclusion:

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

76	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).	

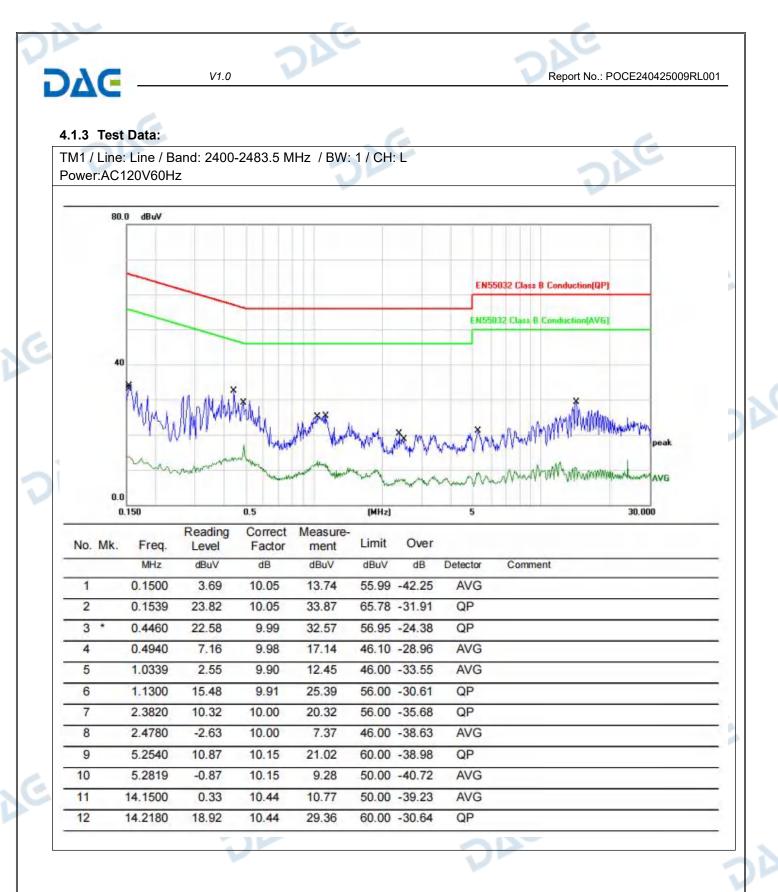
Test Limit:	Frequency of emission (MHz)	Conducted limit (dl	3μV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	*Decreases with the logarithm of	the frequency.		
Test Method:	ANSI C63.10-2013 section 6.2	V		
Procedure:	Refer to ANSI C63.10-2013 sect conducted emissions from unlice		ethod for ac power-line	


4.1.1 E.U.T. Operation:

DAG

Test Requirement:

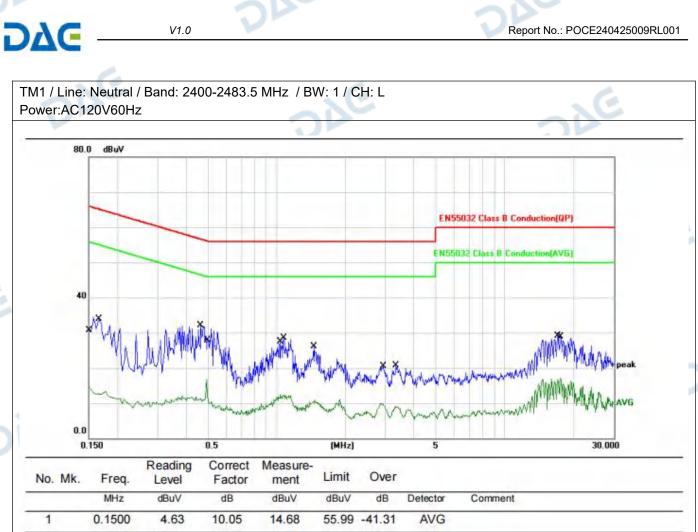
Operating Enviro	onment:		DP			e
Temperature:	22.4 °C		Humidity:	47.3 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1				
Final test mode:		TM1				


4.1.2 Test Setup Diagram:

Tel: +86-755-23010613

Web: http://www.dace-lab.com

Page 12 of 134


102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

)AC

DAG

Page 13 of 134

DAG

1	0.1500	4.63	10.05	14.68	55.99 -41.31	AVG
2	0.1660	23.91	10.03	33.94	65.15 -31.21	QP
3 *	0.4660	22.07	9.98	32.05	56.58 -24.53	QP
4	0.4940	6.79	9.98	16.77	46.10 -29.33	AVG
5	1.0380	2.59	9.90	12.49	46.00 -33.51	AVG
6	1.0740	18.67	9.90	28.57	56.00 -27.43	QP
7	1.4540	16.27	9.93	26.20	56.00 -29.80	QP
8	1.4660	0.89	9.93	10.82	46.00 -35.18	AVG
9	2.9380	-0.29	10.03	9.74	46.00 -36.26	AVG
10	3.3420	10.68	10.05	20.73	56.00 -35.27	QP
11	17.0300	18.63	10.47	29.10	60.00 -30.90	QP
12	17.5220	6.70	10.46	17.16	50.00 -32.84	AVG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

NE

1

DAG

DAG

Report No.: POCE240425009RL001

4.2 Occupied Bandwidth

DΔC

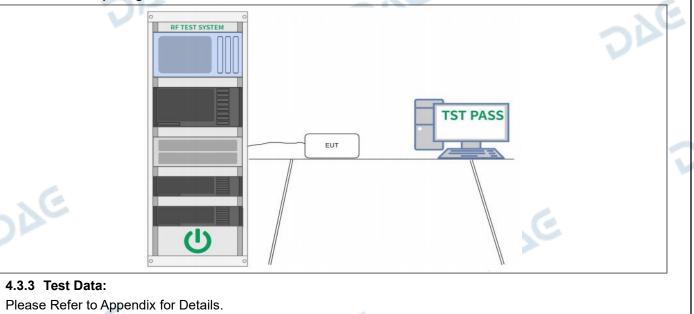
4.2 Occupied Ban		G
Test Requirement:	47 CFR 15.215(c)	and the
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating provisions to the general emission limits, as contained in and in subpart E of this part, must be designed to ensure of the emission, or whatever bandwidth may otherwise be rule section under which the equipment operates, is contained band designated in the rule section under which the equip	§§ 15.217 through 15.257 that the 20 dB bandwidth e specified in the specific ained within the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidt procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02	th measurements, use the
Procedure:	 a) The spectrum analyzer center frequency is set to the n center frequency. The span range for the EMI receiver or be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the OBW and video bandwidth (VBW) shall be approximation unless otherwise specified by the applicable requirement c) Set the reference level of the instrument as required, k 	spectrum analyzer shall the range of 1% to 5% of ately three times RBW,
	 c) Set the reference level of the instrument as required, k exceeding the maximum input mixer level for linear operator of the spectral envelope shall be more than [10 log (OBW reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust witt tolerances. e) The dynamic range of the instrument at the selected R 	ation. In general, the peak //RBW)] below the thin the specified
	 dB below the target "-xx dB down" requirement; that is, if measuring the -20 dB OBW, the instrument noise floor at be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hol g) Determine the reference value: Set the EUT to transmor modulated signal, as applicable. Allow the trace to stat analyzer marker to the highest level of the displayed trace 	f the requirement calls for t the selected RBW shall ld. it an unmodulated carrier bilize. Set the spectrum
	 value). h) Determine the "-xx dB down amplitude" using [(referent Alternatively, this calculation may be made by using the ministrument. i) If the reference value is determined by an unmodulated modulation ON, and either clear the existing trace or start spectrum analyzer and allow the new trace to stabilize. C 	nce value) – xx]. marker-delta function of the d carrier, then turn the EUT t a new trace on the
	step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the frequency of the envelope of the spectral display, such th slightly below the "-xx dB down amplitude" determined in below this "-xx dB down amplitude" value, then it shall be this value. The occupied bandwidth is the frequency diffe markers. Alternatively, set a marker at the lowest frequen spectral display, such that the marker is at or slightly below	at each marker is at or step h). If a marker is e as close as possible to rence between the two acy of the envelope of the bow the "-xx dB down
)de	amplitude" determined in step h). Reset the marker-delta marker to the other side of the emission until the delta ma same level as the reference marker amplitude. The marker at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing instrument display; the plot axes and the scale units per of labeled. Tabular data may be reported in addition to the p	arker amplitude is at the er-delta frequency reading g plot(s) of the measuring division shall be clearly
4.2.1 E.U.T. Operation:		
Operating Environment:		

Web: http://www.dace-lab.com

	<u>оде</u> ——	/1.0		Re	port No.: POCE240425009RL00
[Temperature: 22.4 °C	Humidity:	47.3 %	Atmospheric Pressure:	101 kPa 🥢
	Pretest mode:	TM1, TM2	47.5 %	Almospheric Flessule.	
	Final test mode:	TM1, TM2 TM1, TM2	2P		20
l	4.2.2 Test Setup Diagra				
11		RF TEST SYSTEM	EUT	TST PASS	DAC
	4.2.3 Test Data: Please Refer to Appendix	for Details.			

DAG

4.3 Maximum Conducted Output Power


Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured.
de de	 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.
4.3.1 E.U.T. Operation:	SE G

6

4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.4 °C		Humidity:	47.3 %	Atmospheric Pressure:	101 kPa	
Pretest mode: TM1			TM2				
Final test mode: TM1, TM2							

4.3.2 Test Setup Diagram:

Report No.: POCE240425009RL001

4.4 Channel Separation

DγG

7 CFR 15.247(a)(1) Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB pandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping
channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency
channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW.
 a) Sweep: Auto. b) Detector function: Peak. c) Trace: Max hold. c) Allow the trace to stabilize. c) Jse the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6

4.4.1 E.U.T. Operation:

Operating Environment:						
Temperature: 22	.4 °C	Humidity:	47.3 %	1	Atmospheric Pressure:	101 kPa
Pretest mode:	TM3,	TM4	~	C		. Ce
Final test mode:	TM3,	TM4	N			22

4.4.2 Test Setup Diagram:

E I	DAE		EUT	TST PASS	DLE
	4.4.3 Test Dat	a:			
	Please Refer to	Appendix for Details.	6		

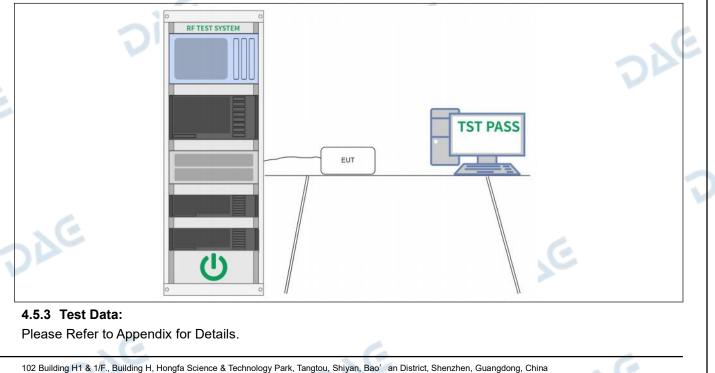
Web: http://www.dace-lab.com

Tel: +86-755-23010613 E-mail

E-mail: service@dace-lab.com

Page 18 of 134

DVC


Report No.: POCE240425009RL001

4.5 Number of Hopping Frequencies Test Requirement: 47 CFR 15.247(a)(1)(iii) Test Limit: Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW \geq RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.4 °C	_	Humidity:	47.3 %	Ń	Atmospheric Pressure:	101 kPa	C
Pretest mode:		ТМЗ,	TM4	V			22	
Final test mode:		ТМЗ,	TM4					

4.5.2 Test Setup Diagram:

Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

Report No.: POCE240425009RL001

4.6 Dwell Time

DγG

4.6 Dwell Time	e.	6
Test Requirement:	47 CFR 15.247(a)(1)(iii)	
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopp MHz band shall use at least 15 channels. The ave channel shall not be greater than 0.4 seconds with multiplied by the number of hopping channels em systems may avoid or suppress transmissions on provided that a minimum of 15 channels are used	erage time of occupancy on any hin a period of 0.4 seconds ployed. Frequency hopping a particular hopping frequency
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	24
Procedure:	The EUT shall have its hopping function enabled. analyzer settings: a) Span: Zero span, centered on a hopping channel b) RBW shall be <= channel spacing and where p T, where T is the expected dwell time per channel c) Sweep: As necessary to capture the entire dwe where possible use a video trigger and trigger del starts a little to the right of the start of the plot. The adjustment to prevent triggering when the system second plot might be needed with a longer sweep hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the tra- varies with different modes of operation (data rate hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep the hops over the period specified in the requirements. Determine the number of hops over total number of hops in the period specified in the requirements. Determine the number of hops over total number of hops in the period specified in the requirements of hops in the period specified in the requirements of hops in the period specified in the requirements of hops in the period specified in the requirements. Determine the number of hops over total number of hops in the period specified in the requirements. Determine the number of hops over total number of hops in the period specified in the requirements of hops in the period specified in the requirement of hops in the period specified in the red (number of hops in a specific time varies with differ rate, modulation format, number of hopping channe each variation. The measured transmit time and time between hop values described in the operational description for	Use the following spectrum hel. boossible RBW should be set >> 1 / a you that the transmitted signal the trigger level might need slight hops on an adjacent channel; a time to show two successive ansmit time per hop. If this value ansmit time per hop and calculate the requirements, using the following quirements) = specified in the requirements. If the rent modes of operation (data hels, etc.), then repeat this test for tops shall be consistent with the
4.6.1 E.U.T. Operation:		6

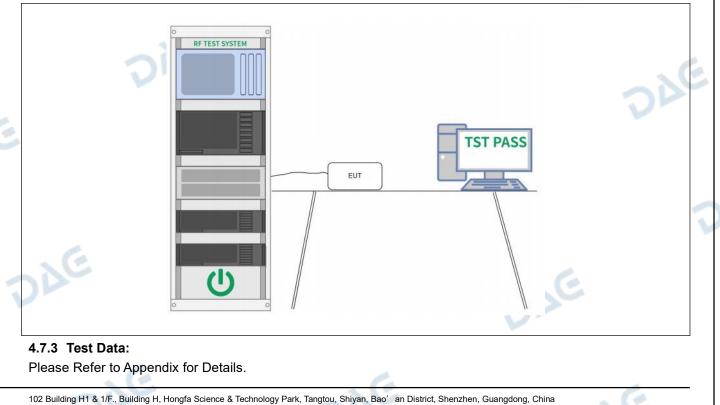
4.6.1 E.U.T. Operation:

Operating Envi	ronment:	~			JP.		
Temperature:	Temperature: 22.4 °C Humidity: 47.3				Atmospheric Pressure:	101 kPa	
Pretest mode:		ТМ3,	TM4		· ·		
Final test mode):	ΤМ3,	TM4	6			
4.6.2 Test Set	4.6.2 Test Setup Diagram:					C	
					200		

DAC -	V1.0	V	Report No.: POCE240425009RL001	_
DAC				
DAG	O RF TEST SYSTEM		DIE	
2		EUT	TST PASS	
E				
	し し			
	0	• //	N.	
4.6.3 Test Data:	n an div fan Dataila			
Please Refer to Ap	opendix for Details.			
			JE DAG	
			76 DYC	

DAG

Report No.: POCE240425009RL001


4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

Operating Environment:						
Temperature: 22.4 °C		Humidity:	47.3 %	1	Atmospheric Pressure:	101 kPa
Pretest mode:	Pretest mode: TM1, TM2, TM3, TM4					. Ce
Final test mode:	TM1,	TM2, TM3, 1	FM4			2

4.7.2 Test Setup Diagram:

Web: http://www.dace-lab.com

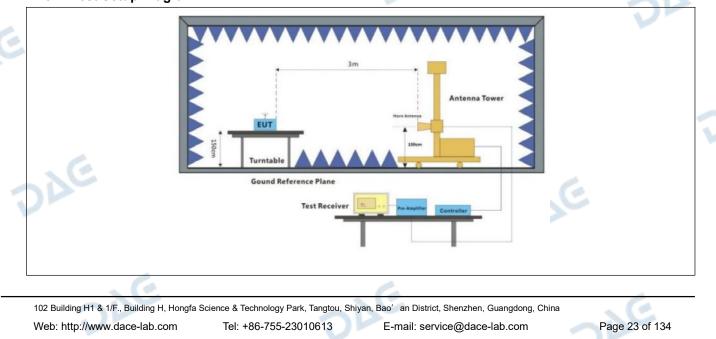
Tel: +86-755-23010613

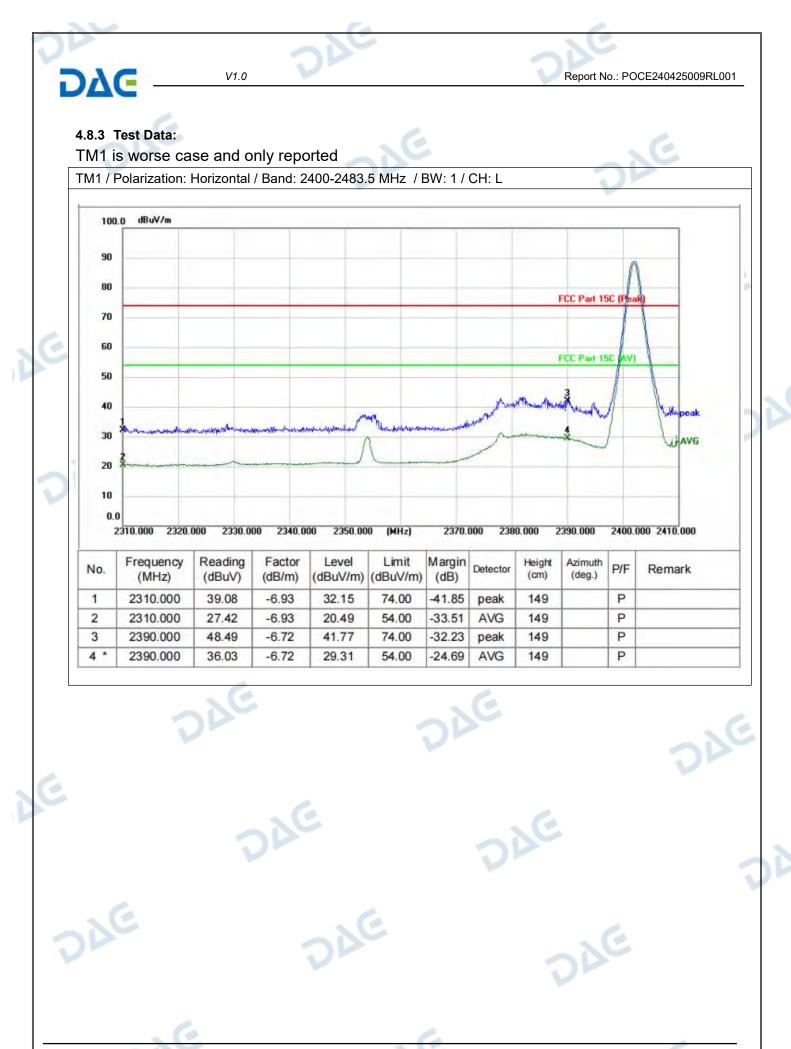
E-mail: service@dace-lab.com

Report No.: POCE240425009RL001

4.8 Band edge emissions (Radiated)

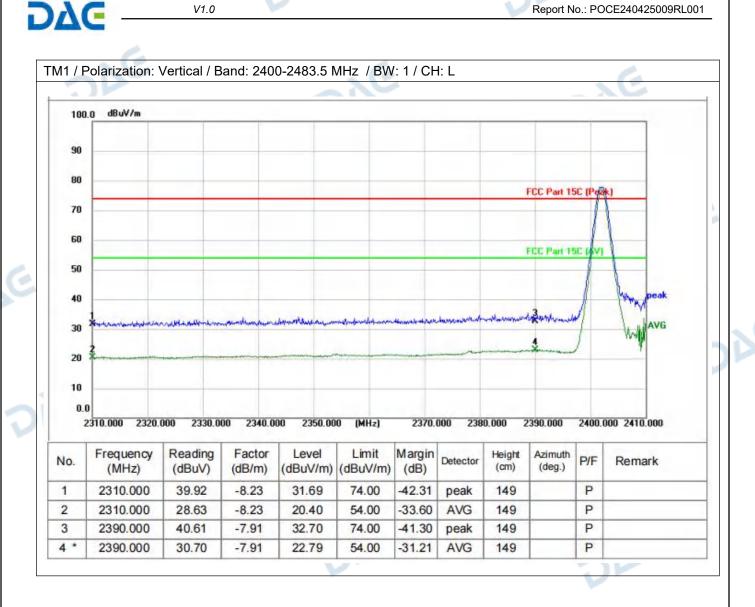
DAG


Test Requirement:	restricted bands, as defi	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
240	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
1	216-960	200 **	3					
	Above 960	500	3					
))e	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation withit these frequency bands is permitted under other sections of this part, e.g., §§ 15.2 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kH 110–490 kHz and above 1000 MHz. Radiated emission limits in these three band are based on measurements employing an average detector. 							
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	ion 6.10 7 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sect	ion 6.10.5.2	1C					
4.8.1 E.U.T. Operation								


. 6

4.8.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.4 °C		Humidity:	47.3 %	Atmospheric Pressure:	101 kPa	
Pretest mode:		TM1,	TM2		. 6]
Final test mode:	2P	TM1,	TM2		200		2
							-


4.8.2 Test Setup Diagram:

Report No.: POCE240425009RL001

DAE

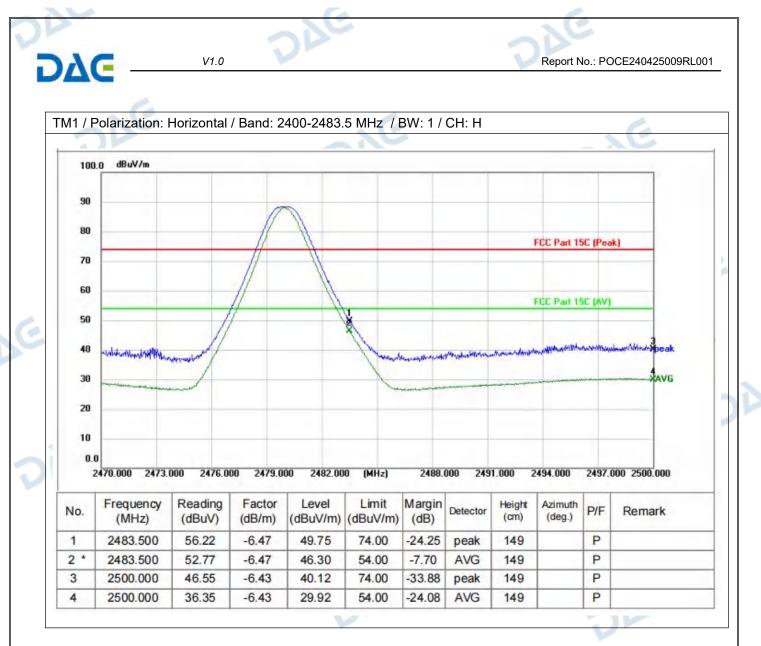
4

DAG

DAG

)AC

DAG


102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC

NE

DAE

DAG

.

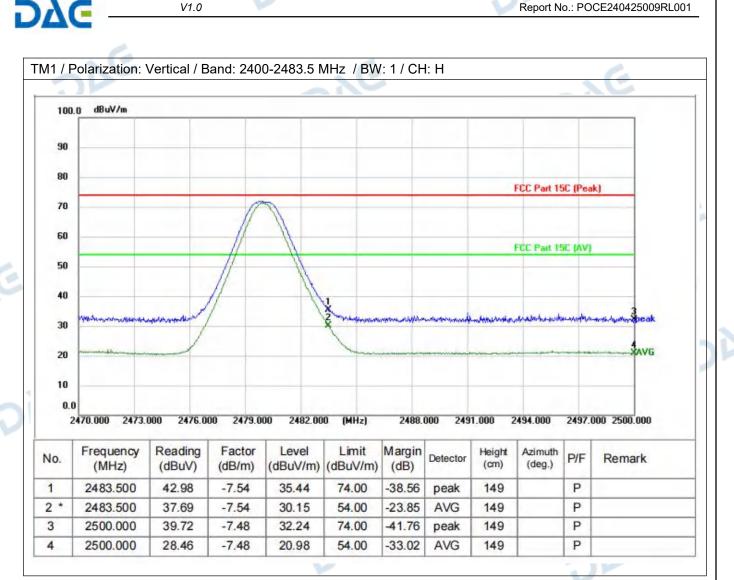
DAG

DAG

)AC

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China


 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG

NE

Report No.: POCE240425009RL001

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

AC

)AC

Both left and right ears have been tested, and only the worst left ear data is reflected in the report.

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

)De

DAG

AC

Report No.: POCE240425009RL001

V1.0

DΔC

4.9 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Test Method:	The emission limits sho employing a CISPR qua 110–490 kHz and above	ove, the tighter limit applies at the wn in the above table are based o asi-peak detector except for the fr a 1000 MHz. Radiated emission li nents employing an average dete tion 6.6.4	on measurements equency bands 9–90 kHz imits in these three bands			
	KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	above the ground at a 3 360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 of which was mounted on d. The antenna height is determine the maximum polarizations of the anter e. For each suspected of the antenna was tuned below 30MHz, the anter was turned from 0 degree f. The test-receiver syste Bandwidth with Maximu g. If the emission level of specified, then testing of reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lo i. The radiation measure Transmitting mode, and	of the EUT in peak mode was 100 ould be stopped and the peak val emissions that did not have 10dE peak, quasi-peak or average me	nber. The table was rotate ation. rotating table 1.5 meters the table was rotated 360 n. rence-receiving antenna, na tower. eters above the ground to horizontal and vertical ement. to its worst case and then ers (for the test frequency of) and the rotatable table aximum reading. ion and Specified B lower than the limit lues of the EUT would be B margin would be re- ethod as specified and ther ethot as specified and ther ethot as the worst case.			
	Remark: 1) For emission below 1	GHz, through pre-scan found the	worst case is the lowest			

DVC -	V1.0	Report No.: POCE240425009RL001
DAC	2) The field strength is calc Preamplifier. The basic equ Final Test Level =Receiver Preamplifier Factor 3) Scan from 9kHz to 25GH was very low. The points m found when testing, so only spurious emissions from th	se is recorded in the report. Sulated by adding the Antenna Factor, Cable Factor & Jation with a sample calculation is as follows: Reading + Antenna Factor + Cable Factor "C Hz, the disturbance above 12.75GHz and below 30MHz harked on above plots are the highest emissions could be y above points had been displayed. The amplitude of he radiator which are attenuated more than 20dB below ted. Fundamental frequency is blocked by filter, and only n.

4.9.1 E.U.T. Operation:

Temperature:22.4 °CHumidity:47.3 %Atmospheric Pressure:101 kPaPretest mode:TM1Final test mode:TM1	Operating Environment:							
	Temperature:	22.4 °C	~	Humidity:	47.3 %	Atmospheric Pressure:	101 kPa	
Final test mode: TM1	Pretest mode:		TM1			. 6		
	Final test mode:		TM1			200		

4.9.2 Test Data:

TM1 is worse case and only reported

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 80.0 70 60 FCC Part 15B RE 3m 50 40 30 with MAY & 20 10 0.0 30.000 (MHz) 1000.000 60.00 300.00 Frequency Reading Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (cm) (deg.) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 86.5029 25.47 -6.57 40.00 -21.10 100 P 1 18.90 QP P 2 125.8864 28.62 -4.64 23.98 43.50 -19.52 QP 100 3 191.0738 26.30 -3.01 23.29 43.50 -20.21 QP 100 P 326.7395 32.74 1.26 34.00 46.00 -12.00 QP 100 P 4 5 * 385.2805 36.26 1.49 37.75 46.00 -8.25 QP 100 P 616.3718 25.81 29.26 46.00 -16.74 QP 100 6 3.45 P

125.8864

152.1297

382.5879

4

5

6 *

DAG

30.11

27.44

37.19

-4.64

-3.68

1.16

DAG

Report No.: POCE240425009RL001

P

P

P

)AC

Remark: The test software will only record the worst test angle and height, and only the worst case will b	е
displayed in the test report	

43.50

43.50

46.00

-18.03

-19.74

-7.65

QP

QP

QP

100

100

100

NE

Both left and right ears have been tested, and only the worst left ear data is reflected in the report.

25.47

23.76

38.35

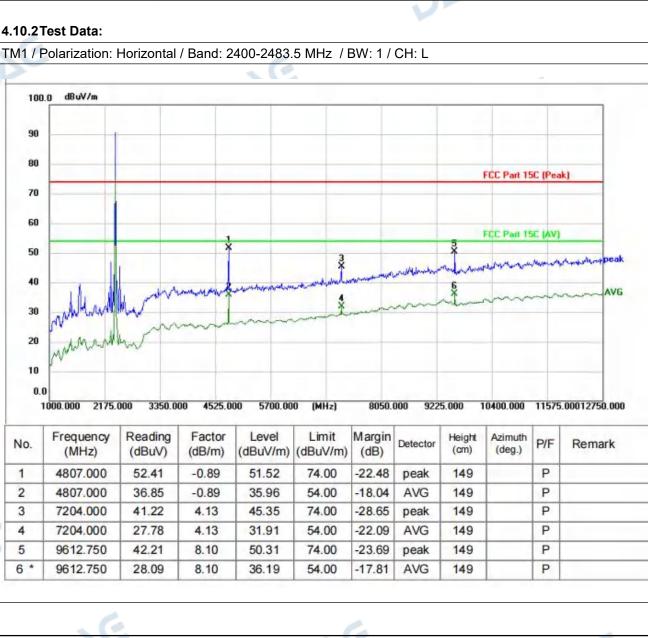
102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

DγG

Report No.: POCE240425009RL001

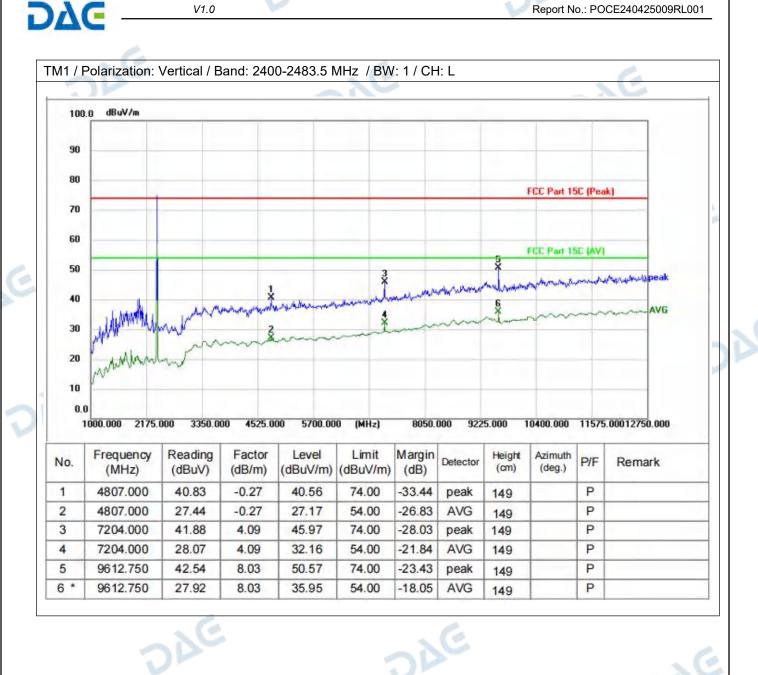
4.10 Emissions in frequency bands (above 1GHz)


Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Test Method:	The emission limits show employing a CISPR qua 110–490 kHz and above are based on measurem ANSI C63.10-2013 secti		measurements uency bands 9–90 kHz ts in these three bands				
21-	KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	above the ground at a 3 360 degrees to determin b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the ante e. For each suspected e the antenna was tuned t below 30MHz, the anten was turned from 0 degree f. The test-receiver syste Bandwidth with Maximum g. If the emission level of specified, then testing co reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lo	If the EUT in peak mode was 10dB buld be stopped and the peak value emissions that did not have 10dB n peak, quasi-peak or average metho west channel, the middle channel, t	er. The table was rotate on. ating table 1.5 meters table was rotated 360 nce-receiving antenna, tower. ers above the ground to rizontal and vertical ent. its worst case and then (for the test frequency of nd the rotatable table num reading. n and Specified lower than the limit es of the EUT would be nargin would be re- od as specified and the the Highest channel.				
	 i. The radiation measurements are performed in X, Y, Z axis positioning f Transmitting mode, and found the X axis positioning which it is the worst j. Repeat above procedures until all frequencies measured was complete Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the second seco						
	1) For emission helow 1	GHz through pre-scap found the w	orst case is the lowest				

DAG	V1.0	Report No.: POCE240425009RL001
DAC	 2) The field strength is call Preamplifier. The basic expension of the preamplifier of the preamplities of the preamplifier of the preamp	ase is recorded in the report. Iculated by adding the Antenna Factor, Cable Factor & quation with a sample calculation is as follows: er Reading + Antenna Factor + Cable Factor "C GHz, the disturbance above 12.75GHz and below 30MHz marked on above plots are the highest emissions could be ily above points had been displayed. The amplitude of the radiator which are attenuated more than 20dB below rted. Fundamental frequency is blocked by filter, and only vn.

4.10.1 E.U.T. Operation:

Operating Environment:							
Temperature:	- >	Humidity:	47.3 %	Atmospheric Pressure:	101 kPa		
Pretest mode:	TM1,	TM2		. 6			
Final test mode:		TM1,	TM2				


4.10.2 Test Data:

4

DAG

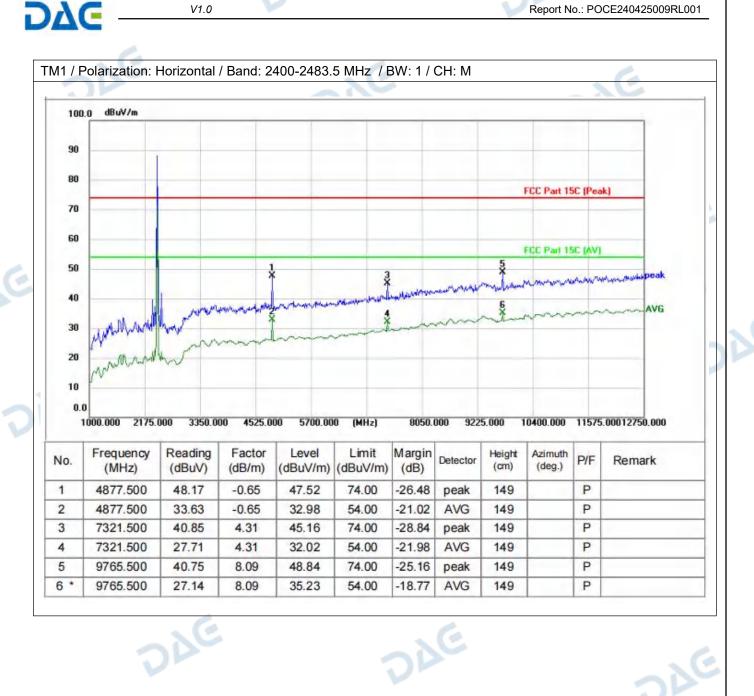
Report No.: POCE240425009RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)De

)De


DAG

NE

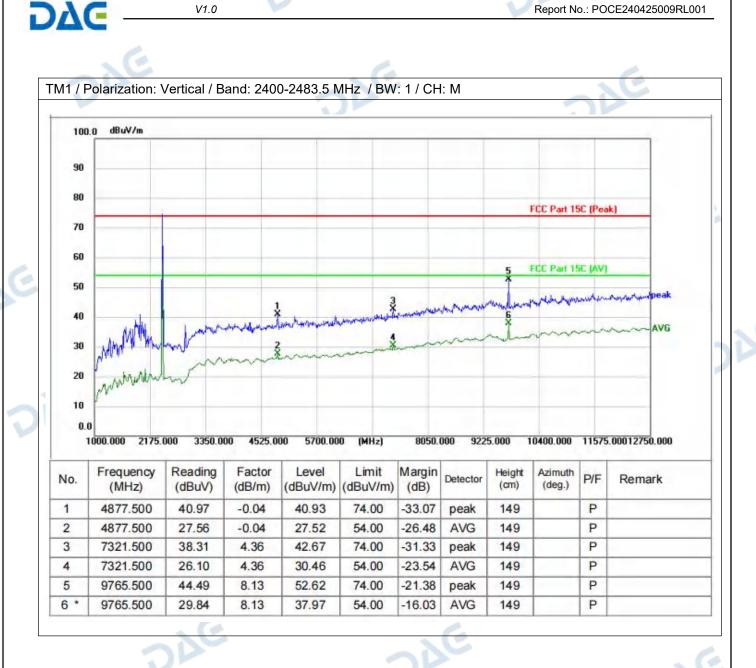
4

DAG

Report No.: POCE240425009RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC


)De

)De

DAG

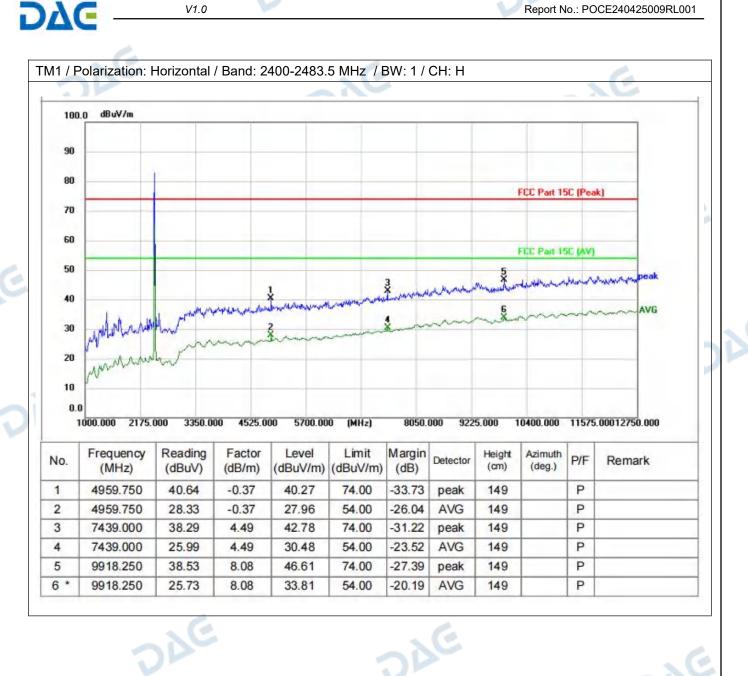
Report No.: POCE240425009RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

DAG

DAG


)De

DAG

4

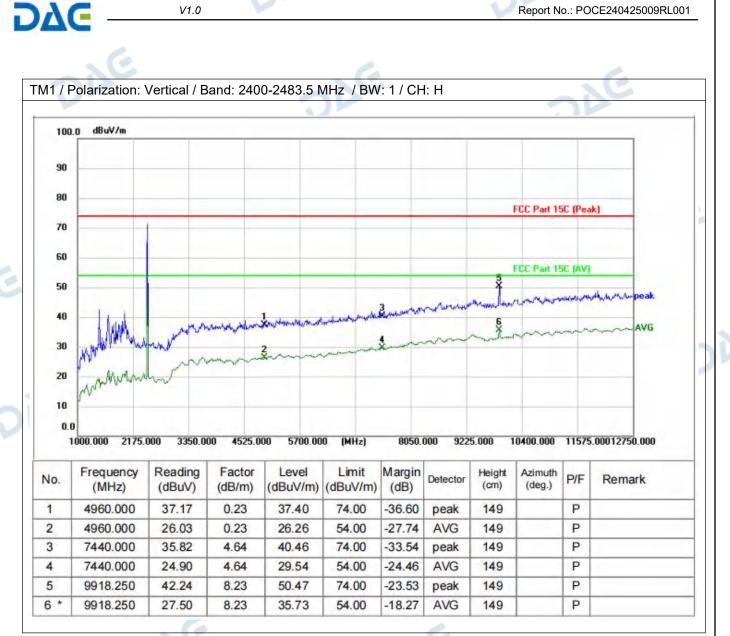
DAG

Report No.: POCE240425009RL001

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)De


)De

DAG

NE

V1.0

Report No.: POCE240425009RL001

Remark: The test software will only record the worst test angle and height, and only the worst case will be displayed in the test report

)De

)AC

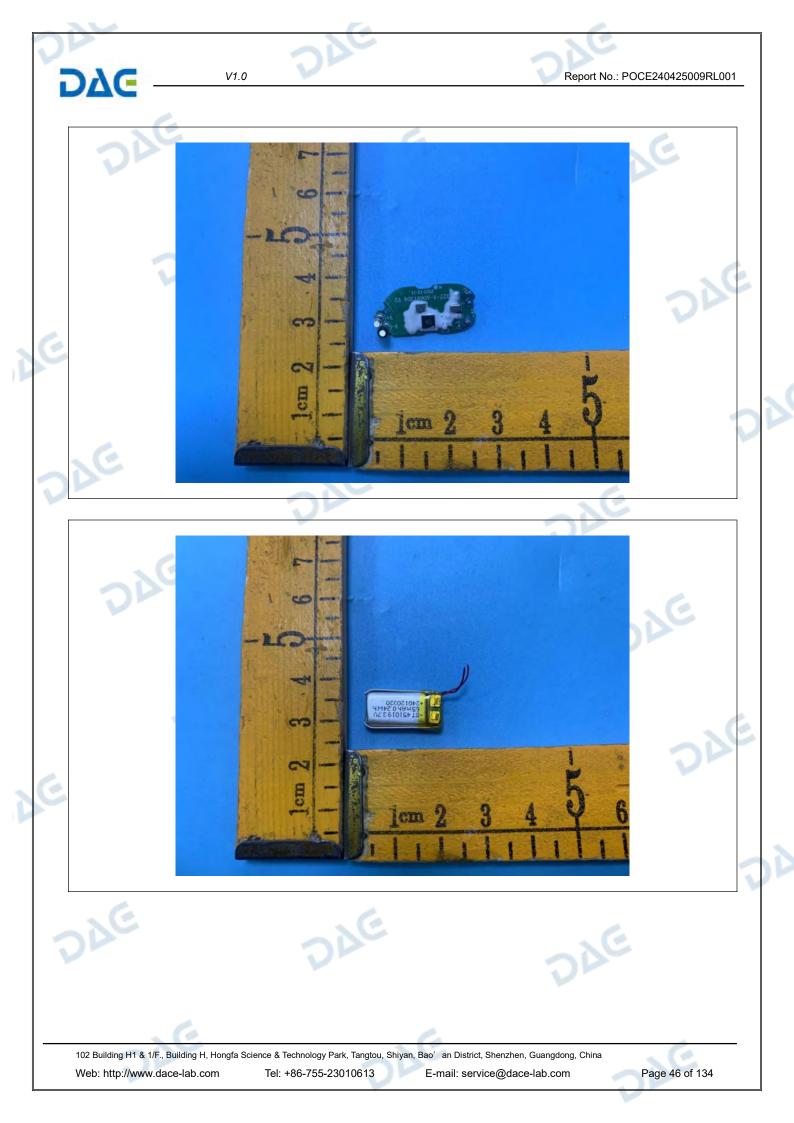
Both left and right ears have been tested, and only the worst left ear data is reflected in the report.

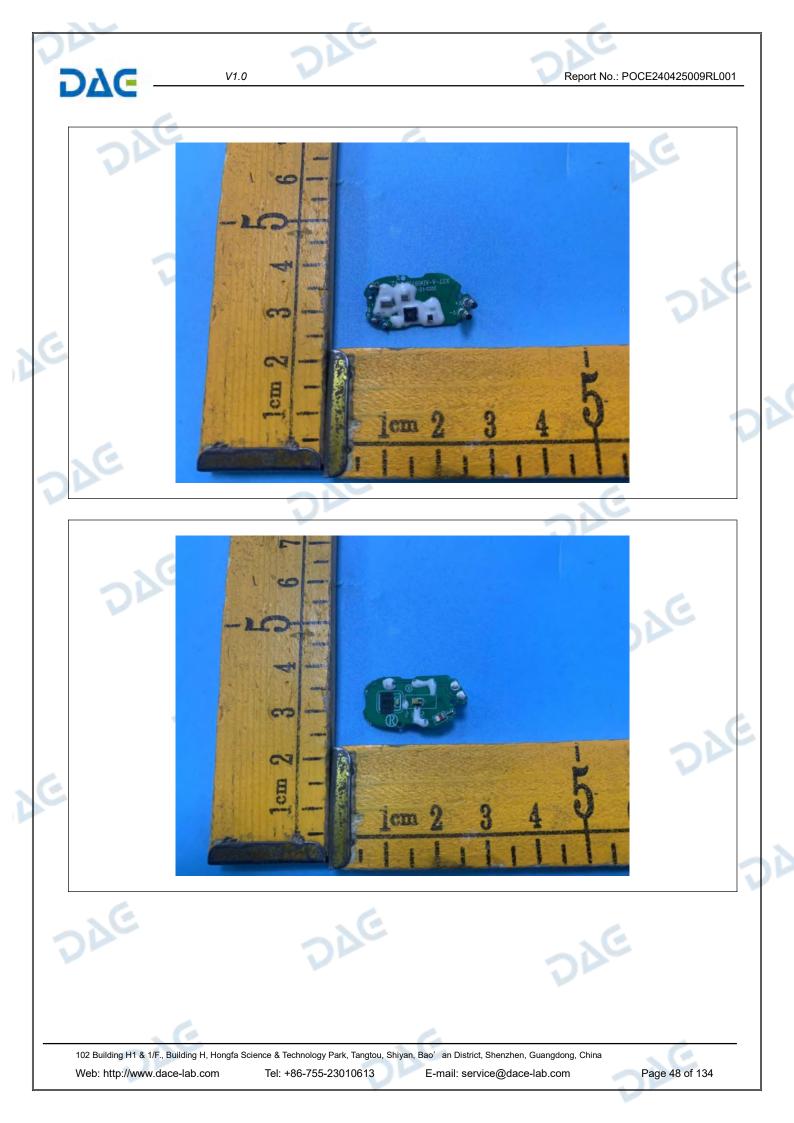
102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

DAG

DAE





DAC -	V1.0	Report No.: POCE240425009	RL001
DAC			
	Appe	ndix-L	
	ling H, Hongfa Science & Technology Park, Tangtou, Sh ab.com Tel: +86-755-23010613	6	

Report No.: POCE240425009RL001

e

HT240424006--T16--EDR--FCC FCC_BT (Part15.247) Test Data

1. -20dB Bandwidth

DAG

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.020	Yes
NVNT	ANT1	1-DH5	2441.00	1.036	Yes
NVNT 🔰	ANT1	1-DH5	2480.00	1.033	Yes
NVNT	ANT1	2-DH5	2402.00	1.316	Yes
NVNT	ANT1	2-DH5	2441.00	1.318	Yes
NVNT	ANT1	2-DH5	2480.00	1.318	Yes

V1.0

DAG -	V1.0	Report No.: POCE240425009RL001
- Dè	-20dB_Bandwidth_NVNT_ANT1_2-DH5_2480	1E
V	Keysight Spectrum Analyzer - Occupied BW RL RL RF S0.0, AC SENSE:INT ALIGN OFF 10:15:21 AM Aor30, 2024	Frequency
	Center Freq 2.480000000 GHz #IFGain:Low #Atten: 30 dB Radio Std: None Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold: 10/10 #Atten: 30 dB Radio Device: BTS	requercy
	Ref Offset 3.85 dB 10 dB/dly Ref 8.70 dBm	
	13	Center Freq 2.480000000 GHz
	413 613 martine	DF
	Center 2.48 GHz Span 3 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 3.2 ms	CF Step
	#Res BW 30 kHz #VBW 100 kHz Sweep 3.2 ms Occupied Bandwidth Total Power 3.52 dBm	300.000 kHz <u>Auto</u> Man
	1.1958 MHz	Freq Offset 0 Hz
6	Transmit Freq Error38.967 kHz% of OBW Power99.00 %x dB Bandwidth1.318 MHzx dB-20.00 dB	
- NG		
	MSG STATUS Align Now All requir	ed
		A

Report No.: POCE240425009RL001

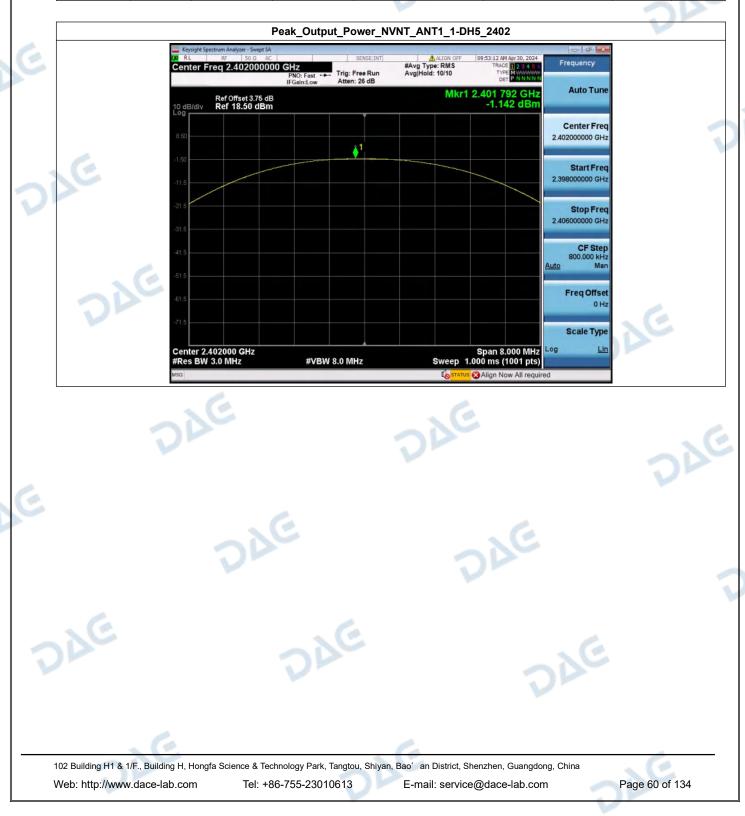
V1.0

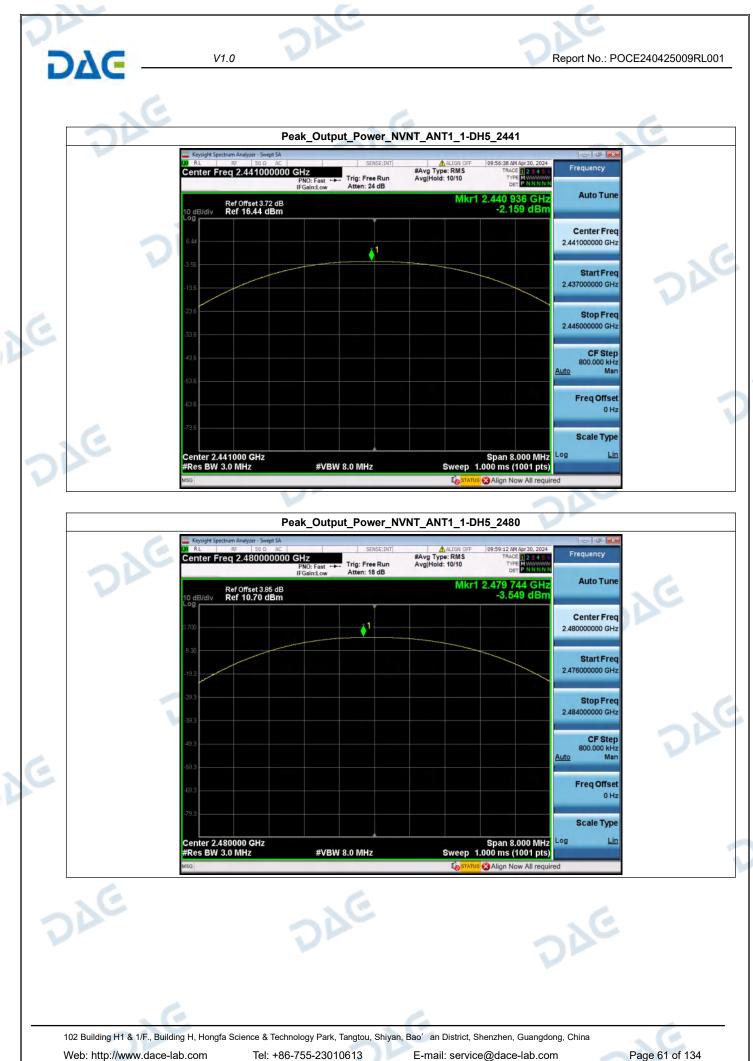
2. 99% Occupied Bandwidth

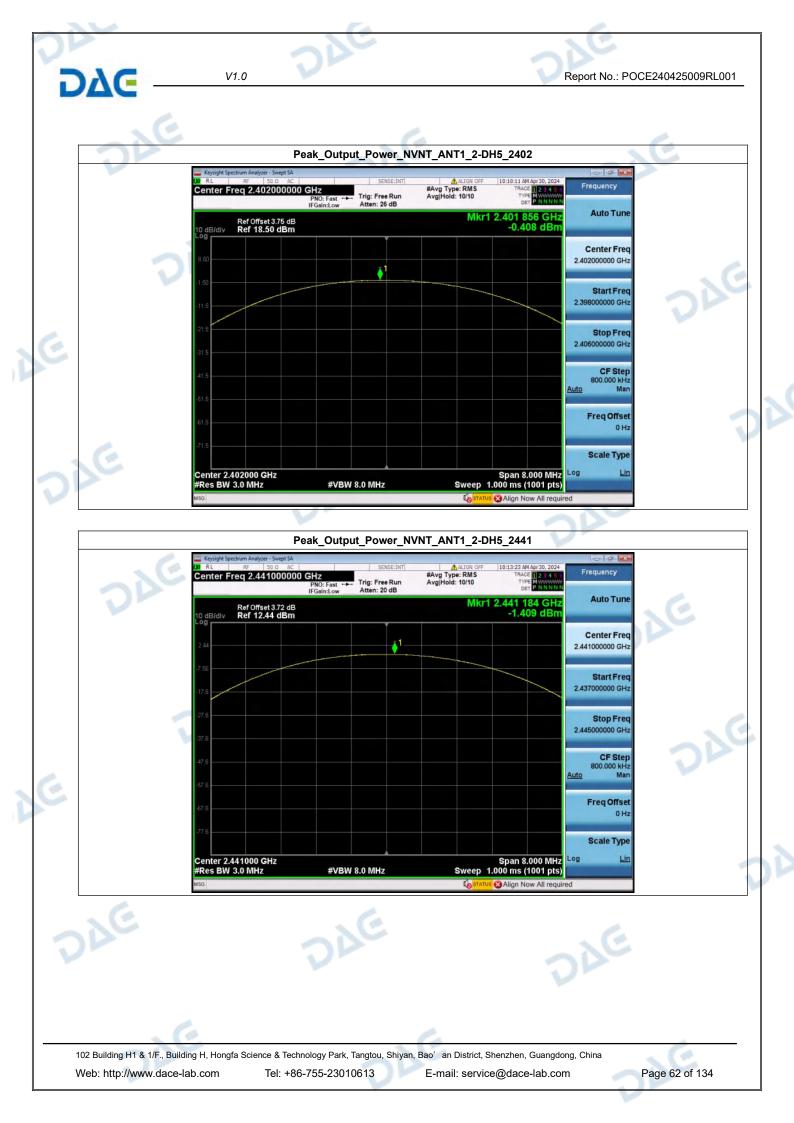
DVC

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.906
NVNT	ANT1	1-DH5	2441.00	0.913
NVNT	ANT1	1-DH5	2480.00	0.908
NVNT	ANT1	2-DH5	2402.00	1.191
NVNT	ANT1	2-DH5	2441.00	1.199
NVNT	ANT1	2-DH5	2480.00	1.196

		246
DAC -	V1.0	Report No.: POCE240425009RL001
- XC	6	E.
JC.	99%_Occupied_Bandwidth_NVNT_ANT	
	Reysight Spectrum Analyzer - Occupied BW M RL RF SO AC SENSE:INTI Aulight C Center Freq 2.480000000 GHz Center Freq: 2.480000000 GHz Center Freq: 2.480000000 GHz	Radio Std: None Frequency
		Radio Device: BTS
	Ref Offset 3.85 dB 10 dB/div Ref 8.70 dBm	
2	313	2.48000000 GHz
	31.3	
	41.3 51.3 American	
	61.3 71.3	
2	R1.3 Center 2.48 GHz	Span 3 MHz
	#Res BW 30 kHz #VBW 100 kHz	Sweep 3.2 ms 300.000 kHz
	Occupied Bandwidth Total Power 3 1.1955 MHz	3.53 dBm
	Transmit Freq Error 38.890 kHz % of OBW Power	99.00 % 0 Hz
LC.	x dB Bandwidth 1.398 MHz x dB -	-26.00 dB
	MSG Los	TATUS CAlign Now All required
		DAG


٩.


Report No.: POCE240425009RL001

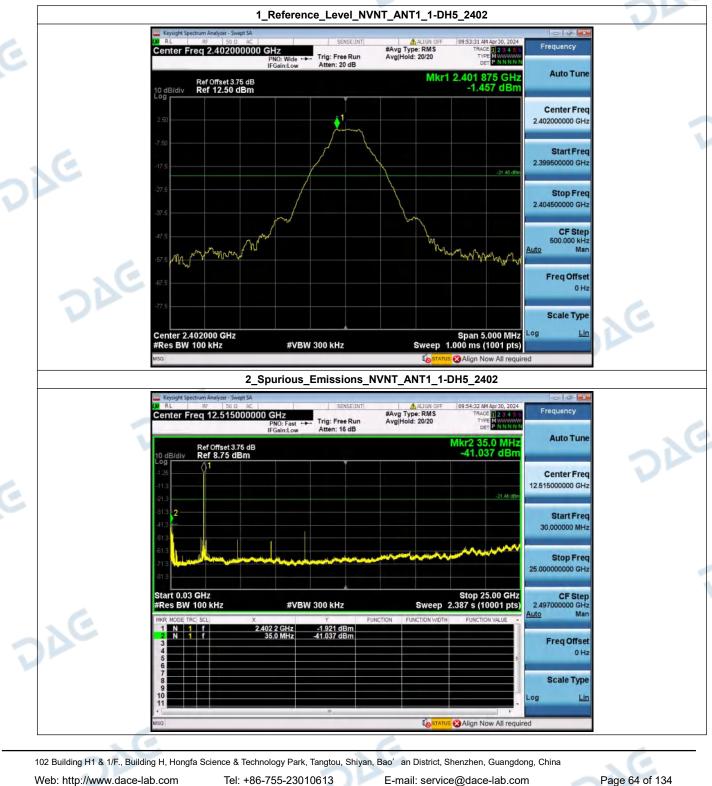

3. Peak Output Power

DVC

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-1.14	0.77	125	Pass
NVNT	ANT1	1-DH5	2441.00	-2.16	0.61	125	Pass
NVNT	ANT1	1-DH5	2480.00	-3.55	0.44	125	Pass
NVNT	ANT1	2-DH5	2402.00	-0.41	0.91	125	Pass
NVNT	ANT1	2-DH5	2441.00	-1.41	0.72	125	Pass
NVNT	ANT1	2-DH5	2480.00	-2.66	0.54	125	Pass

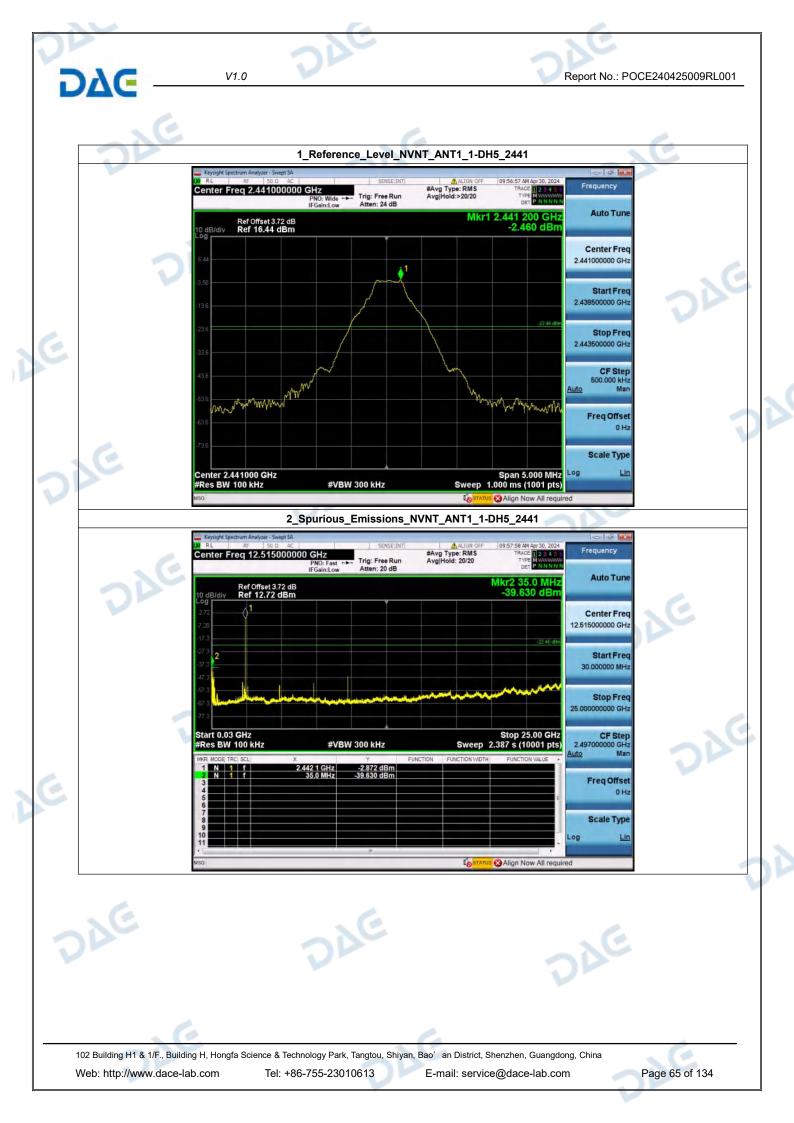
DVC -	V1.0	Report No.: POCE240425	009RL001
Die	Peak_Output_Power_NVNT_AN	T1_2-DH5_2480	
	Keynight Spectrum Analyzer - Swept SA RL RF 50 0 AC SENSE:INT Center Freq 2.480000000 GHz PN0: Fast ↔→ Trig: Free Run Avg IHol	ALIGN OFF 10:15:58 AM Apr30, 2024 pe: RMS TRACE 12 3 4 5 Frequency	
	IFGain:Low Atten: 18 dB Ref Offset 3.85 dB 10 dB/div Ref 10.70 dBm	Mkr1 2.479 896 GHz -2.662 dBm	
2	0.700	Center Freq 2.480000000 GHz	
	-19.3	Start Freq 2.476000000 GHz	
6	.29.3	Stop Freq 2.484000000 GHz	
	-49.3	CF Step 800.000 kHz <u>Auto</u> Man	
	69.3	Freq Offset 0 Hz	
1C	.79.3	Scale Type	
0100	Center 2.480000 GHz #Res BW 3.0 MHz #VBW 8.0 MHz Msg	Span 8.000 MHz Sweep 1.000 ms (1001 pts)	

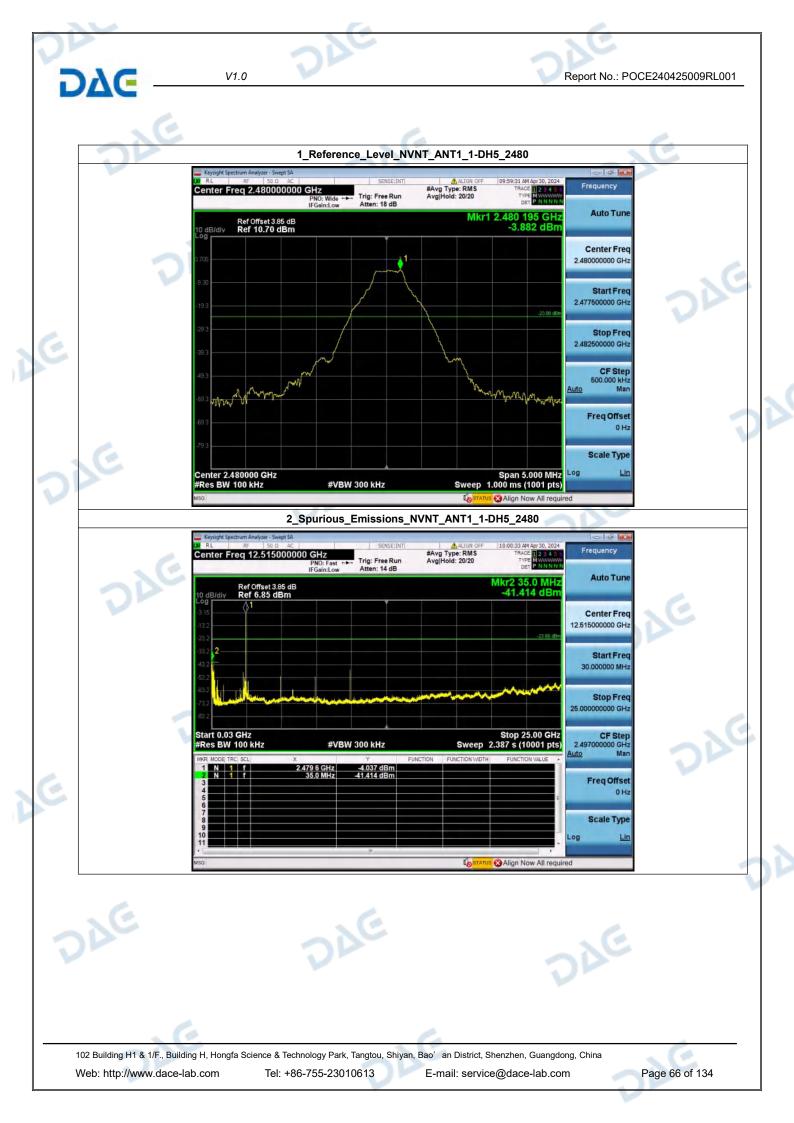
Report No.: POCE240425009RL001


V1.0

4. Spurious Emissions

DΔC


Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5 🔹	2402.00	-41.037	-21.457	Pass
NVNT	ANT1	1-DH5	2441.00	-39.630	-22.460	Pass
NVNT	ANT1	1-DH5	2480.00	-41.414	-23.882	Pass
NVNT	ANT1	2-DH5	2402.00	-40.099	-21.539	Pass
NVNT	ANT1	2-DH5	2441.00	-41.075	-22.524	Pass
NVNT	ANT1	2-DH5	2480.00	-40.661	-23.773	Pass


6



Tel: +86-755-23010613

E-mail: service@dace-lab.com

