POCE V1.0	Report No.: POCE23120800
PUCE Temponyy	
C	RF TEST REPORT
	For POOL
BESING	TECHNOLOGY (SHENZHEN) CO., LTD
	Product Name: TWS
	Test Model(s).: BX29
Report Reference No.	: POCE231208009RL001
FCC ID	: 2ATU8-BX29
Applicant's Name	: BESING TECHNOLOGY (SHENZHEN) CO., LTD
Address	2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community, Shiyan Street, Baoan District, Shenzhen, China
Testing Laboratory	: Shenzhen POCE Technology Co., Ltd.
Address	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Pa Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Test Specification Standard	: 47 CFR Part 15.247
Date of Receipt	: December 8, 2023
Date of Test	: December 8, 2023 to December 19, 2023
Data of Issue	: December 19, 2023
Result	: Pass
Technology Co., Ltd. This docu	eproduced except in full, without the written approval of Shenzhen POCE iment may be altered or revised by Shenzhen POCE Technology Co., Ltd. oted in the revision section of the document. The test results in the report on

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	O Original POCE231208009RL001		December 19, 2023
	0	<u>s</u>	
		-	C
	20	F	
	200		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

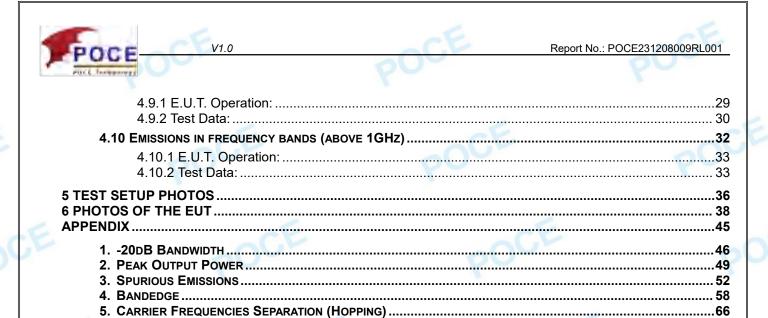
Compiled by: Bun Tang

Ben Tang /Test Engineer

Supervised by: omchen Tom Chen / Project Engineer

Approved by: KN3

Machael Mo / Manager


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 75

CONTENTS

V1.0

POCE

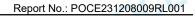
1 TEST SUMMARY	
1.1 TEST STANDARDS	
1.1 TEST STANDARDS 1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	
2.1 CLIENT INFORMATION 2.2 DESCRIPTION OF DEVICE (EUT)	
2.3 DESCRIPTION OF DEVICE (EUT)	
2.4 DESCRIPTION OF SUPPORT UNITS	7
2.5 EQUIPMENTS USED DURING THE TEST	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY 2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	
	12
4.1.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.2 Test Setup Diagram:	
4.4 CHANNEL SEPARATION	
4.4.2 Test Setup Diagram:	
4.5 NUMBER OF HOPPING FREQUENCIES	
4.6 DWELL TIME	
4.7 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS.	
4.8 BAND EDGE EMISSIONS (RADIATED)	
4.8.2 Test Setup Diagram:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou Web: http://www.dace-lab.com Tel: +86-755-23010613 E	ı, Shiyan, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com Page 3 of 75

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 4 of 75

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:


V1.0

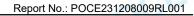
47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2		Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

1.2 Summary of Test Result

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 5 of 75

GENERAL INFORMATION 2


2.1 Client Information

Client Informatio	TE DOCE DO
Applicant's Name	 BESING TECHNOLOGY (SHENZHEN) CO., LTD 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community,
Address	Shiyan Street, Baoan District, Shenzhen, China
Manufacturer	 BESING TECHNOLOGY (SHENZHEN) CO., LTD 2F, Block 1, Tianxin Resident Group Industrial Park, Shangwu Community,
Address	Shiyan Street, Baoan District, Shenzhen, China

2.2 Description of Device (EUT)

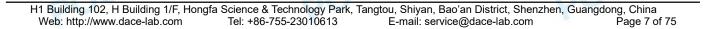
Product N	lame:	TWS-D	·E		~	25		
Model/Ty	pe reference:	BX29	BX29					
Series Mo	odel:	N/A	N/A					
Trade Ma	rk:	N/A	N/A					
Power Su	pply:	DC 5V/1A from adapter Battery:DC3.7V 65mAH						
Operation	Frequency:		2402MHz to 2480MHz					
	of Channels:	79						
Modulatio	n Type:	GFSK, π/4 [GFSK, π/4 DQPSK					
Antenna ⁻		Chip antenn						
Antenna	• •	1.8dBi		-			-	
Hardware		V1.0		-6			CE	
Software		V1.0	-00	94		0		
			ed by the custo		is not respons	ible for		
			s associated w		is not respons			
	n Frequency e				6			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2402MHz	21	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
		26	2427MHz	46	2447MHz	66	2467MHz	
6		20						
6	2407MHz 2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
	2408MHz	27	2428MHz			-		
7	2408MHz 2409MHz		2428MHz 2429MHz	47 48 49	2449MHz	67 68 69	2469MHz	
7 8	2408MHz	27 28	2428MHz	48		68		
7 8 9	2408MHz 2409MHz 2410MHz 2411MHz	27 28 29	2428MHz 2429MHz 2430MHz	48 49	2449MHz 2450MHz 2451MHz	68 69	2469MHz 2470MHz	
7 8 9 10	2408MHz 2409MHz 2410MHz	27 28 29 30	2428MHz 2429MHz 2430MHz 2431MHz	48 49 50	2449MHz 2450MHz 2451MHz 2452MHz	68 69 70	2469MHz 2470MHz 2471MHz	
7 8 9 10 11	2408MHz 2409MHz 2410MHz 2411MHz 2411MHz 2412MHz	27 28 29 30 31	2428MHz 2429MHz 2430MHz 2431MHz 2432MHz	48 49 50 51	2449MHz 2450MHz 2451MHz	68 69 70 71	2469MHz 2470MHz 2471MHz 2472MHz	
7 8 9 10 11 12	2408MHz 2409MHz 2410MHz 2411MHz 2412MHz 2412MHz 2413MHz	27 28 29 30 31 32	2428MHz 2429MHz 2430MHz 2431MHz 2432MHz 2432MHz 2433MHz	48 49 50 51 52	2449MHz 2450MHz 2451MHz 2452MHz 2453MHz	68 69 70 71 72	2469MHz 2470MHz 2471MHz 2472MHz 2473MHz	
7 8 9 10 11 12 13	2408MHz 2409MHz 2410MHz 2411MHz 2411MHz 2412MHz 2413MHz 2414MHz	27 28 29 30 31 32 33	2428MHz 2429MHz 2430MHz 2431MHz 2432MHz 2432MHz 2433MHz 2434MHz	48 49 50 51 52 53	2449MHz 2450MHz 2451MHz 2452MHz 2453MHz 2453MHz 2454MHz	68 69 70 71 72 73	2469MHz 2470MHz 2471MHz 2472MHz 2473MHz 2474MHz	
7 8 9 10 11 12 13 14	2408MHz 2409MHz 2410MHz 2411MHz 2412MHz 2412MHz 2413MHz 2414MHz 2415MHz	27 28 29 30 31 32 33 33 34	2428MHz 2429MHz 2430MHz 2431MHz 2432MHz 2432MHz 2433MHz 2434MHz 2435MHz	48 49 50 51 52 53 53 54	2449MHz 2450MHz 2451MHz 2452MHz 2453MHz 2453MHz 2454MHz 2455MHz	68 69 70 71 72 73 74	2469MHz 2470MHz 2471MHz 2472MHz 2473MHz 2474MHz 2475MHz	
7 8 9 10 11 12 13 14 15	2408MHz 2409MHz 2410MHz 2411MHz 2412MHz 2413MHz 2413MHz 2414MHz 2415MHz 2416MHz	27 28 29 30 31 32 33 33 34 35	2428MHz 2429MHz 2430MHz 2431MHz 2432MHz 2432MHz 2433MHz 2434MHz 2435MHz 2436MHz	48 49 50 51 52 53 54 55	2449MHz 2450MHz 2451MHz 2452MHz 2453MHz 2454MHz 2455MHz 2455MHz 2456MHz	68 69 70 71 72 73 74 75	2469MHz 2470MHz 2471MHz 2472MHz 2473MHz 2473MHz 2475MHz 2475MHz 2476MHz	
7 8 9 10 11 12 13 14 15 16	2408MHz 2409MHz 2410MHz 2411MHz 2412MHz 2413MHz 2413MHz 2414MHz 2415MHz 2416MHz 2417MHz	27 28 29 30 31 32 33 33 34 35 36	2428MHz 2429MHz 2430MHz 2431MHz 2432MHz 2433MHz 2433MHz 2435MHz 2435MHz 2436MHz 2437MHz	48 49 50 51 52 53 53 54 55 56	2449MHz 2450MHz 2451MHz 2452MHz 2453MHz 2454MHz 2455MHz 2456MHz 2457MHz	68 69 70 71 72 73 74 75 76	2469MHz 2470MHz 2471MHz 2472MHz 2473MHz 2474MHz 2475MHz 2476MHz 2476MHz 2477MHz	
7 8 9 10 11 12 13 14 15 16 17	2408MHz 2409MHz 2410MHz 2411MHz 2412MHz 2413MHz 2413MHz 2414MHz 2415MHz 2416MHz 2417MHz 2418MHz	27 28 29 30 31 32 33 33 34 35 36 37	2428MHz 2429MHz 2430MHz 2431MHz 2432MHz 2433MHz 2433MHz 2435MHz 2435MHz 2436MHz 2437MHz 2438MHz	48 49 50 51 52 53 53 54 55 56 57	2449MHz 2450MHz 2451MHz 2452MHz 2453MHz 2453MHz 2455MHz 2456MHz 2456MHz 2457MHz 2458MHz	68 69 70 71 72 73 74 75 76 77	2469MHz 2470MHz 2471MHz 2472MHz 2473MHz 2474MHz 2475MHz 2476MHz 2477MHz 2477MHz 2478MHz	

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 6 of 75

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
rest channel	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

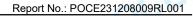

2.3 Description of Test Modes

V1 0

No	Title	Description
TM1	TX-GFSK (Non-	Keep the EUT in continuously transmitting mode (non-hopping) with
	Hopping)	GFSK modulation.
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
TM3	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM4	TX-Pi/4DQPSK	Keep the EUT in continuously transmitting mode (hopping) with
	(Hopping)	Pi/4DQPSK modulation.
Remar	k:Only the data of the worst	mode would be recorded in this report.

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	N -


V1.0

POCE

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
loop antenna	EVERFINE	LLA-2	80900L-C	2023-02-27	2024-02-26	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	/	2023-02-28	2024-02-27	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	/	
Cable	SCHWARZ BECK	1	POU	2023-12-27	2024-12-26	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-02-27	2024-02-26	
50ΩCoaxial Switch	Anritsu	MP59B	M20531		/	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-28	2024-12-27	

Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time Emissions in non-restricted frequency bands						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	1	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/	1	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10	
DC power	HP	66311B	38444359	/		
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	1	
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12	
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08	
Signal generator	Keysight	N5182A	MY50143455	2023-12-28	2024-12-27	
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-28	2024-12-27	

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1	
Positioning Controller	1	MF-7802	/	/	/	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/	/	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04	
Cable(LF)#2	Schwarzbeck	/	/	2023-02-27	2024-02-26	
Cable(LF)#1	Schwarzbeck		1	2023-02-27	2024-02-26	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023-02-28	2024-02-27	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2023-02-27	2024-02-26	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12	
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12	
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20	
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12	

V1.0

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 9 of 75

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty		
Conducted Disturbance (0.15~30MHz)	±3.41dB	20	
Occupied Bandwidth	±3.63%	40	
RF conducted power	±0.733dB		
RF power density	±0.234%		
Conducted Spurious emissions	±1.98dB		
Radiated Emission (Above 1GHz)	±5.46dB		
Radiated Emission (Below 1GHz)	±5.79dB		
Note: (1) This uncertainty represents an expanded u	ncertainty expressed at approximately the	o 95%	

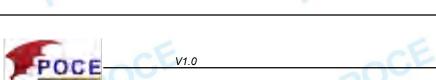
Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen POCE Technology Co., Ltd.				
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
Identification of the Responsi	ble Testing Location				
Company Name:	Shenzhen POCE Technology Co., Ltd.				
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
FCC Registration Number:	0032847402				
Designation Number:	CN1342				
Test Firm Registration Number:	778666				
A2LA Certificate Number:	6270.01				

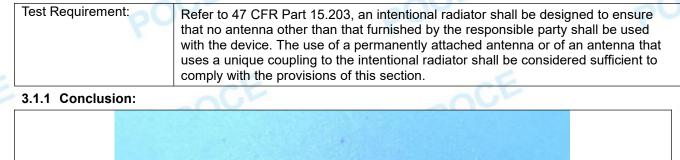
2.8 Announcement

(1) The test report reference to the report template version v0.


(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.


(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

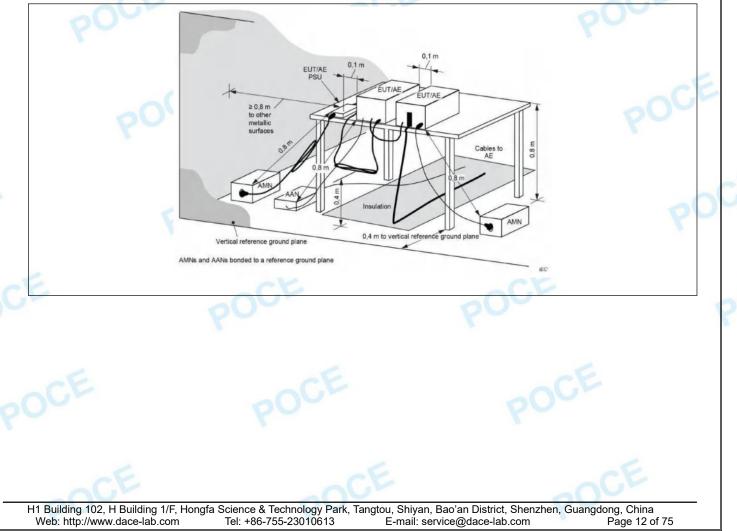
Evaluation Results (Evaluation) 3

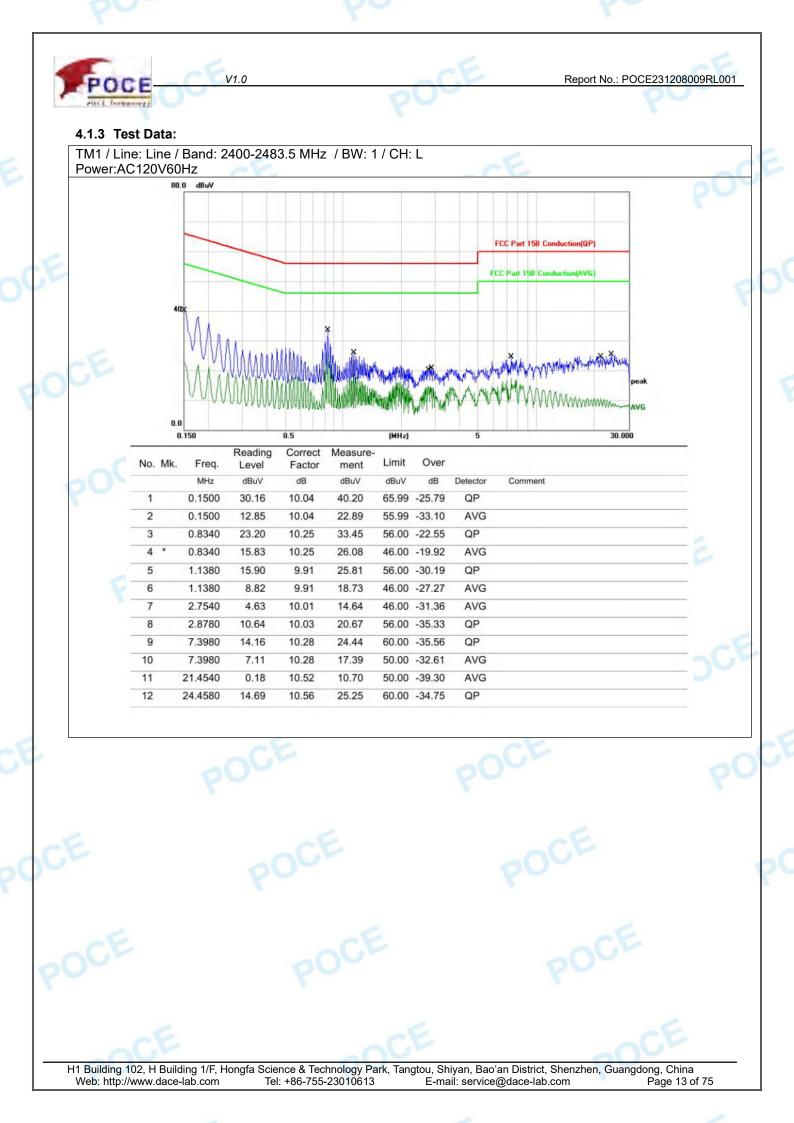
3.1 Antenna requirement

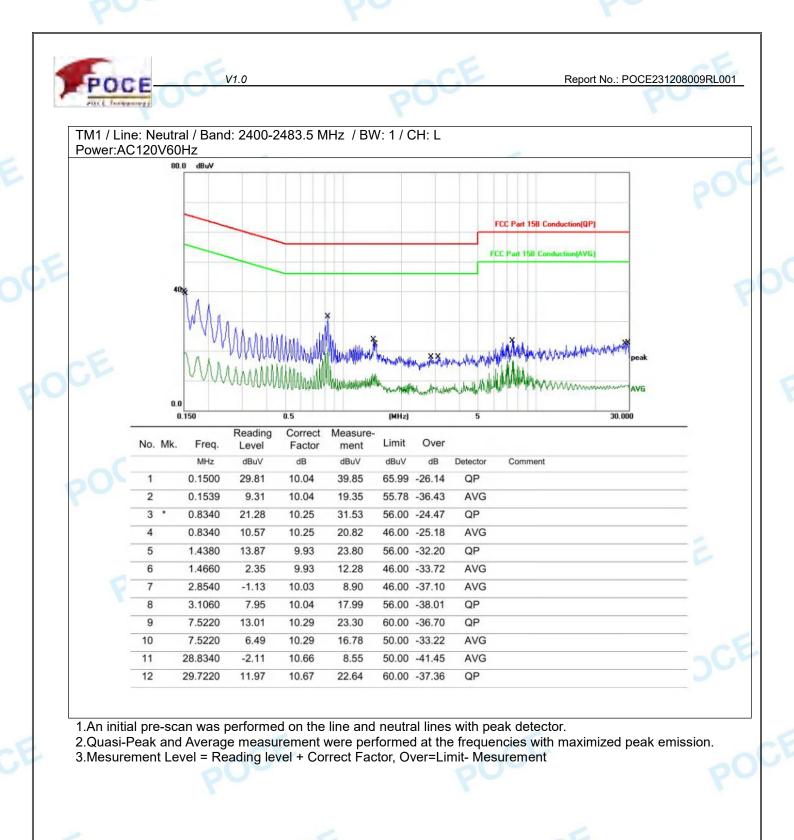
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 75

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line


V1.0

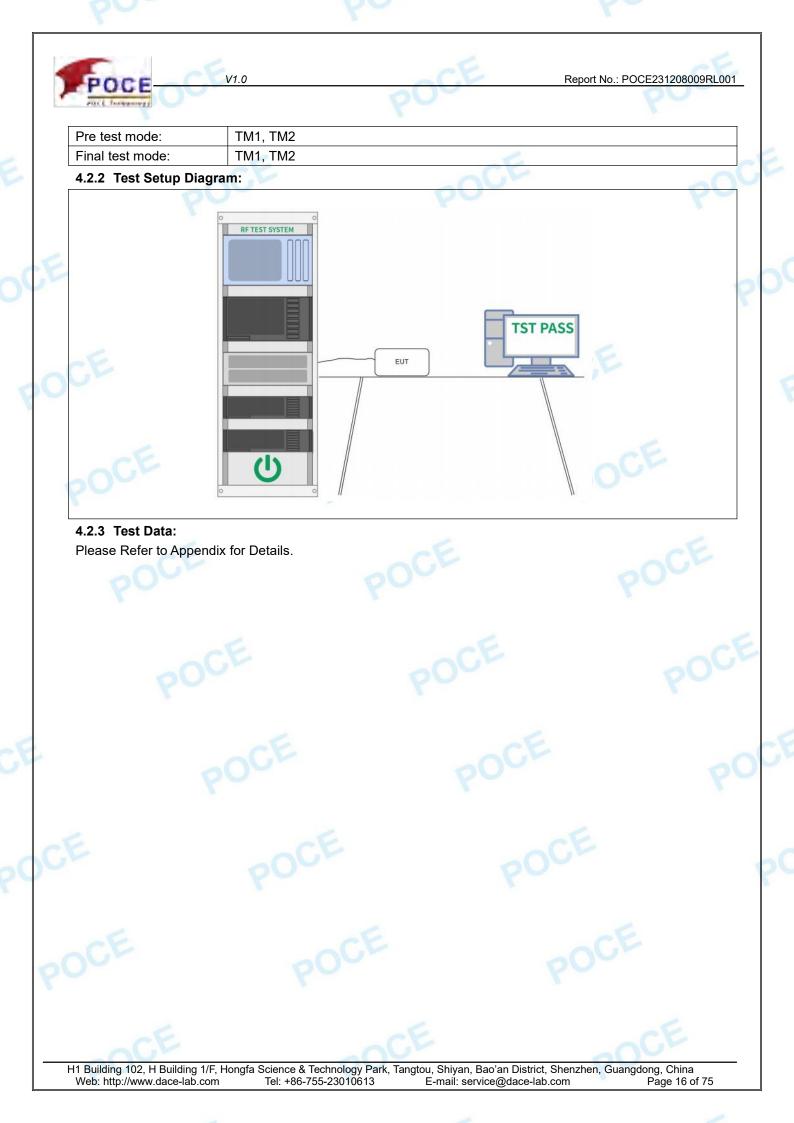

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
6	5-30	60	50			
CE	*Decreases with the logarithm of the	e frequency.				
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					


4.1.1 E.U.T. Operation:

Operating Envir	onment:			AUY		OUY	
Temperature:	23.7 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1					
Final test mode:		TM1					

4.1.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 75



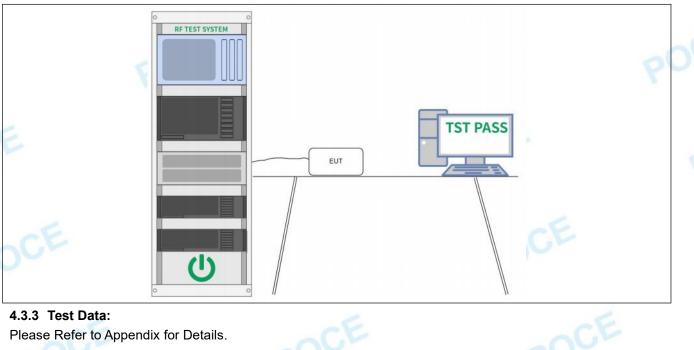
4.2 Occupied Bandwidth

V1.0

Test Requirement:	47 CFR 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.25 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequence band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral equivalence shall be more than [10 leg (ORW/RPW)] below the
	of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 1 dB below the target "-xx dB down" requirement; that is, if the requirement calls for
	 measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
	 value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EU modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to
	this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency readin at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring
	instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
4.2.1 E.U.T. Operation:	
Operating Environment:	
Temperature: 23.7 °C	Humidity: 51.4 % Atmospheric Pressure: 102 kPa

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 15 of 75

4.3 Maximum Conducted Output Power


V1.0

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Specific Approximately five times the 20 dB bandwidth control on a banning
CE -	 Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. RBW > 20 dB bandwidth of the emission being measured. VBW >= RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
POCE	 b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report.
POCE	NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

4.3.1 E.U.T. Operation:

Operating Enviro	onment:						
Temperature:	23.7 °C	1	Humidity:	51.4 %	Atmospheric Pressure:	102 kPa	
Pre test mode:	~	TM1,	TM2		ACE		20
Final test mode:	0	TM1,	TM2	1			PU
4.2.0 Test Cat							1 m

4.3.2 Test Setup Diagram:

4.4 Channel Separation

V1.0

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.
pour	Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

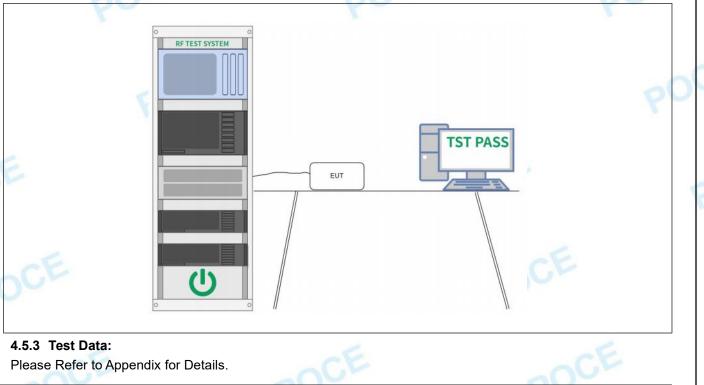
4.4.1 E.U.T. Operation:

Operating Environment:			aC.	E	ACE
Temperature: 23.7 °C	Hum	idity: 51	.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM3, TM4		1		1
Final test mode:	TM3, TM4				

4.4.2 Test Setup Diagram:

	0	ACE	DOCE
E CE °			PO
4.4.3 Test Data:			
Please Refer to Appendix f	for Details.		

4.5 Number of Hopping Frequencies


V1.0

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto.
POCE	 e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

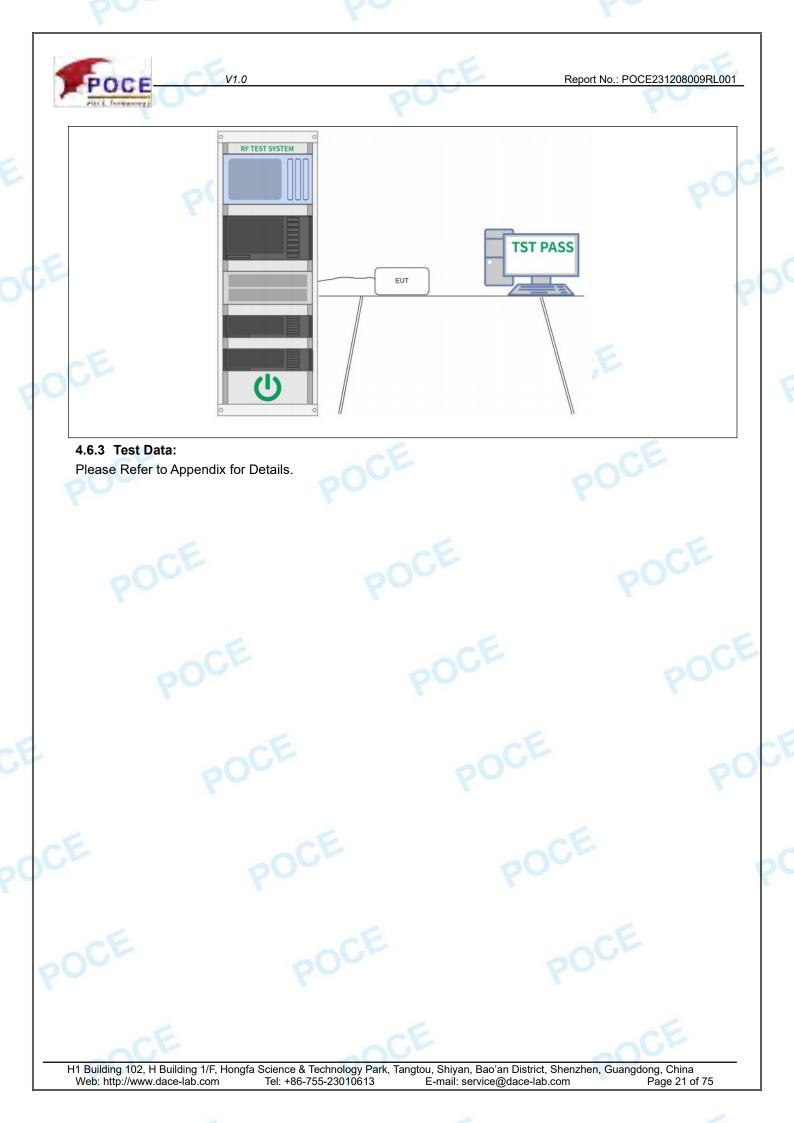
Operating Envir	onment:			29		40
Temperature:	23.7 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:		ТМ3,	TM4			
Final test mode:	-	TM3,	TM4		CE	C
					alit	

4.5.2 Test Setup Diagram:

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 19 of 75

V1.0

Report No.: POCE231208009RL001


4.6 Dwell Time

47 CFR 15.247(a)(1)(iii)
Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 /
T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
 d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test
for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the
requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements /
analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

4.6.1 E.U.T. Operation:

Operating Envir	onment:		AC.Y	ACK.	4	
Temperature:	23.7 °C	0	Humidity:	51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM3,	TM4		k	
Final test mode:	:	ΤМ3,	TM4			
4.6.2 Test Setu	up Diagra	m:		-		-

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 20 of 75

4.7 Emissions in non-restricted frequency bands

V1.0

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

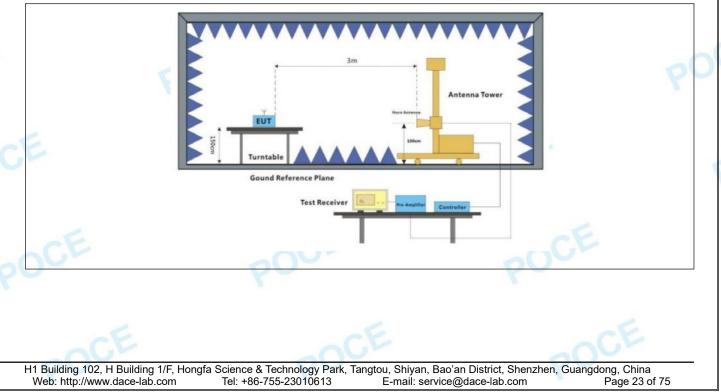
Operating Environment:			CE	ACE
Temperature: 23.7 °C	Humidit	y: 51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2, TM	I3, TM4 📃		N Contraction
Final test mode:	TM1, TM2, TM	I3, TM4		

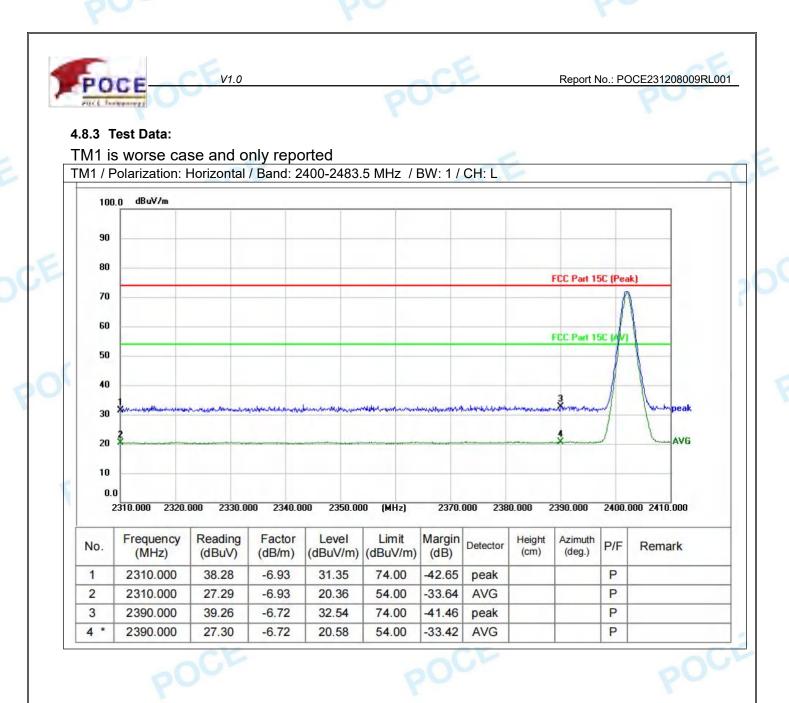
4.7.2 Test Setup Diagram:

4.7.2 Test Setup D	hagram:	-6 -6
PCE		EUT
4.7.3 Test Data:		
Please Refer to App	endix for Details.	
DOCE		DOCE
H1 Building 102, H Building Web: http://www.dace-lab	g 1/F, Hongfa Science & Tec b.com Tel: +86-755	nnology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China 23010613 E-mail: service@dace-lab.com Page 22 of 75

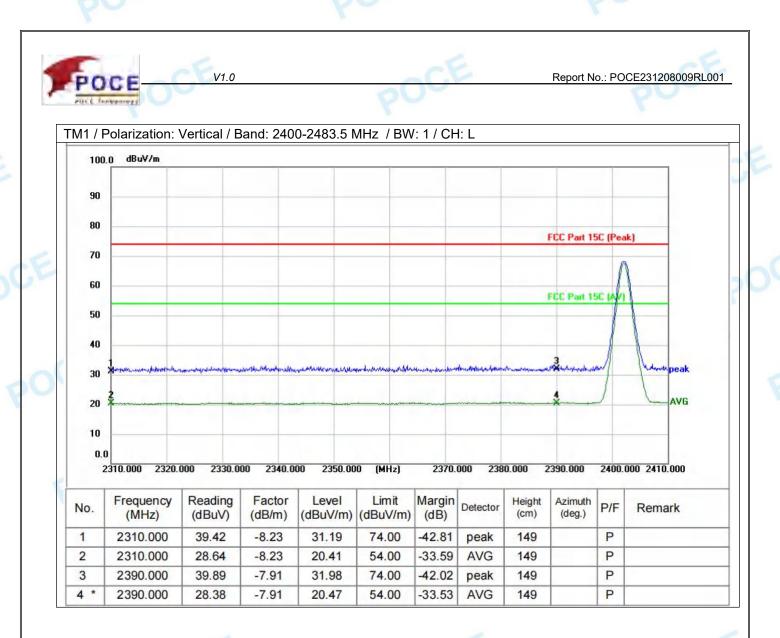
4.8 Band edge emissions (Radiated)

V1.0

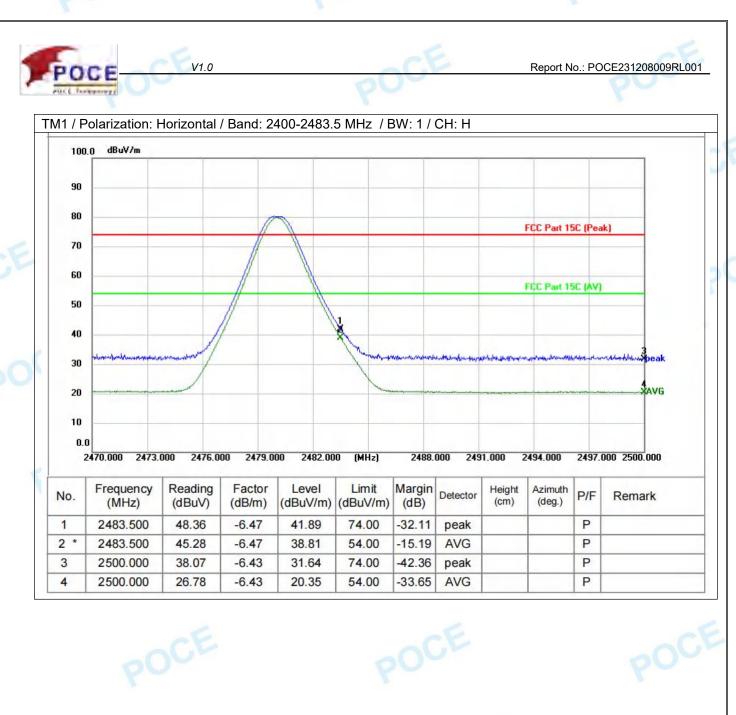

Test Requirement:	restricted bands, as defined	In addition, radiated emissions wh in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
6	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
JCL	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
POCE							
Test Method:	ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 M		oF.				
Procedure:	ANSI C63.10-2013 section 6	6.10.5.2	2005				


4.8.1 E.U.T. Operation:

Operating Environment:

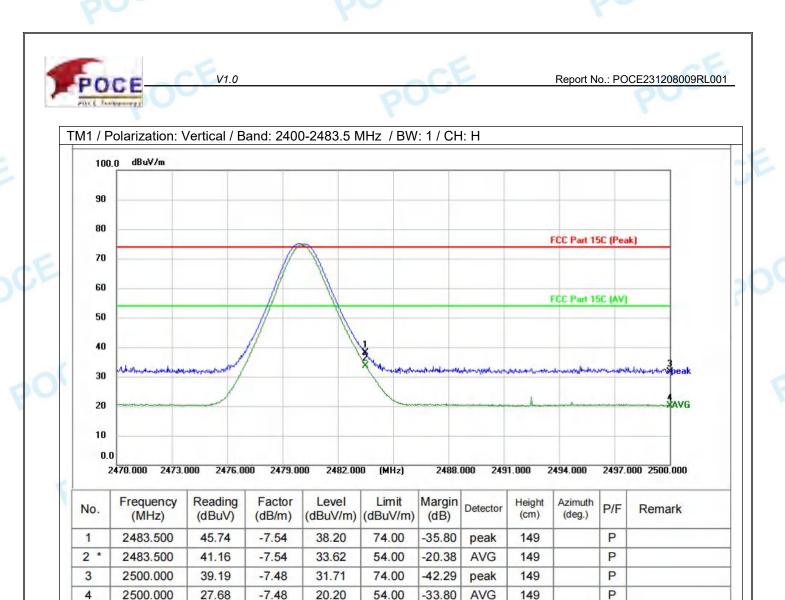

•p•								
Temperature:	23.7 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa		
Pre test mode:	2	TM1,	TM2		-CE		-C	
Final test mode:	5	TM1,			200-		00	

4.8.2 Test Setup Diagram:



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 75

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 25 of 75



CE

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613

 E-mail: service@dace-lab.com
 Page 26 of 75

Remark:

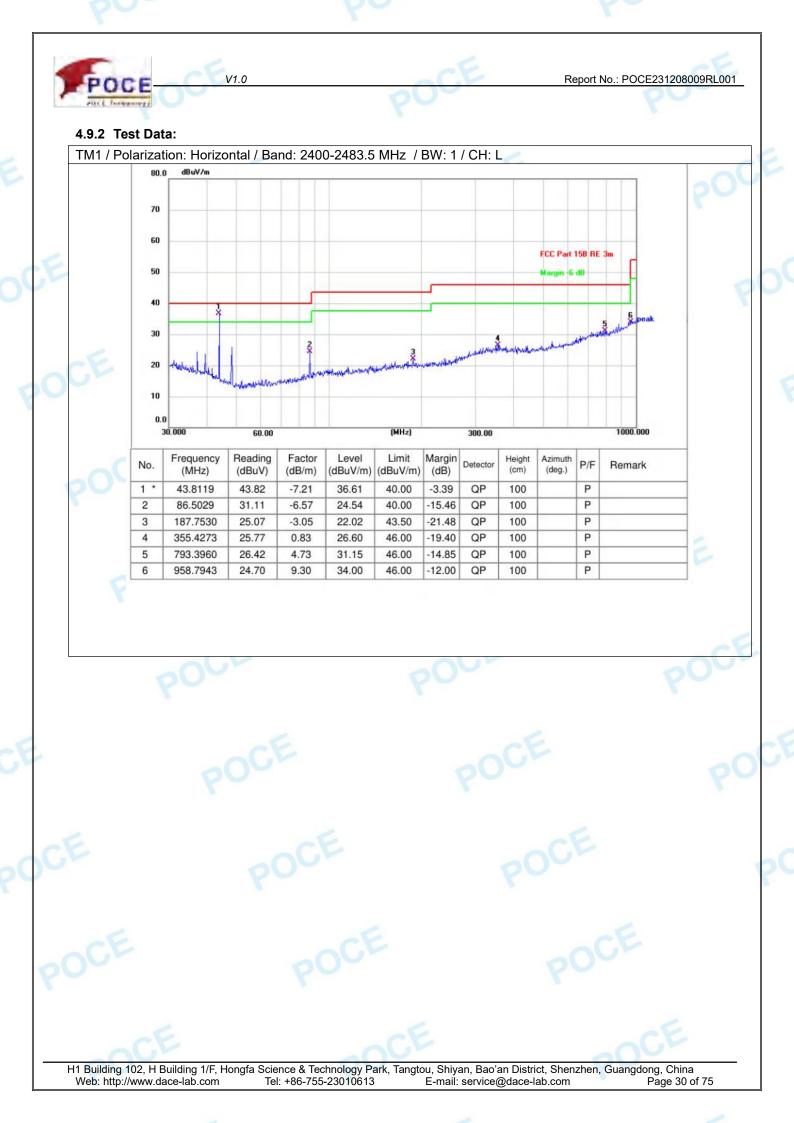
1.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 2.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement

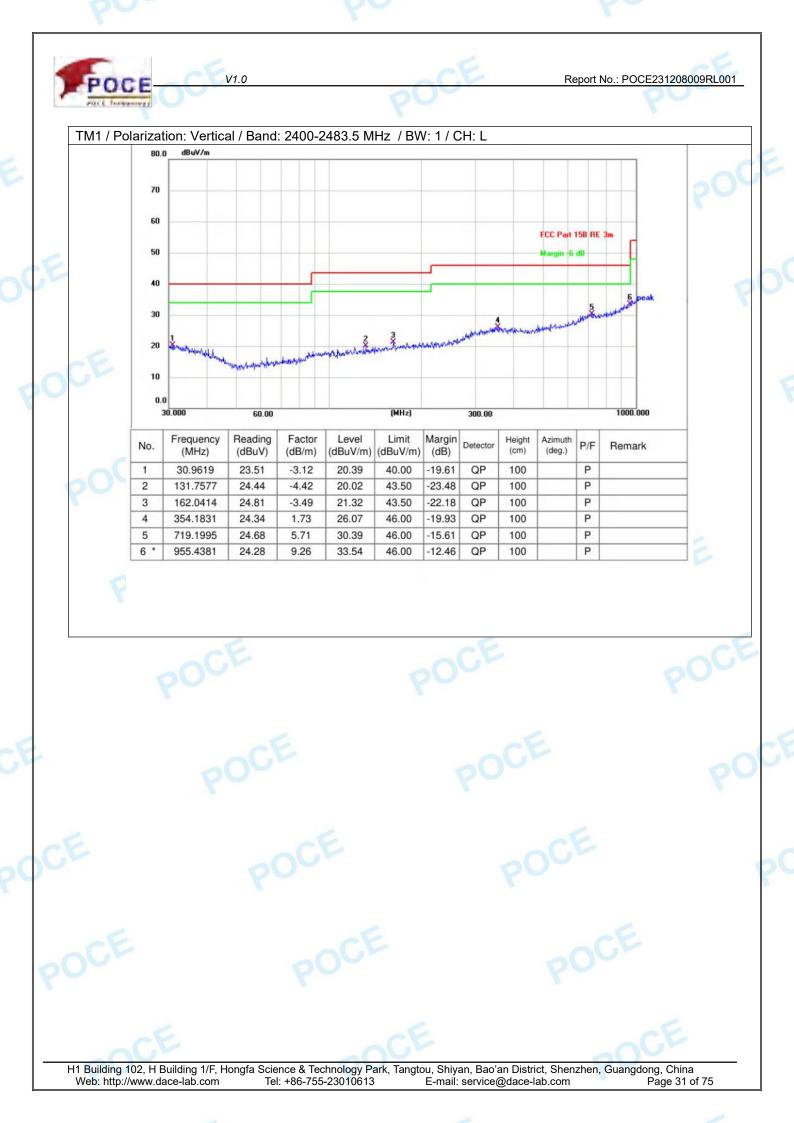
Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.comGuangdong, China
Page 27 of 75

4.9 Emissions in frequency bands (below 1GHz)

V1.0


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated				
		d in § 15.209(a)(see § 15.205(c			
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	2400/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
		paragraph (g), fundamental er			
	54-72 MHz, 76-88 MHz, these frequency bands and 15.241. In the emission table ab The emission limits sho	er this section shall not be locat , 174-216 MHz or 470-806 MHz is permitted under other section pove, the tighter limit applies at t wn in the above table are based asi-peak detector except for the	z. However, operation withins of this part, e.g., §§ 15.2 the band edges. d on measurements		
		e 1000 MHz. Radiated emission			
		nents employing an average de			
Test Method:					
Test Method.	ANSI C63.10-2013 sect				
Procedure:	KDB 558074 D01 15.24	7 Meas Guidance v05r02	CK		
	above the ground at a 3 degrees to determine th c. The EUT was set 3 of which was mounted on d. The antenna height is determine the maximum polarizations of the anter e. For each suspected e the antenna was tuned below 30MHz, the anter	EUT was placed on the top of a meter fully-anechoic chamber. The position of the highest radiation r 10 meters away from the inter the top of a variable-height anter the top of a variable-height anter s varied from one meter to four in value of the field strength. Bot enna are set to make the measure emission, the EUT was arranged to heights from 1 meter to 4 me inna was tuned to heights 1 meter	The table was rotated 360 on. ference-receiving antenna enna tower. meters above the ground to th horizontal and vertical urement. d to its worst case and the eters (for the test frequency er) and the rotatable table		
	f. The test-receiver system Bandwidth with Maximu		ction and Specified		
	specified, then testing c reported. Otherwise the tested one by one using reported in a data sheet		values of the EUT would be dB margin would be re- nethod as specified and th		
	i. The radiation measure Transmitting mode, and	west channel, the middle chan ements are performed in X, Y, Z found the X axis positioning wh ures until all frequencies measu	axis positioning for a nich it is the worst case.		
	Remark: 1) For emission below 1	GHz, through pre-scan found the case is recorded in the report.	500		
	2) The field strength is o	alculated by adding the Antenn			
-CE		equation with a sample calculat ver Reading + Antenna Factor -			



3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.9.1 E.U.T. Operation:

Operating Environment:						
Temperature:	23.7 °C	0	Humidity:	51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1				
Final test mode:		TM1				

4.10 Emissions in frequency bands (above 1GHz)

V1.0

	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
	. , , , , ,					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	radiators operating unde 54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table abo	paragraph (g), fundamental en r this section shall not be locate 174-216 MHz or 470-806 MHz s permitted under other section ove, the tighter limit applies at t on in the above table are based	ed in the frequency bands . However, operation withi is of this part, e.g., §§ 15.2 .he band edges.			
POCE	employing a CISPR quase 110–490 kHz and above	si-peak detector except for the 1000 MHz. Radiated emission ents employing an average det	frequency bands 9–90 kH limits in these three band			
Test Method:	ANSI C63.10-2013 secti KDB 558074 D01 15.247					
	360 degrees to determin b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the anten e. For each suspected e the antenna was tuned to below 30MHz, the anten was turned from 0 degree f. The test-receiver syste Bandwidth with Maximur g. If the emission level of specified, then testing co reported. Otherwise the tested one by one using	the EUT in peak mode was 10 uld be stopped and the peak v emissions that did not have 100	diation. a rotating table 1.5 meters The table was rotated 360 on. ference-receiving antenna enna tower. meters above the ground t h horizontal and vertical urement. d to its worst case and the ters (for the test frequency er) and the rotatable table naximum reading. ction and Specified OdB lower than the limit values of the EUT would be dB margin would be re-			
	h. Test the EUT in the low	vest channel, the middle chanr				

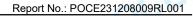
Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.10.1 E.U.T. Operation:

	Operating Environment:						
Temperature: 23	3.7 °C	Humidity:	51.4 %	Atmospheric Pressure:	102 kPa		
Pre test mode:	Pre test mode: TM1, TM2						
Final test mode:	TM1						

4.10.2Test Data:


TM1 is worse case and only reported

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	39.47	-0.90	38.57	74.00	-35.43	peak	149		P	
2	4804.000	28.51	-0.90	27.61	54.00	-26.39	AVG	149		P	
3	7206.000	35.83	4.13	39.96	74.00	-34.04	peak	149		P	
4	7206.000	24.92	4.13	29.05	54.00	-24.95	AVG	149	1	P	
5	9608.000	36.12	8.09	44.21	74.00	-29.79	peak	149		Р	
6 *	9608.000	25.10	8.09	33.19	54.00	-20.81	AVG	149		P	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	38.96	-0.28	38.68	74.00	-35.32	peak	149		P	
2	4804.000	27.94	-0.28	27.66	54.00	-26.34	AVG	149		P	
3	7206.000	36.04	4.09	40.13	74.00	-33.87	peak	149		P	
4	7206.000	24.97	4.09	29.06	54.00	-24.94	AVG	149		P	
5	9608.000	35.97	8.02	43.99	74.00	-30.01	peak	149		P	
6 *	9608.000	25.13	8.02	33.15	54.00	-20.85	AVG	149		P	

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 33 of 75 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4882.000	39.07	-0.64	38.43	74.00	-35.57	peak	149		P	
2	4882.000	27.66	-0.64	27.02	54.00	-26.98	AVG	149		P	
3	7323.000	34.90	4.31	39.21	74.00	-34.79	peak	149		P	
4	7323.000	24.51	4.31	28.82	54.00	-25.18	AVG	149		Ρ	
5	9764.000	36.86	8.09	44.95	74.00	-29.05	peak	149		P	
6 *	9764.000	25.35	8.09	33.44	54.00	-20.56	AVG	149		P	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

V1.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4882.000	38.24	-0.03	38.21	74.00	-35.79	peak	149		P	
2	4882.000	27.16	-0.03	27.13	54.00	-26.87	AVG	149		P	
3	7323.000	36.02	4.36	40.38	74.00	-33.62	peak	149		P	
4	7323.000	24.35	4.36	28.71	54.00	-25.29	AVG	149		P	
5	9764.000	36.24	8.13	44.37	74.00	-29.63	peak	149		P	
6 *	9764.000	25.16	8.13	33.29	54.00	-20.71	AVG	149		P	

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 34 of 75

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	39.18	-0.37	38.81	74.00	-35.19	peak	149		Р	
2	4960.000	27.81	-0.37	27.44	54.00	-26.56	AVG	149		P	
3	7440.000	35.18	4.49	39.67	74.00	-34.33	peak	149		P	
4	7440.000	24.54	4.49	29.03	54.00	-24.97	AVG	149		P	
5	9920.000	36.45	8.08	44.53	74.00	-29.47	peak	149		Р	
6 *	9920.000	25.93	8.08	34.01	54.00	-19.99	AVG	149		P	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

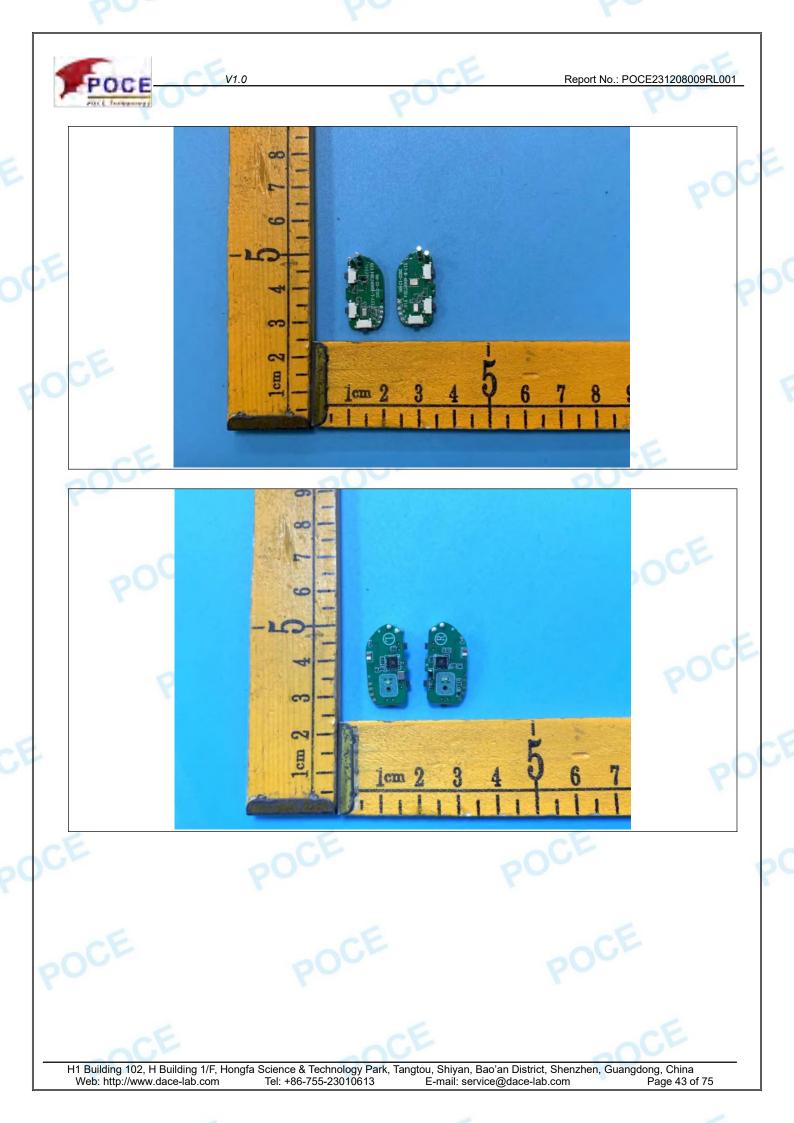
V1.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	38.85	0.23	39.08	74.00	-34.92	peak	149		P	
2	4960.000	27.09	0.23	27.32	54.00	-26.68	AVG	149		P	
3	7440.000	35.65	4.64	40.29	74.00	-33.71	peak	149		P	
4	7440.000	24.46	4.64	29.10	54.00	-24.90	AVG	149		P	
5	9920.000	36.81	8.23	45.04	74.00	-28.96	peak	149		P	
6 *	9920.000	25.77	8.23	34.00	54.00	-20.00	AVG	149		P	

Remark: Over= Measurement Level - Limit

Measurement Level=Test receiver reading + correction factor Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

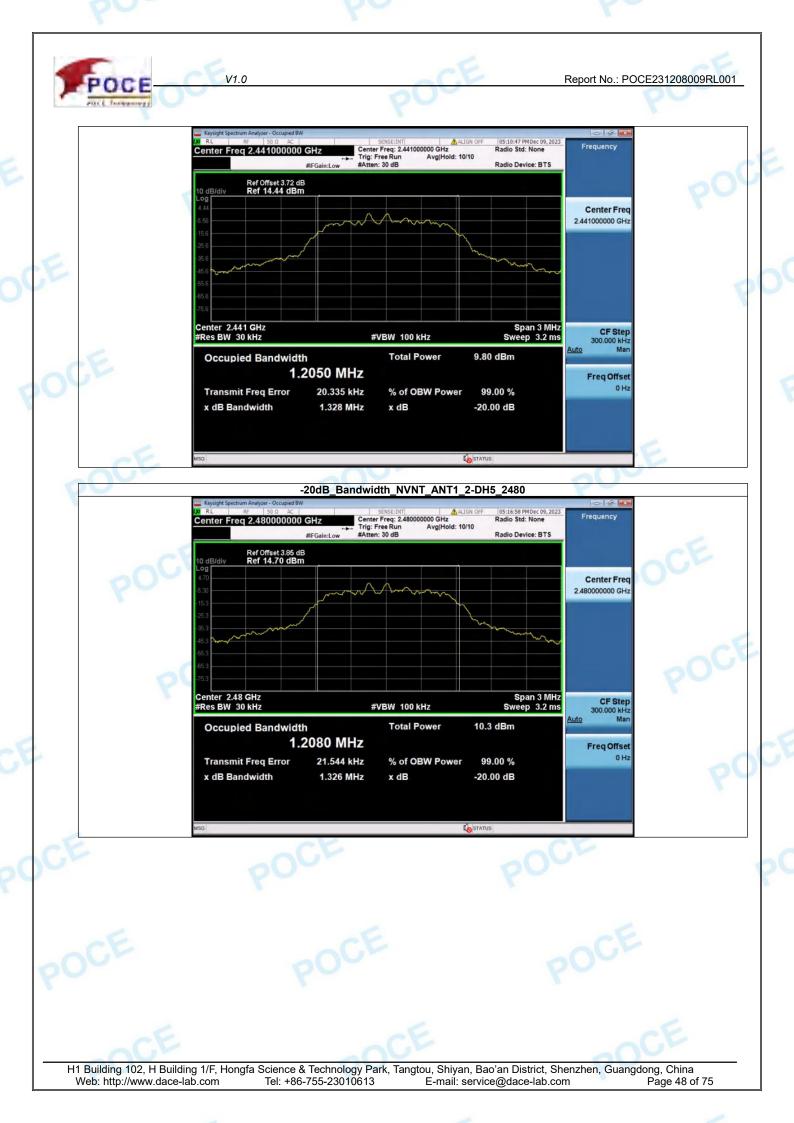
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 Page 35 of 75 E-mail: service@dace-lab.com

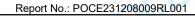


HT231208004--BX29--EDR--FCC FCC_BT (Part15.247) Test Data

1. -20dB Bandwidth

V10


Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.042	Yes
NVNT	ANT1	1-DH5	2441.00	1.042	Yes
NVNT	ANT1	1-DH5	2480.00	1.040	Yes
NVNT	ANT1	2-DH5	2402.00	1.323	Yes
NVNT	ANT1	2-DH5	2441.00	1.328	Yes
NVNT	ANT1	2-DH5	2480.00	1.326	Yes



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 75

Center Freq 2.441000000 GHz

Start Freq 2.437000000 GHz

Stop Freq 2.445000000 GHz

> CF Step 800.000 kHz Man

Freq Offset 0 Hz

Scale Type

Lin

Auto

Log

Span 8.000 MHz Sweep 1.000 ms (1001 pts)

TA STA

2. Peak Output Power

V1.0

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	2.61	1.82	125	Pass
NVNT	ANT1	1-DH5	2441.00	2.88	1.94	125	Pass
NVNT	ANT1	1-DH5	2480.00	3.30	2.14	125	Pass
NVNT	ANT1	2-DH5	2402.00	3.45	2.22	125	Pass
NVNT	ANT1	2-DH5	2441.00	3.64	2.31	125	Pass
NVNT	ANT1	2-DH5	2480.00	4.16	2.61	125	Pass

 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613

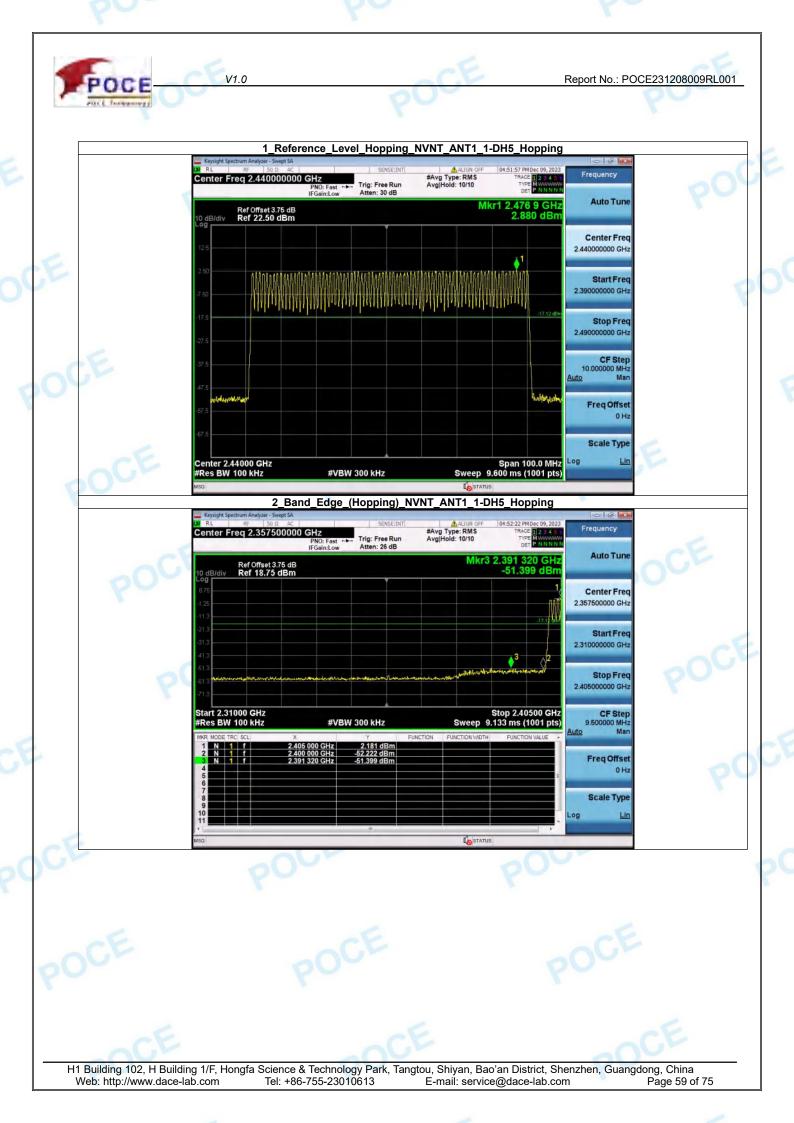
 E-mail: service@dace-lab.com
 Page 49 of 75

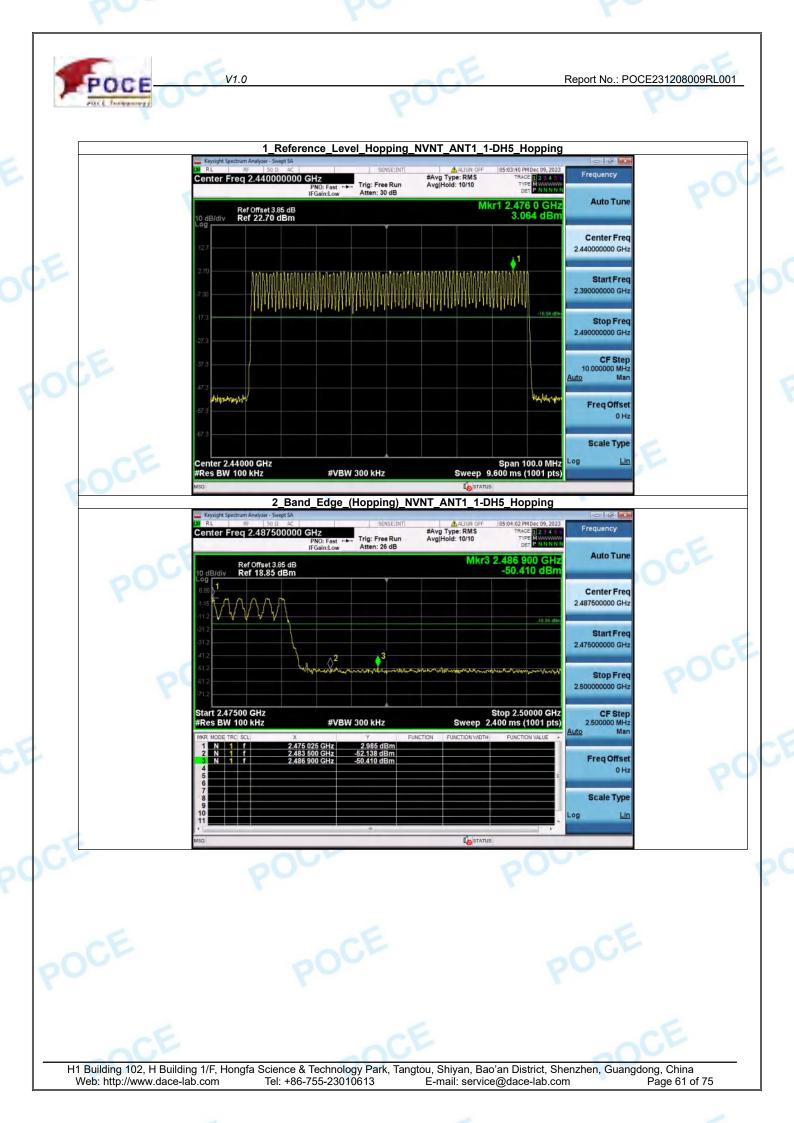
#VBW 8.0 MHz

Center 2.441000 GHz #Res BW 3.0 MHz

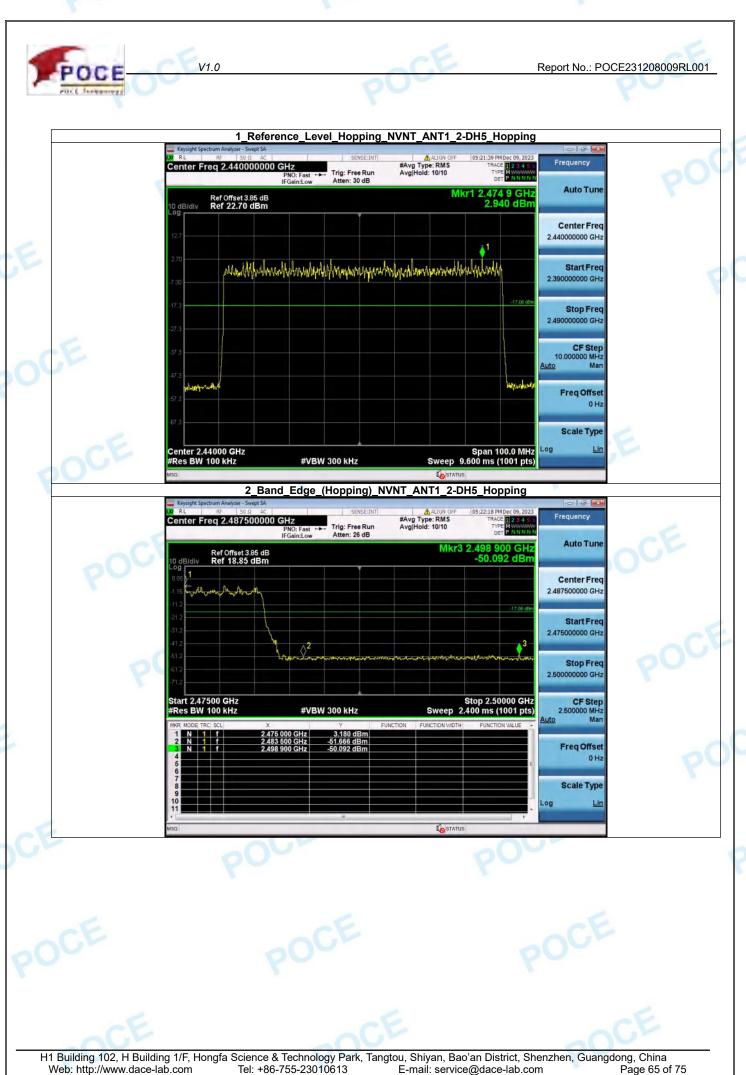
3. Spurious Emissions

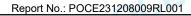
Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-46.062	-17.621	Pass
NVNT	ANT1	1-DH5	2441.00	-48.098	-17.437	Pass
NVNT	ANT1	1-DH5	2480.00	-43.900	-17.016	Pass
NVNT	ANT1	2-DH5	2402.00	-45.185	-17.618	Pass
NVNT	ANT1	2-DH5	2441.00	-47.485	-17.366	Pass
NVNT	ANT1	2-DH5	2480.00	-44.804	-17.020	Pass




4. Bandedge

Condition	Antenna	Modulation	TX Mode	e Bandedge MAX.Value		Result
NVNT	ANT1 🥢	1-DH5	2402.00	-48.872	-17.621	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-51.399	-17.120	Pass
NVNT	ANT1	1-DH5	2480.00	-49.985	-17.016	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	-50.410	-16.936	Pass
NVNT	ANT1	2-DH5	2402.00	-48.005	-17.618	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	-51.977	-17.023	Pass
NVNT	ANT1	2-DH5	2480.00	-50.294	-17.020	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-50.092	-17.060	Pass





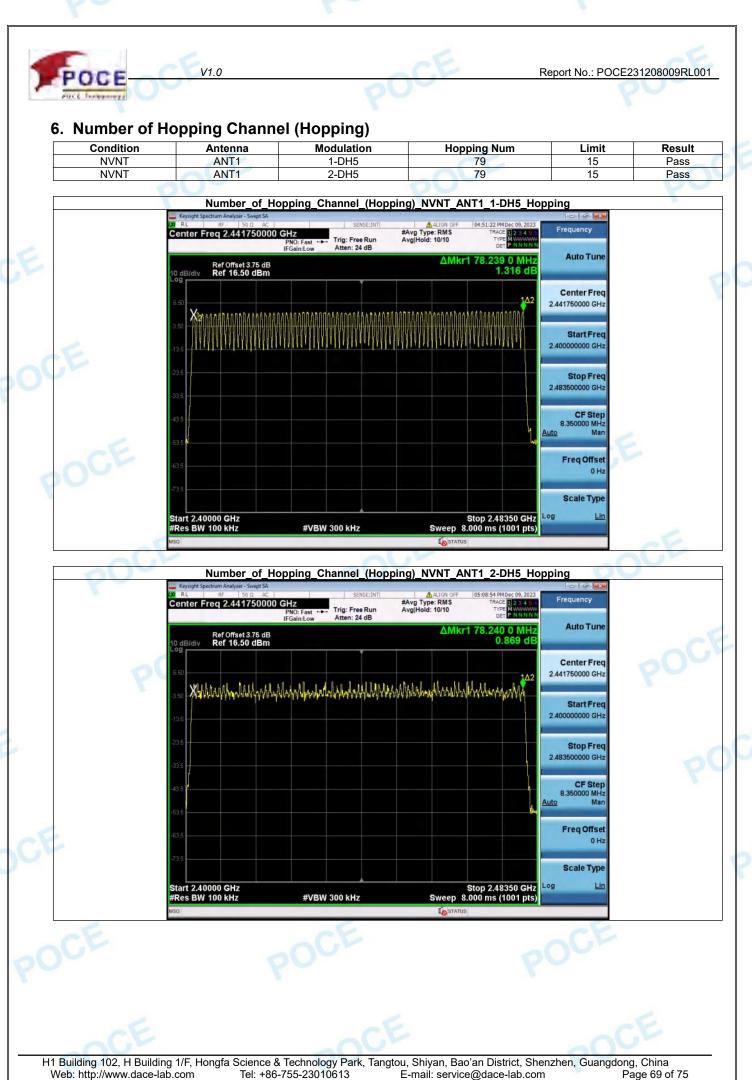
Tel: +86-755-23010613 E-mail: service@dace-lab.com

POCE

5. Carrier Frequencies Separation (Hopping)

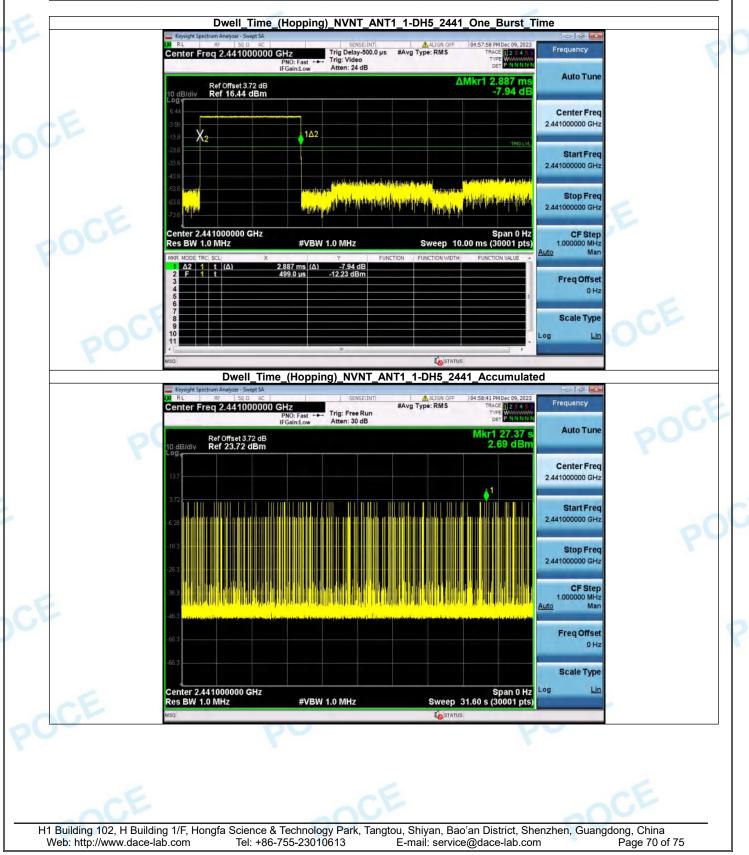
V1.0

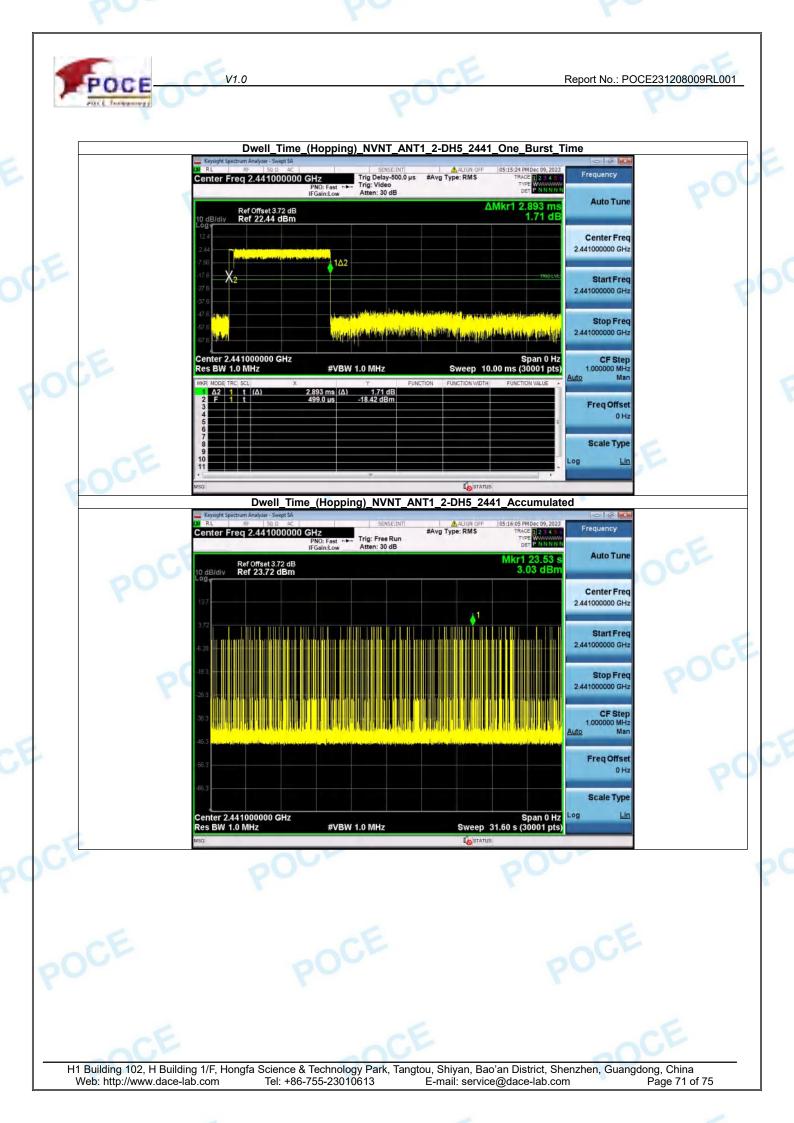
Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2402.023	2402.857	0.83	0.695	Pass
NVNT	ANT1	1-DH5	2441.00	2440.843	2441.983	1.14	0.695	Pass
NVNT	ANT1	1-DH5	2480.00	2478.999	2480.097	1.10	0.693 📃	Pass
NVNT	ANT1	2-DH5	2402.00	2401.870	2402.866	1.00	0.882	Pass
NVNT	ANT1	2-DH5	2441.00	2440.837	2442.007	1.17	0.885	Pass
NVNT	ANT1	2-DH5	2480.00	2478.861	2479.839	0.98	0.884	Pass

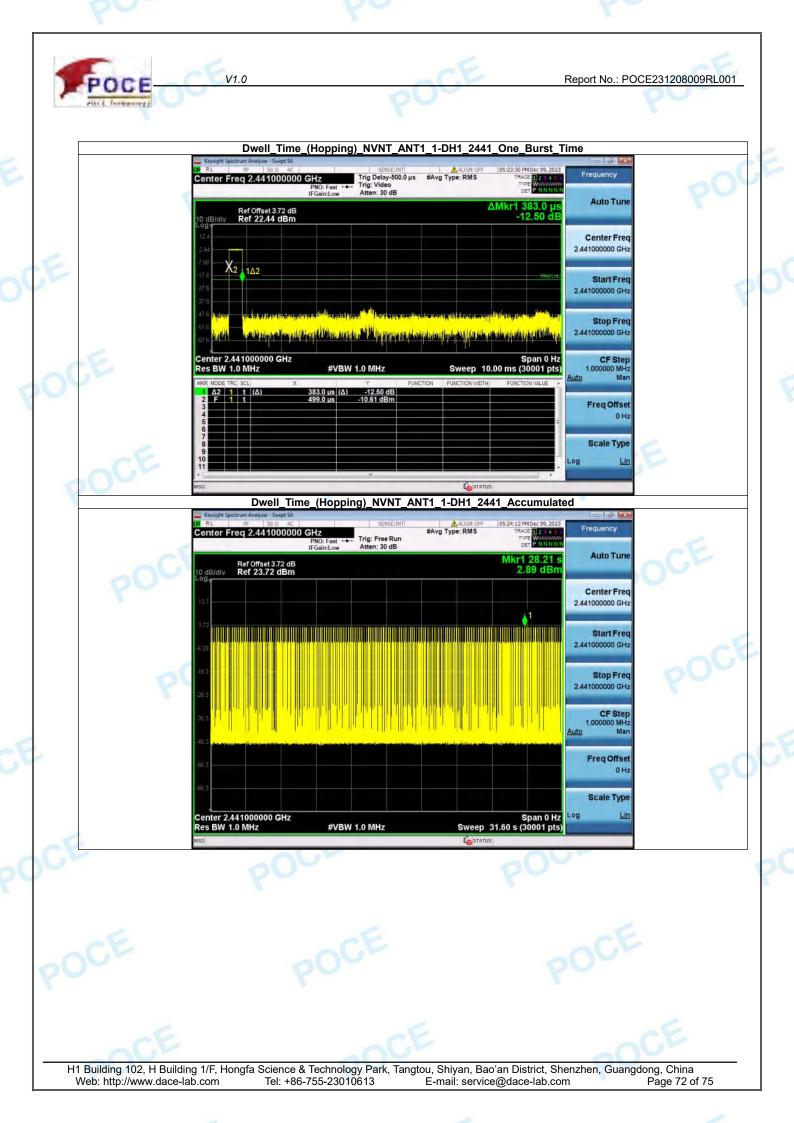


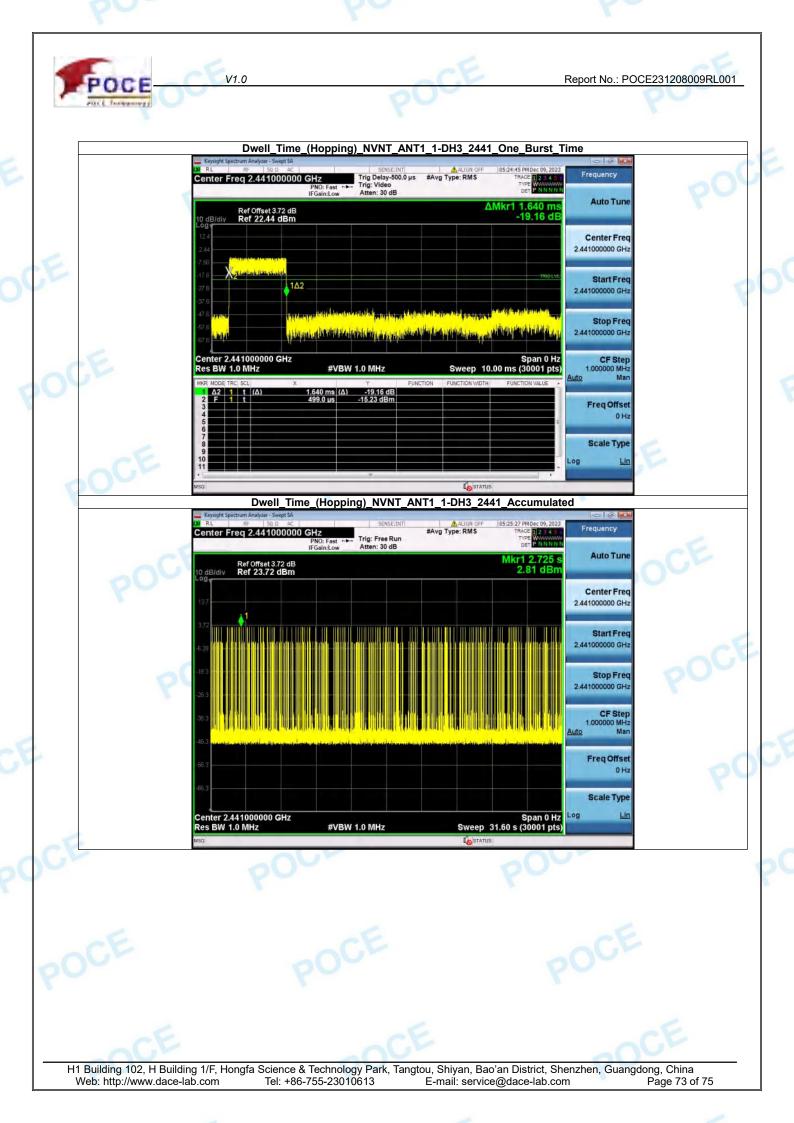
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 66 of 75

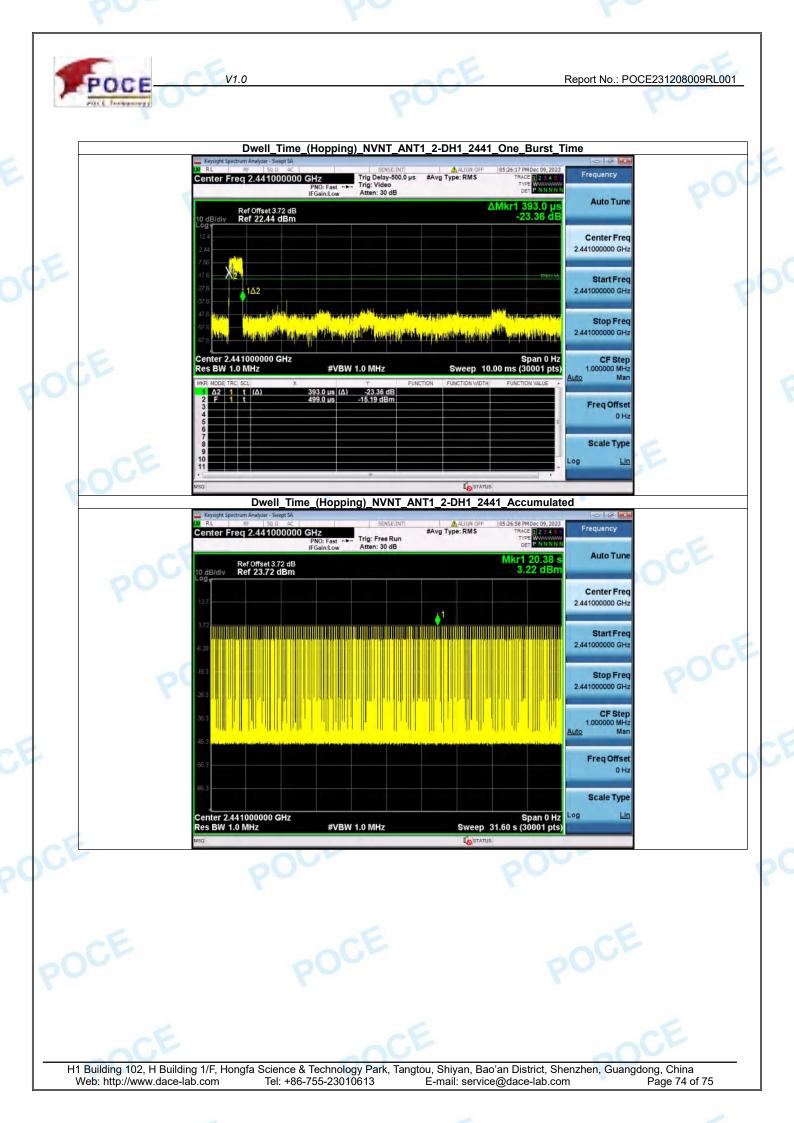
rei: +86-755-23




Tel: +86-755-23010613 E-mail: service@dace-lab.com




7. Dwell Time (Hopping)


Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.887	101.00	291.587	0.40	Pass
NVNT	ANT1	2-DH5	2.893	92.00	266.156	0.40	Pass
NVNT	ANT1	1-DH1	0.383	320.00	122.560	0.40	Pass
NVNT	ANT1	1-DH3	1.640	150.00	246.000	0.40	Pass
NVNT	ANT1	2-DH1	0.393	320.00	125.760	0.40	Pass
NVNT	ANT1	2-DH3	1.645	161.00	264.845	0.40	Pass

