SAR TEST REPORT For ADVANCETC LIMITED **4G SMARTPHONE** Test Model: X7 List Model No.: /

: ADVANCETC LIMITED
: Level 12,225 George Street Sydney-NSW Australia
: Shenzhen LCS Compliance Testing Laboratory Ltd.
: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an
Avenue, Bao'an District, Shenzhen, Guangdong, China
: (86)755-82591330
: (86)755-82591332
: www.LCS-cert.com
: webmaster@LCS-cert.com
: June 18, 2019
: 1
: Prototype
: June 18, 2019~July 03, 2019
: July 11, 2019

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2ATTU-X7

	SAR TEST REPORT		
Report Reference No	LCS190617048AEB		
Date Of Issue:	July 11, 2019		
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Address:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China		
Testing Location/ Procedure :	Full application of Harmonised standards		
	Partial application of Harmonised standards Other standard testing method		
Applicant's Name:	ADVANCETC LIMITED		
Address:	Level 12,225 George Street Sydney-NSW Australia		
Test Specification:			
Standard:	IEEE Std C95.1, 2005& IEEE Std 1528 [™] -2013&FCC Part 2.1093		
Test Report Form No	LCSEMC-1.0		
TRF Originator:	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Master TRF:	Dated 2014-09		
Shenzhen LCS Compliance Testing the material. Shenzhen LCS Comp	ed in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of pliance Testing Laboratory Ltd. takes noresponsibility for and will esulting from the reader's interpretation of the reproduced material		
Test Item Description::	4G SMARTPHONE		
Trade Mark:	XPLORE, ADVANCE, CILICON		
Test Model:	X7		
Operation Frequency:	GSM 850/PCS1900, WCDMA Band II/IV/V;LTE Band2/5/7; WLAN2.4G, WLAN5.2G, WLAN5.8G, Bluetooth4.1		
Modulation Type:	Refer to page 7		
Ratings:	DC 3.8V by Rechargeable Li-Polymer Battery(5000mAh) Recharged by 3.6V~6V=, 3A; 6V~9V=, 2A; 9V~12V=, 1.5A Adapter		
Result:	Positive		
Compiled by:	Supervised by: Approved by:		
Ner ~ Deng	Aking Jin Jam Piang		

100.00 0

Vera Deng/ File administrators

Aking Jin/ Technique principal

(|

Gavin Liang/ Manager

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 179 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2ATTU-X7

Report No.: LCS190617048AEB

SAR -- TEST REPORT

Test Report No. :	LCS190617048AEB	July 11, 2019 Date of issue
Test Model	: X7	
EUT	: 4G SMARTPHONE	
ApplicantAddress	: ADVANCETC LIMITED : Level 12,225 George Street S	Sydney-NSW Australia
Manufacturer Address		
Factory		

Positive **Test Result**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: LCS190617048AEB

Revison History

Revision	Issue Date	Revisions	Revised By
000	July 11, 2019	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 179

TABLE OF CONTENTS

1. TEST STANDARDS AND TEST DESCRIPTION	N6
1.1. Test Standards	
1.3. GENERAL REMARKS	
1.5. STATEMENT OF COMPLIANCE	
2. TEST ENVIRONMENT	
2.2. ENVIRONMENTAL CONDITIONS	
	ATION12
	N TO THE PHANTOM
	ND BODY PHANTOMS
	NT POSITION
	Iz)
4.10 SAR TEST GRAPH RESULTS	
5. CALIBRATION CERTIFICATES	
5.1 PROBE-EPGO324 CALIBRATION CERTIFICATE	
5.4 SID1800 DIPOLE CALIBRATION CERTIFICATE.	
0.2 PHOTOGRAPH OF THE TEST	
7. EUT PHOTOGRAPHS	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 179

1.TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

IEEE Std C95.1, 2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment. IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. FCC Part 2.1093: Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB248227 D01 802 11 Wi-Fi SAR v02r02: SAR Guidance For leee 802.11 (Wi-Fi) Transmitters KDB941225 D01 3G SAR Procedures v03r01: 3G SAR Meaurement Procedures

KDB941225 D06 Hotspot Mode v02r01: SAR Evaluation Procedures For Portable Devices With Wireless Router Capabilities

KDB941225 D05 SAR for LTE Devices v02r05: SAR Evaluation Considerations For LTE Devices

1.2. Test Description

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power . And Test device is identical prototype.

1.3. General Remarks

Date of receipt of test sample	:	June 18, 2019
Testing commenced on	•••	June 18, 2019
Testing concluded on	:	July 03, 2019

1.4. Product Description

The **ADVANCETC LIMITED** Model: **X7** or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

General Description		
Product Name:	4G SMARTPHONE	
Test Model:	X7	
List Model No.:	/	
Modulation Type:	GMSK for GSM/GPRS; 8-PSK for EDGE; QPSK for UMTS; QPSK, 16QAM for LTE	
Device category:	Portable Device	
Exposure category:	General population/uncontrolled environment	
EUT Type:	Production Unit	
Hardware Version:	V1.1	
Software Version:	F_X7.V1.13	
Power supply: DC 3.8V by Rechargeable Li-Polymer Battery(5000mAh)		
Recharged by 3.6V~6V , 3A; 6V~9V , 2A; 9V~12V , 1.5A Adapter		
Hotspot:	Supported, power not reduced when Hotspot open	
VoIP	Supported	
The EUT is GSM.WCDM	A.LTE. mobile phone, the mobile phone is intended for speech and Multimedia	

The EUT is GSM,WCDMA,LTE, mobile phone. the mobile phone is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for GSM850, PCS1900, WCDMA Band II, Band V, LTE Band 2, Band5, Band7 and Bluetooth, WiFi2.4G, WiFi5.2G, WiFi5.8G camera functions. For more information see the following datasheet

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 179

FCC ID: 2ATTU-X7

Technical Characteristics			
GSM			
Support Networks	GSM, GPRS,EGPRS		
Support Band	GSM850/PCS1900/GPRS850/GPRS1900/EDGE850/EDGE1900		
· ·	GSM850: 824.2~848.8MHz		
Frequency	GSM1900: 1850.2~1909.8MHz		
	GSM850:Power Class 4		
Power Class:	PCS1900:Power Class 1		
Modulation Type:	GSM850/PCS1900/GPRS850/GPRS1900		
GSM Release Version:	R99		
GPRS Multislot Class:	12		
EGPRS Multislot Class:	12		
DTM Mode:	Not Supported		
D TM Mode.	0.2dBi (max.) For GSM 850; 0.2dBi (max.) For GSM 900;		
Antenna Gain:	0.5dBi (max.) For DCS 1800; 0.5dBi (max.) For PCS 1900;		
Antonno Turno:	IFA Antenna		
Antenna Type: UMTS	IFA Antenna		
Support Networks	WCDMA RMC12.2K,HSDPA,HSUPA		
Operation Band:	UMTS FDD Band I/II/V/VIII		
Frequency Range	WCDMA Band II: 1852.4 ~ 1907.6MHz		
	WCDMA Band V: 826.4 ~ 846.6MHz		
Modulation Type:	QPSK for WCDMA/HSUPA/HSDPA		
Power Class:	Class 3		
WCDMA Release Version:	R8		
HSDPA Release Version:	Release 8		
HSUPA Release Version:	Release 6		
DC-HSUPA Release Version:	Not Supported		
Antenna Gain: 0.5dBi for WCDMA Band I; 0.5dBi for WCDMA Band II;			
0.2dBi for WCDMA Band V; 0.2dBi for WCDMA Band VII;			
Antenna Type:	IFA Antenna		
LTE			
Support Band	LTE Band2, Band5, Band7		
	LTE Band2:1850 ~ 1910MHz;		
Frequency Range	LTE Band5:824 ~849MHz;		
Frequency Range			
Frequency Range Power Class:	LTE Band5:824 ~849MHz;		
	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz;		
Power Class:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3		
Power Class: Modulation Type:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM		
Power Class: Modulation Type: LTE Release Version:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support		
Power Class: Modulation Type: LTE Release Version: VoLTE	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9		
Power Class: Modulation Type: LTE Release Version:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2;		
Power Class: Modulation Type: LTE Release Version: VoLTE	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5;		
Power Class: Modulation Type: LTE Release Version: VoLTE	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8;		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40)		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20)		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40)		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency: Type of Modulation:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency: Type of Modulation: Data Rate:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency: Type of Modulation: Data Rate: Channel number:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency: Type of Modulation: Data Rate: Channel number: Channel separation:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency: Type of Modulation: Data Rate: Channel number: Channel separation: WIFI(5G U-NI-1)	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency: Type of Modulation: Data Rate: Channel number: Channel separation:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz 5180MHz~5240MHz		
Power Class: Modulation Type: LTE Release Version: VoLTE Antenna Gain: Antenna Type: WIFI 2.4G Supported Standards: Operation frequency: Type of Modulation: Data Rate: Channel number: Channel separation: WIFI(5G U-NI-1)	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz 5180MHz~5240MHz 4 channels for 20MHz bandwidth(5180-5240MHz)		
Power Class:Modulation Type:LTE Release Version:VoLTEAntenna Gain:Antenna Gain:Antenna Type:WIFI 2.4GSupported Standards:Operation frequency:Type of Modulation:Data Rate:Channel number:Channel separation:WIFI(5G U-NI-1)Frequency Range:Channel Number:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz 5180MHz~5240MHz 4 channels for 20MHz bandwidth(5180-5240MHz) 2 channels for 40MHz bandwidth(5190~5230MHz)		
Power Class:Modulation Type:LTE Release Version:VoLTEAntenna Gain:Antenna Gain:Antenna Type:WIFI 2.4GSupported Standards:Operation frequency:Type of Modulation:Data Rate:Channel number:Channel separation:WIFI(5G U-NI-1)Frequency Range:Channel Number:Modulation Type:	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz 5180MHz~5240MHz 4 channels for 20MHz bandwidth(5180-5240MHz)		
Power Class:Modulation Type:LTE Release Version:VoLTEAntenna Gain:Antenna Gain:Antenna Type:WIFI 2.4GSupported Standards:Operation frequency:Type of Modulation:Data Rate:Channel number:Channel separation:WIFI(5G U-NI-1)Frequency Range:Channel Number:Modulation Type:WIFI(5G U-NI-3)	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz 5180MHz~5240MHz 4 channels for 20MHz bandwidth(5180-5240MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) IEEE 802.11a/n: OFDM(64QAM, 16QAM, QPSK, BPSK)		
Power Class:Modulation Type:LTE Release Version:VoLTEAntenna Gain:Antenna Type:WIFI 2.4GSupported Standards:Operation frequency:Type of Modulation:Data Rate:Channel number:Channel separation:WIFI(5G U-NI-1)Frequency Range:Channel Number:Modulation Type:WIFI(5G U-NI-3)Frequency Range	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz 5180MHz~5240MHz 4 channels for 20MHz bandwidth(5180-5240MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) IEEE 802.11a/n: OFDM(64QAM, 16QAM, QPSK, BPSK)		
Power Class:Modulation Type:LTE Release Version:VoLTEAntenna Gain:Antenna Gain:Antenna Type:WIFI 2.4GSupported Standards:Operation frequency:Type of Modulation:Data Rate:Channel number:Channel separation:WIFI(5G U-NI-1)Frequency Range:Channel Number:Modulation Type:WIFI(5G U-NI-3)	LTE Band5:824 ~849MHz; LTE Band7:2510 ~ 2560MHz; Class 3 QPSK/16QAM Release 9 Not Support 0.5dBi for LTE Band 1; 0.5dBi for LTE Band 2; 0.5dBi for LTE Band 3; 0.2dBi for LTE Band 5; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 7; 0.5dBi for LTE Band 8; 0.5dBi for LTE Band 20 IFA Antenna IEEE 802.11b/802.11g/802.11n(HT20 and HT40) 2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40) CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM 1-11Mbps, 6-54Mbps, up to 150Mbps IEEE 802.11b/802.11g/802.11n(HT20): 11; 802.11n(HT40): 7 5MHz 5180MHz~5240MHz 4 channels for 20MHz bandwidth(5180-5240MHz) 2 channels for 40MHz bandwidth(5190~5230MHz) IEEE 802.11a/n: OFDM(64QAM, 16QAM, QPSK, BPSK)		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 179

 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.
 FCC ID: 2ATTU-X7
 Report No.: LCS190617048AEB

 2 channels for 40MHz bandwidth(5755~5795MHz)
 Modulation Type
 IEEE 802.11a/n: OFDM(64QAM, 16QAM, QPSK, BPSK)

 Bluetooth
 Bluetooth
 V4.1

 Modulation:
 GFSK, π/4-DQPSK, 8DPSK(BT V4.1)

 Operation frequency:
 2402MHz~2480MHz

IFA Antenna; 0.2dBi (max.) For BT and WLAN

40/79 1MHz/2MHz

ASK;

13.56MHz

Loop Antenna, 0dBi (max.)

Channel number:

NFC Function

Modulation Type:

Channel separation:

Antenna Description:

Operating Frequency:

Antenna Description:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 8 of 179

1.5. Statement of Compliance

The maximum of results of SAR found during testing for **EUT** are follows:

Classment	Frequency	Head	Hotspot (Report SAR _{1-g} (W/kg)	Body-worn (Report SAR _{1-g} (W/kg)
Class	Band	(Report SAR _{1-g} (W/kg)	(Separation Di	istance 10mm)
	GSM 850	0.604	0.134	0.134
	GSM1900	1.222	0.375	0.375
	WCDMA Band V	1.107	1.065	1.065
PCE	WCDMA Band II	0.785	0.896	0.896
	LTE Band 2	0.782	0.305	0.305
	LTE Band 5	0.232	0.137	0.137
	LTE Band 7	0.139	0.130	0.130
DTS	WIFI2.4G	0.283	0.472	0.472
NII	5GWLAN U-NI-1	0.332	0.321	0.321
INII	5GWLAN U-NI-3	0.278	0.413	0.413

				-	
<highest< td=""><td>Reported</td><td>standalone</td><td>SAR</td><td>Summar</td><td>/></td></highest<>	Reported	standalone	SAR	Summar	/>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest Reported simultaneous SAR Summary>

Exposure Position	Frequency Band	Reported SAR _{1-g} (W/kg)	Classment Class	Highest Reported Simultaneous Transmission SAR _{1-g} (W/kg)
Head	WCDMA Band V	1.065	PCE	1.537
(hotspot open)	WIFI2.4G	0.472	NII	1.557

FCC ID: 2ATTU-X7

2.TEST ENVIRONMENT

2.1. Test Facility

- The test facility is recognized, certified, or accredited by the following organizations: Site Description
 - EMC Lab.
 FCC Registration Number is 254912. Industry Canada Registration Number is 9642A-1. EMSD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081. TUV RH Registration Number is UA 50296516-001. NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier: CN0071

2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

2.3. SAR Limits

	FCC Limit (1g Tissue)		
	SAR (W/k	(g)	
EXPOSURE LIMITS	(General Population /	(Occupational /	
EXFOSORE EIMITS	Uncontrolled Exposure	Controlled Exposure	
	Environment)	Environment)	
Spatial Average(averaged over the	0.08	0.4	
whole body)	0.08	0:4	
Spatial Peak(averaged over any 1 g of	1.6	8.0	
tissue)	1.0	8.0	
Spatial Peak(hands/wrists/	4.0	20.0	
feet/anklesaveraged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

FCC ID: 2ATTU-X7

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	G5005	MY42081102	N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2019-06-11	2020-06-10
4	Multimeter	Keithley	MiltiMeter 2000	4059164	2018-11-15	2019-11-14
5	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2018-11-15	2019-11-14
6	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2018-11-15	2019-11-14
7	E-Field PROBE	SATIMO	SSE5	SN 17/14 EP220	2018-10-31	2019-10-30
8	DIPOLE 835	SATIMO	SID 835	SN 07/14 DIP 0G835-303	2018-10-01	2021-09-30
9	DIPOLE 1900	SATIMO	SID 1900	SN 38/18 DIP 1G900-466	2018-09-24	2021-09-23
10	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2018-10-01	2021-09-30
11	DIPOLE 2600	SATIMO	SID 2600	SN 38/18 DIP 2G600-468	2018-09-24	2021-09-23
12	DIPOLE 5-6G	SATIMO	SWG 5500	SN 49/16 WGA43	2018-09-24	2021-09-23
13	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2018-11-15	2019-11-14
14	SAR Locator	SATIMO	VPS51	SN 40/14 VPS51	2018-11-15	2019-11-14
15	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2018-11-15	2019-11-14
16	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
17	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
18	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
19	Liquid measurement Kit	HP	85033D	3423A03482	2018-11-15	2019-11-14
20	Power meter	Agilent	E4419B	MY45104493	2019-06-11	2020-06-10
21	Power meter	Agilent	E4419B	MY45100308	2018-11-28	2019-11-27
22	Power sensor	Agilent	E9301H	MY41495616	2018-11-28	2019-11-27
23	Power sensor	Agilent	E9301H	MY41495234	2019-06-11	2020-06-10
24	Directional Coupler	MCLI/USA	4426-20	03746	2019-06-11	2020-06-10

Note:

- Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated values;
- c) The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

3.SAR MEASUREMENTS SYSTEM CONFIGURATION

3.1. SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

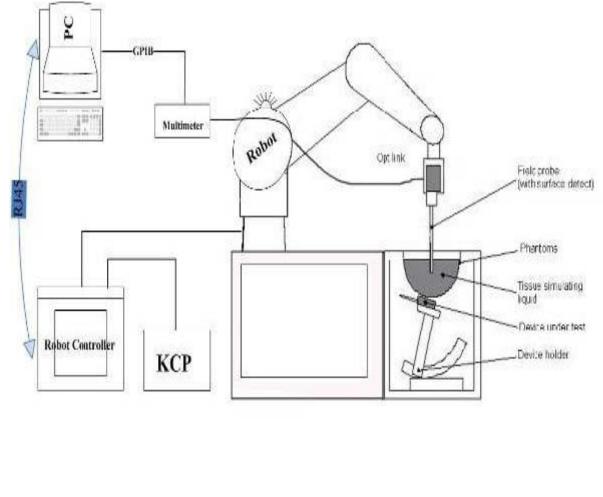
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 179

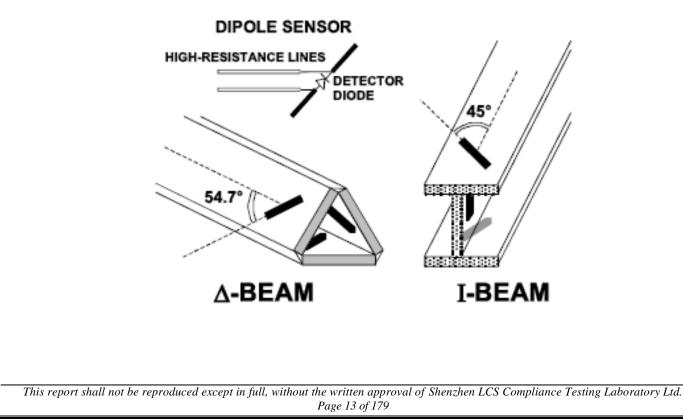
3.2. OPENSAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO324 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

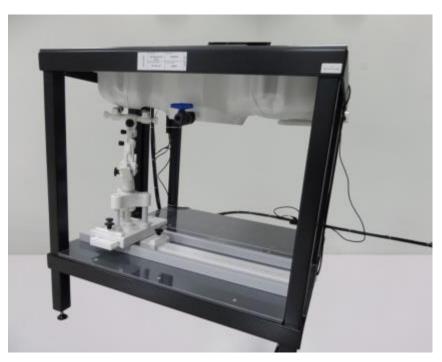
ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6 GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB
Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

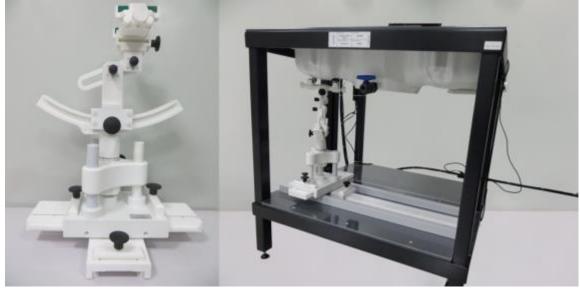
Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.


The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

3.3. Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE 1528 and EN62209-1, EN62209-2. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

3.4. Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 179

3.5. Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$		
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^{\circ}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$		
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$		
faximum zoom can spatial esolution, normal to hantom surface graded grid		Δz _{Zoom} (1): between 1 st two points closest to phantom surface	\leq 4 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 2.5 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$		
	gna	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	m(n-1) mm		
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \geq 28 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \geq 25 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \geq 22 \; \mathrm{mm} \end{array}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 179

SHENZHEN LUS COMPLIANCE TESTING LABORATORY LTD. FUUTD: ZATTU-X/ REPORT NO.: LUST9001/048AEB	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ATTU-X7	Report No.: LCS190617048AEB
---	---	------------------	-----------------------------

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6. Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files . The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: -	Sensitivity	Normi, ai0, ai1, ai2
-	Conversion factor	ConvFi
-	Diode compression poir	nt Dcpi
Device parameters: -	Frequency	f
-	Crest factor	cf
Media parameters: -	Conductivity	σ
-	Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 $' + a_{i2}f^2$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

	-	E - field probes:	$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$
		H-field probes:	$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}}{f}$
With	Vi Normi	 compensated signal of channel i sensor sensitivity of channel i [mV/(V/m)2] for E-field Probes 	(i = x, y, z) (i = x, y, z)
	ConvF	= sensitivity enhancement in solution	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2ATTU-X7

Report No.: LCS190617048AEB

= sensor sensitivity factors for H-field probes aij f

= carrier frequency [GHz]

= electric field strength of channel i in V/m Ei

= magnetic field strength of channel i in A/m Hi

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR

= local specific absorption rate in mW/g

= total field strength in V/m Etot σ

= conductivity in [mho/m] or [Siemens/m]

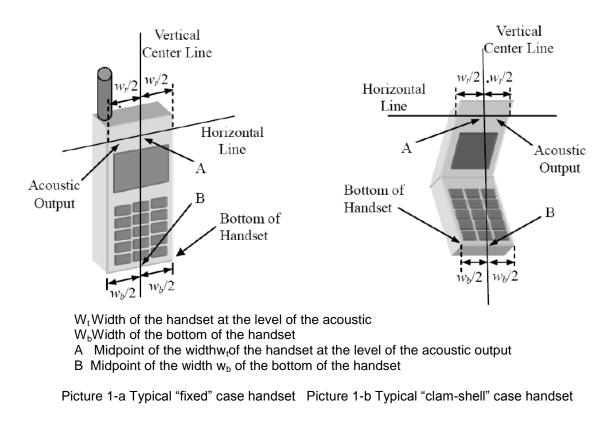
ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

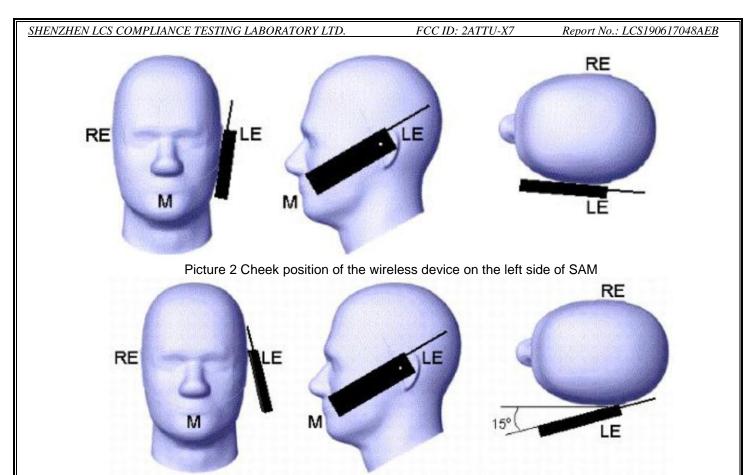
3.7. Position of the wireless device in relation to the phantom

General considerations

This standard specifies two handset test positions against the head phantom - the "cheek" position and the "tilt" position.


The power flow density is calculated assuming the excitation field as a free space field

$$P_{(\text{pwe})} = \frac{E_{\text{tot}}^2}{3770} \text{ or } P_{(\text{pwe})} = H_{\text{tot}}^2.37.7$$


Where P_{pwe}=Equivalent power density of a plane wave in mW/cm2

E_{tot}=total electric field strength in V/m

H_{tot}=total magnetic field strength in A/m

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 179

Picture 3 Tilt position of the wireless device on the left side of SAM

For body SAR test we applied to FCC KDB941225, KDB447498, KDB248227, KDB648654;

3.8. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

FCC ID: 2ATTU-X7

The composition of the tissue simulating liquid														
Ingredient	750	MHz	8351	ИНz	1800	MHz	1900	MHz	2450)MHz	2600)MHz	5000	MHz
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.3	41.45	52.5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.5	78.6
Preventol	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Triton X- 100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7

Target Frequency	He	ad	В	ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

3.9. Tissue equivalent liquid properties

Dielectric Performance of Head and Body Tissue Simulating Liquid

Test Eng	gineer: Cherrie	Wang							
Tissue	Measured	Targe	Target Tissue		Measure		Liquid		
Туре	Frequency (MHz)	σ	٤ _r	σ	Dev.	٤ _r	Dev.	Temp.	Test Data
835H	835	0.90	41.50	0.87	-3.33%	41.19	-0.75%	20.5	06/18/2019
1900H	1900	1.40	40.00	1.34	-4.29%	39.73	-0.68%	20.7	06/19/2019
2450H	2450	1.80	39.20	1.75	-2.78%	38.57	-1.61%	21.0	06/20/2019
2600H	2600	1.96	39.00	1.88	-4.08%	40.14	2.92%	23.1	06/25/2019
5200H	5200	4.66	36.00	4.85	4.08%	35.88	-0.33%	20.0	06/26/2019
5800H	5800	5.27	35.30	5.11	-3.04%	36.56	3.57%	21.8	07/03/2019

3.10. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.

Photo of Dipole Setup

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ATTU-X7 Report No.: LCS190617048AEB
--

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID835 SN 07/14 DIP 0G835-303 Extend Dipole Calibrations									
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)			
2018-10-01	-24.49		54.9		2.8				

SID1900 SN 38/18 DIP 1G900-466 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-26.43		50.5		4.7	

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-10-01	-25.59		44.7		-1.1	

SID2600 SN 38/18 DIP 2G600-468 Extend Dipole Calibrations

Date of Measuremen	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-29.14		49.2		3.4	

SID5200 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-8.59		19.38		13.50	

SID5800 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018-09-24	-11.37		54.79		25.47	

<u>SHENZH</u>	EN LCS COM	FCC ID: 2ATTU-X7 Report No.: LCS190617048AEB									
Mixture	Frequency	Power	SAR _{1g}	SAR _{10g}	Drift	1W Ta	-		rence entage	Liqui d	Date
Туре	(MHz)	Fower	(W/kg)	(W/kg)	(%)	SAR _{1g} (W/kg)	SAR _{10g} (W/kg)	1g	10g	Temp	Dale
		100 mW	0.949	0.602							
Head	835	Normalize to 1 Watt	9.49	6.02	1.11	9.60	6.20	-1.15%	-2.90%	20.5	06/18/2019
		100 mW	4.005	2.034							
Head	1900	Normalize to 1 Watt	40.05	20.34	-1.42	39.84	20.20	0.88%	-0.78%	20.7	06/19/2019
		100 mW	5.216	2.363							
Head	Head 2450	Normalize to 1 Watt	52.16	23.63	-3.28	53.89	24.15	-3.21%	-3.86%	21.0	06/20/2019
		100 mW	5.555	2.337			24.08	3 0.45%	-5.00%	23.1	
Head	2600	Normalize to 1 Watt	55.55	23.37	0.05	56.19					06/25/2019
		100 mW	15.864	5.483							
Head	d 5200 Normalize to 158.64 54.83 -1.45	-1.45	159.00	56.90	-0.23%	-3.64%	20.0	06/26/2019			
	!	100 mW	17.723	5.896							
Head	5800	Normalize to 1 Watt	177.23	58.96	-3.30	181.20	61.50	-2.19%	-4.13%	21.8	07/03/2019

3.11. SAR measurement procedure

The measurement procedures are as follows:

3.11.1 Conducted power measurement

a. For WWAN power measurement, use base station simulator connection with RF cable, at maximum power in each supported wireless interface and frequency band.

b. Read the WWAN RF power level from the base station simulator.

c. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously

Transmission, at maximum RF power in each supported wireless interface and frequency band.

d. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

3.11.2 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. Using CMU200 the power level is set to "5" for GSM 850, set to "0" for GSM 1900. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4. the EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslots is 4.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

3.11.3 UMTS Test Configuration

3G SAR Test Reduction Procedure

In the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.3 This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

Output power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

1) Body-Worn Accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 179

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ATTU-X7	Report No.: LCS190617048AEB
--	---	------------------	-----------------------------

configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

2) Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest reported SAR body-worn accessory exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set

Sub-set	β _c	β_d	β _d (SF)	β_c/β_d	β _{hs} (note 1, note 2)	CM(dB) (note 3)	MPR(dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (note 4)	15/15 (note 4)	64	12/15 (note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Table 2: Subtests for UMTS Release 5 HSDPA

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI}=8$ $\Leftrightarrow A_{hs}=\beta_{hs}/\beta_c=30/15$ $\Leftrightarrow \beta_{hs}=30/15*\beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to $\beta_c=11/15$ and $\beta_d=15/15$.

HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of this document

Table 3: Sub-Test 5	Setup for Release 6 HSUPA
---------------------	---------------------------

Sub- set	βc	β_d	β _d (SF)	β _c /β _d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 179

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ATTU-X7	Report No.: LCS190617048AEB
--	---	------------------	-----------------------------

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 * \beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

3.11.4 LTE Test Configuration

QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is \leq 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.8 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

QPSK with 50% RB allocation

The procedures required for 1 RB allocation in section 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.9

QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in sections 4.2.1 and 4.2.2 are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

3.11.5 WIFI Test Configuration

The SAR measurement and test reduction procedures are structured according to either the DSSS or OFDM transmission mode configurations used in each standalone frequency band and aggregated band. For devices that operate in exposure configurations that require multiple test positions, additional SAR test reduction may be applied. The maximum output power specified for production units, including tune-up tolerance, are used to determine initial SAR test requirements for the 802.11 transmission modes in a frequency band. SAR is measured using the highest measured maximum output power channel for the initial test configuration. SAR measurement and test reduction for the remaining 802.11 modes and test channels are determined according to measured or specified maximum output power and reported SAR of the initial measurements. The general test reduction and SAR measurement approaches are summarized in the following:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

2. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, an "initial test configuration" is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units.

a. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

b. SAR is measured for OFDM configurations using the initial test configuration procedures. Additional frequency band specific SAR test reduction may be considered for individual frequency bands

c. Depending on the reported SAR of the highest maximum output power channel tested in the initial test configuration, SAR test reduction may apply to subsequent highest output channels in the initial test configuration to reduce the number of SAR measurements.

The Initial test configuration does not apply to DSSS. The 2.4 GHz band SAR test requirements and 802.11b DSSS procedures are used to establish the transmission configurations required for SAR measurement.
 An "initial test position" is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions .

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 179

|--|

a. SAR is measured for 802.11b according to the 2.4 GHz DSSS procedure using the exposure condition established by the initial test position.

b. SAR is measured for 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration.

802.11b/g/n operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g/n modes are tested on the maximum average output channel.

5. The Initial test position does not apply to devices that require a fixed exposure test position. SAR is measured in a fixed exposure test position for these devices in 802.11b according to the 2.4 GHz DSSS procedure or in 2.4 GHz and 5 GHz OFDM configurations using the initial test configuration procedures .

6. The "subsequent test configuration" procedures are applied to determine if additional SAR measurements are required for the remaining OFDM transmission modes that have not been tested in the initial test configuration. SAR test exclusion is determined according to reported SAR in the initial test configuration and maximum output power specified or measured for these other OFDM configurations.

2.4 GHz and 5GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in section 5.2.2.

1. 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- a. When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 1. 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3). SAR is not required for the following 2.4 GHz OFDM conditions.

- a. When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration
- b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

3. OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures (section 4). When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- a. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- b. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- c. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- d. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ATTU-X7 Report No.: LCS19061

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- a. Channels with measured maximum output power within ¼ dB of each other are considered to have the same maximum output.
- b. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement.
- c. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode.23 For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- a. When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- c. The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

1). SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

2). SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

a) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

d. SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 179

	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ATTU-X7	Report No.: LCS190617048AEB
--	---	------------------	-----------------------------

- 1) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- 2) replace "initial test configuration" with "all tested higher output power configurations.

3.12. Power Reduction

The product without any power reduction.

3.13. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

4. TEST CONDITIONS AND RESULTS

4.1 Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.

2. According to October 2013TCB Workshop, for GSM / GPRS / EGPRS, the number of time slots to test for SAR should correspond to the highest frame-average maximum output power configuration, considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (3Tx slot) for GSM850/GSM1900 band due to their highest frame-average power.

3. For hotspot mode SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (3 Tx slots) for GSM850/GSM1900 band due to its highest frame-average power.

Conducted power measurement results for GSM850/PCS1900												
GSM 850		Tune	(dBm)				Tune-	Average power (dBm)				
		-up	Channe	I/Frequen	cy(MHz)	Division	up	Channel/	Frequency	(MHz)		
		Max	128/ 824.2	190/ 836.6	251/ 848.8	Factors	Max	128/ 824.2	190/ 836.6	251/8 48.8		
G	SM	33.00	32.48	32.53	32.30	-9.03dB	23.97	23.45	23.45 23.50 2			
	1TX slot	32.50	32.39	32.47	32.09	-9.03dB	23.47	23.36	23.44	23.06		
GPRS	2TX slot	31.00	30.75	30.89	30.53	-6.02dB	24.98	24.73	24.87	24.51		
(GMSK)	3TX slot	30.00	29.76	29.85	29.48	-4.26dB	25.74	25.50	25.59	25.22		
	4TX slot	28.50	28.22	28.25	27.94	-3.01dB	25.49	25.21	25.24	24.93		
	1TX slot	26.50	26.32	26.46	26.07	-9.03dB	17.47	17.29	17.43	17.04		
EGPRS	2TX slot	24.50	24.06	24.16	23.88	-6.02dB	18.48	18.04	18.14	17.86		
(8PSK)	3TX slot	23.00	22.57	22.68	22.33	-4.26dB	18.74	18.31	18.42	18.07		
	4TX slot	21.50	21.12	21.21	20.80	-3.01dB	18.49	18.11	18.20	17.79		
		Tuna	Burst Conducted power (dBm)			T	A					
		Tune		(dBm)			Tune-	Averag	e power (dl	Bm)		
GSM	1 1 9 0 0	-up	Channe	(dBm) I/Frequen	cy(MHz)	Division	une- up		Frequency	,		
GSM	1 1900		Channe 512/ 1850.2		cy(MHz) 810/ 1909.8	Division Factors			• •	(MHz) 810/ 1909. 8		
	1 1900 SM	-up	512/ 1850.2 29.45	l/Frequén 661/	810/		up Max. 20.97	Channel/ 512/	Frequency	(MHz) 810/ 1909.		
	SM 1TX slot	-up Max	512/ 1850.2	I/Frequend 661/ 1880	810/ 1909.8	Factors	up Max.	Channel/ 512/ 1850.2	Frequency(661/ 1880	(MHz) 810/ 1909. 8		
GPRS	SM 1TX slot 2TX slot	-up Max 30.00 29.50 28.00	512/ 1850.2 29.45 29.26 27.67	I/Frequent 661/ 1880 29.50 29.42 27.79	810/ 1909.8 29.16 29.11 27.42	Factors -9.03dB -9.03dB -6.02dB	up Max. 20.97 20.47 21.98	Channel/ 512/ 1850.2 20.42 20.23 21.65	Frequency 661/ 1880 20.47 20.39 21.77	MHz) 810/ 1909. 8 20.13 20.08 21.40		
G	SM 1TX slot	-up Max 30.00 29.50	512/ 1850.2 29.45 29.26	I/Frequent 661/ 1880 29.50 29.42	810/ 1909.8 29.16 29.11	Factors -9.03dB -9.03dB	up Max. 20.97 20.47	Channel/ 512/ 1850.2 20.42 20.23	Frequency 661/ 1880 20.47 20.39	(MHz) 810/ 1909. 8 20.13 20.08		
GPRS	SM 1TX slot 2TX slot 3TX slot 4TX slot	-up Max 30.00 29.50 28.00 27.00 25.50	512/ 1850.2 29.45 29.26 27.67 26.78 25.30	//Frequent 661/ 1880 29.50 29.42 27.79 26.86 25.41	810/ 1909.8 29.16 29.11 27.42 26.55 25.07	Factors -9.03dB -9.03dB -6.02dB - 4.26dB -3.01dB	up Max. 20.97 20.47 21.98 22.74 22.49	Channel/ 512/ 1850.2 20.42 20.23 21.65 22.52 22.29	Frequency 661/ 1880 20.47 20.39 21.77 22.60 22.40	(MHz) 810/ 1909. 8 20.13 20.08 21.40 22.29 22.06		
GPRS (GMSK)	SM 1TX slot 2TX slot 3TX slot 4TX slot 1TX slot	-up Max 30.00 29.50 28.00 27.00	512/ 1850.2 29.45 29.26 27.67 26.78	/Frequent 661/ 1880 29.50 29.42 27.79 26.86	810/ 1909.8 29.16 29.11 27.42 26.55	Factors -9.03dB -9.03dB -6.02dB -4.26dB	up Max. 20.97 20.47 21.98 22.74 22.49 16.97	Channel/ 512/ 1850.2 20.42 20.23 21.65 22.52	Frequency 661/ 1880 20.47 20.39 21.77 22.60 22.40 16.86	MHz) 810/ 1909. 8 20.13 20.08 21.40 22.29 22.06 16.50		
GPRS (GMSK) EGPRS	SM 1TX slot 2TX slot 3TX slot 4TX slot 1TX slot 2TX slot	-up Max 30.00 29.50 28.00 27.00 25.50 26.00 24.00	512/ 1850.2 29.45 29.26 27.67 26.78 25.30 25.79 23.57	//Frequent 661/ 1880 29.50 29.42 27.79 26.86 25.41 25.89 23.64	810/ 1909.8 29.16 29.11 27.42 26.55 25.07 25.53 23.24	Factors -9.03dB -9.03dB -6.02dB -4.26dB -3.01dB -9.03dB -6.02dB	up Max. 20.97 20.47 21.98 22.74 22.49 16.97 17.98	Channel/ 512/ 1850.2 20.42 20.23 21.65 22.52 22.29 16.76 17.55	Frequency 661/ 1880 20.47 20.39 21.77 22.60 22.40 16.86 17.62	MHz) 810/ 1909. 8 20.13 20.08 21.40 22.29 22.06 16.50 17.22		
GPRS (GMSK)	SM 1TX slot 2TX slot 3TX slot 4TX slot 1TX slot	-up Max 30.00 29.50 28.00 25.50 26.00	512/ 1850.2 29.45 29.26 27.67 26.78 25.30 25.79	//Frequent 661/ 1880 29.50 29.42 27.79 26.86 25.41 25.89	810/ 1909.8 29.16 29.11 27.42 26.55 25.07 25.53	Factors -9.03dB -9.03dB -6.02dB -6.02dB -3.01dB -9.03dB	up Max. 20.97 20.47 21.98 22.74 22.49 16.97	Channel/ 512/ 1850.2 20.42 20.23 21.65 22.52 22.29 16.76	Frequency 661/ 1880 20.47 20.39 21.77 22.60 22.40 16.86	MHz) 810/ 1909. 8 20.13 20.08 21.40 22.29 22.06 16.50		

<SIM1> Conducted power measurement results for GSM850/PCS1900

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 179

|--|

FCC ID: 2ATTU-X7

<sim2></sim2>									
		Burst	Average Conducted power						
GSM	M 850		Channel/Frequency(MHz))					
		128/824.2	190/836.6	251/848.8					
G	SM	32.43	32.50	32.26					
	1TX slot	32.29	32.44	32.04					
GPRS	2TX slot	30.64	30.80	30.49					
(GMSK)	3TX slot	29.67	29.76	29.40					
·	4TX slot	28.10	28.16	27.87					
	1TX slot	26.23	26.43	26.02					
EDGE	2TX slot	24.01	24.06	23.78					
(8PSK)	3TX slot	22.52	22.64	22.26					
	4TX slot	21.06	21.16	20.74					
		Burst	Average Conducted power	r (dBm)					
GSM	/ 1900		Channel/Frequency(MHz)						
		512/1850.2	661/1880	810/1909.8					
G	SM	29.41	29.46	29.08					
	1TX slot	29.19	29.37	29.01					
GPRS	2TX slot	27.60	27.69	27.33					
(GMSK)	3TX slot	26.72	26.82	26.46					
`	4TX slot	25.22	25.32	25.03					
	1TX slot	25.72	25.86	25.49					
EDGE	2TX slot	23.50	23.58	23.21					
(8PSK)	3TX slot	22.09	22.12	21.76					
· · ·	4TX slot	20.54	20.58	20.18					

Notes:

c.

1. Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.00dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.00dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.00dB

2. According to the conducted power as above, the GPRS measurements are performed with 2Txslot for GPRS850 and 4Txslot GPRS1900.

<UMTS Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- a. The EUT was connected to Base Station E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
 - A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 30 of 179

FCC ID: 2ATTU-X7

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βa	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)		
1	2/15	15/15	64	2/15	4/15	0.0	0.0		
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0		
3	15/15	8/15	64	15/8	30/15	1.5	0.5		
4	15/15	4/15	64	15/4	30/15	1.5	0.5		
Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$. Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and $\Delta_{NACK} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$, and $\Delta_{CQI} = 24/15$ with $\beta_{hs} = 24/15 * \beta_c$.									
Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS- DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.									
Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.									
			Setu	p Configuration	l				

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station R&S CMU200 referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting * :
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI

viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI d. The transmitted maximum output power was recorded.

Sub- test	βc	βa	βα (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81
Note 1		ANACK and			• 700		• •						
Note 2: CM = 1 for β_c/β_d =12/15, β_{ns}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.													
Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.													
Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.													
Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to											ted acco	rding to	
TS25.306 Table 5.1g. Note 6: β _{ed} can not be set directly, it is set by Absolute Grant Value.													

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC	CC ID: 2ATTU-X7 Re	port No.: LCS190617048AEB
---	--------------------	---------------------------

General Note

1. Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded.

2. By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.

3. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

	band	WCDMA	Band II res	ult (dBm)	WCDMA Band V result (dBm)			
Item	Danu	Chann	el/Frequenc	y(MHz)	Channel/Frequency(MHz)			
nem	sub-test	9262/	9400/	9538/	4132/	4182/	4233/	
	Sub-lesi	1852.4	1880	1907.6	826.4	836.4	846.6	
	12.2kbps	23.08	23.24	23.12	23.02	23.34	23.21	
RMC	64kbps	22.74	23.25	23.08	22.90	23.28	23.15	
	144kbps	22.93	23.06	23.24	22.78	23.19	23.24	
	384kbps	22.85	23.31	23.36	22.86	23.37	23.30	
	Sub –Test 1	22.39	22.61	22.52	22.28	22.52	22.41	
HSDPA	Sub –Test 2	22.22	22.53	22.54	22.36	22.50	22.22	
	Sub –Test 3	22.32	22.42	22.30	22.44	22.47	22.33	
	Sub –Test 4	22.17	22.50	22.40	22.35	22.43	22.24	
	Sub –Test 1	22.29	22.49	22.39	22.21	22.40	22.23	
	Sub –Test 2	22.27	22.37	22.32	22.21	22.40	22.17	
HSUPA	Sub –Test 3	22.23	22.40	22.30	22.30	22.36	22.26	
	Sub –Test 4	22.13	22.37	22.28	22.29	22.28	22.22	
	Sub –Test 5	21.15	21.53	21.36	21.25	21.36	21.14	

<SIM1>Conducted Power Measurement Results(WCDMA Band II/V)

<SIM2>

<01112>										
	band	WCDMA	Band II res	ult (dBm)	WCDMA Band V result (dBm)					
Item	Danu	Chann	el/Frequenc	y(MHz)	Channe	el/Frequency	/(MHz)			
nem	sub-test	9262/	9400/	9538/	4132/	4182/	4233/			
	Sub-lesi	1852.4	1880	1907.6	826.4	836.4	846.6			
	12.2kbps	23.01	23.12	23.08	22.93	23.20	23.13			
RMC	64kbps	22.88	23.16	22.99	22.71	23.01	23.37			
	144kbps	22.95	22.97	22.78	22.90	23.12	23.15			
	384kbps	23.04	23.08	22.83	22.84	23.23	23.09			
	Sub –Test 1	22.31	22.48	22.44	22.18	22.42	22.36			
HSDPA	Sub –Test 2	22.11	22.37	22.53	22.27	22.40	22.19			
	Sub –Test 3	22.21	22.25	22.28	22.34	22.37	22.28			
	Sub –Test 4	22.07	22.33	22.37	22.30	22.29	22.17			
	Sub –Test 1	22.17	22.32	22.38	22.17	22.28	22.21			
	Sub –Test 2	22.20	22.24	22.29	22.14	22.23	22.11			
HSUPA	Sub –Test 3	22.18	22.29	22.29	22.22	22.21	22.22			
	Sub –Test 4	22.06	22.23	22.24	22.18	22.15	22.20			
	Sub –Test 5	21.07	21.40	21.33	21.18	21.20	21.08			

Note: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/2$ dB higher than the primary mode (RMC12.2kbps) or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 179

FCC ID: 2ATTU-X7

Report No.: LCS190617048AEB

BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAN
		1	0	23.48	22.51
		1	3	23.57	22.71
		1	5	23.49	22.46
	1850.7	3	0	23.44	22.44
		3	2	23.54	22.53
		3	3	23.58	22.44
		6	0	22.55	21.36
		1	0	23.33	22.58
		1	3	23.57	22.69
		1	5	23.42	22.60
1.4	1880.0	3	0	23.44	22.24
		3	2	23.50	22.34
		3	3	23.49	22.28
		6	0	22.50	21.17
		1	0	23.65	22.74
		1	3	23.96	22.76
		1	5	23.69	22.70
	1909.3	3	0	23.60	22.69
		3	2	23.69	22.65
		3	3	23.57	22.71
		6	0	23.34	22.19
		1	0	23.65	22.69
		1	7	23.70	22.74
		1	14	23.61	22.67
	1851.5	8	0	22.60	21.41
		8	4	22.56	21.52
		8	7	22.59	21.40
		15	0	22.57	21.27
		1	0	23.43	22.51
		1	7	23.71	22.70
		1	14	23.43	22.56
3	1880.0	8	0	22.48	21.34
		8	4	22.55	21.41
		8	7	22.44	21.36
		15	0	22.43	21.22
		1	0	23.22	22.66
		1	7	23.53	22.77
	1908.5	1	14	23.28	22.74
		8	0	22.76	21.57
		8	4	22.94	21.57
		8	7	22.78	21.51
		15	0	22.77	21.56
	-	1	0	23.42	22.66
		1	12	23.51	22.73
		1	24	23.46	22.69
	1852.5	12	0	22.57	21.45
		12	6	22.69	21.65
		12	13	22.62	21.61
		25	0	22.66	21.46
	+	1	0	23.45	21.40
5		1	12	23.62	22.78
		1	24	23.39	22.47
	1880.0	12	0	22.55	21.44
		12	6	22.51	21.44
		12	13	22.50	21.30
		25	0	22.50	21.37
		1	0	23.53	21.33
	1907.5	1	12	20.00	22.40

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 179

	<u>г</u>	4	0.4	00 5 1	00.50
		1	24	23.54	22.50
		12	0	22.83	21.64
		12	6	22.82	21.68
		12	13	22.85	21.59
		25	0	22.83	21.68
		1	0	23.66	22.68
		1	24	23.60	22.65
		1	49	23.59	22.54
	1855.0	25	0	22.52	21.39
		25	12	22.64	21.38
		25	25	22.70	21.54
		50	0	22.68	21.46
		1	0	23.52	22.57
		1	24	23.59	22.73
		1	49	23.37	22.52
10	1880.0	25	0	22.58	21.34
	ļ Ī	25	12	22.51	21.36
	l t	25	25	22.46	21.30
	ļ t	50	0	22.51	21.28
		1	0	23.91	22.74
		1	24	23.18	22.70
		1	49	23.59	22.75
	1905.0	25	0	22.97	21.78
	100010	25	12	22.86	21.59
	-	25	25	22.76	21.57
	-	50	0	22.91	21.72
		1	0	23.51	22.64
	-	1	37	23.74	22.74
		1	74	23.50	22.52
	1857.5	37	0	23.50	21.28
	1057.5	37	18	22.67	21.20
	-	37	38		21.44
	-	75		22.75	
			0	22.67	21.44
	-	<u>1</u> 1	0 37	23.46	22.55
	-	•		23.58	22.78
45	1000.0	1	74	23.39	22.40
15	1880.0	37	0	22.58	21.38
	-	37	18	22.56	21.32
		37	38	22.49	21.24
		75	0	22.58	21.33
		1	0	23.61	22.60
		1	37	23.33	22.73
		1	74	23.67	22.74
	1902.5	37	0	23.11	21.75
		37	18	23.11	21.74
		37	38	22.92	21.58
		75	0	23.07	21.64
		1	0	23.49	22.47
		1	49	23.80	22.72
	1860.0	1	99	23.39	22.33
		50	0	22.43	21.23
	ļ Ī	50	25	22.69	21.39
	ļ Ī	50	50	22.56	21.32
20	ļ Ī	100	0	22.44	21.28
20		1	0	23.37	22.38
	ļ t	1	49	23.76	22.64
		1	99	23.25	22.32
	1880.0	50	0	22.53	21.23
		50	25	22.55	21.20
		50	50	22.45	21.29
		100	0	22.45	21.20

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID: 2ATTU-X7 Report No.: LCS190617048		
				1	
		1	0	23.38	22.58
		1	49	23.71	22.66
		1	99	23.35	22.67
	1900.0	50	0	22.76	21.51
		50	25	22.86	21.58
		50	50	22.56	21.36
		100	0	22.65	21.43

LTE Band5

BW	Frequency	RB Configuration		Average Power [dBm]	
(MHz)	(MHz)	Size	Offset	QPSK	16QAM
		1	0	23.74	22.86
		1	3	23.70	22.70
		1	5	23.64	22.87
	824.7	3	0	23.59	22.81
		3	2	23.71	22.81
		3	3	23.62	22.77
		6	0	22.71	21.70
		1	0	22.97	21.94
		1	3	22.83	22.08
		1	5	23.09	22.01
1.4	836.5	3	0	22.94	21.96
		3	2	23.03	21.71
		3	3	22.88	21.64
		6	0	22.15	21.42
		1	0	23.41	22.23
		1	3	23.21	22.98
		1	5	23.31	22.84
	848.3	3	0	23.41	22.46
		3	2	23.51	22.37
		3	3	23.43	22.38
		6	0	22.44	21.57
		1	0	23.78	22.96
		1	7	23.57	22.66
		1	14	23.59	22.78
	825.5	8	0	22.77	21.76
		8	4	22.76	21.77
		8	7	22.64	21.67
		15	0	22.86	21.65
		1	0	22.64	22.01
	836.5	1	7	22.71	21.87
		1	14	22.58	21.49
3		8	0	22.16	21.05
		8	4	22.18	22.06
		8	7	22.27	21.17
		15	0	22.07	21.07
		1	0	23.24	22.52
	847.5	1	7	23.13	22.40
		1	14	23.29	22.53
		8	0	22.40	21.41
		8	4	22.55	21.46
		8	7	22.43	21.49
		15	0	22.58	21.41
	† †	1	0	23.41	22.80
		1	12	23.35	22.73
	826.5	1	24	23.52	22.78
5		12	0	22.76	21.91
-		12	6	22.74	21.81
		12	13	22.63	21.67
		25	0	22.73	21.73

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.		FCC ID: 2ATTU-X7 Report No.: LCS190617048.			
		1	0	23.16	22.28
		1	12	22.38	22.05
		1	24	22.36	21.85
	836.5	12	0	22.17	21.00
	000.0	12	6	22.13	21.09
		12	13	22.15	21.00
		25	0	22.11	21.09
		1	0	23.20	22.43
		1	12	23.49	22.31
		1	24	23.12	22.00
	846.5	12	0	22.31	21.26
		12	6	22.41	21.51
		12	13	22.46	21.59
		25	0	22.59	21.32
		1	0	23.80	22.93
		1	24	23.53	22.85
		1	49	23.65	22.91
	829.0	25	0	22.88	21.76
		25	12	22.79	21.65
		25	25	22.61	21.59
		50	0	22.76	21.70
		1	0	23.43	22.64
		1	24	23.04	21.75
		1	49	22.68	21.98
10	836.5	25	0	22.17	21.23
		25	12	22.08	21.11
		25	25	22.27	21.24
		50	0	22.20	21.23
		1	0	23.13	22.72
	844.0	1	24	23.55	22.82
		1	49	22.73	22.48
		25	0	22.30	21.32
		25	12	22.27	21.35
		25	25	22.53	21.38
		50	0	22.31	21.33

Report No.: LCS190617048AEB

BW	Frequency		figuration		ower [dBm]
(MHz)	(MHz)	Size	Offset	QPSK	16QAN
		1	0	23.86	22.05
		1	12	23.83	21.83
		1	24	23.43	21.99
	2502.5	12	0	22.59	21.11
		12	6	22.66	21.18
		12	13	22.71	21.13
		25	0	22.69	21.11
		1	0	23.79	22.13
		1	12	23.90	22.17
		1	24	23.84	22.18
5	2535.0	12	0	22.85	21.21
		12	6	22.88	21.21
		12	13	22.88	21.17
		25	0	22.92	21.19
		1	0	23.10	21.45
		1	12	23.47	21.97
		1	24	23.24	21.56
	2567.5	12	0	23.23	21.50
		12	6	23.36	21.61
		12	13	23.21	21.61
		25	0	23.27	21.57
		1	0	23.39	21.93
	2505.0	1	24	23.51	22.11
		1	49	23.41	21.97
		25	0	22.83	21.14
		25	12	22.78	21.10
		25	25	22.86	21.13
		50	0	22.74	21.14
		1	0	23.66	22.27
		1	24	23.94	22.63
10		1	49	23.84	22.44
10	2535.0	25	0	22.91	21.14
		25	12	22.87	21.12
		25	25	22.90	21.19
		50	0	22.88	21.15
		1	0	23.16 23.33	21.79
	-	1	24		22.03
	2565.0	1	49	23.22	21.91
	2565.0	25 25	0 12	22.75	21.11
		<u>25</u> 25	25	22.81 22.85	21.15 21.14
		<u> </u>	0	22.85	21.14
		<u>50</u>	0	22.86	21.14
		1	37	23.62	21.94
		1	74	23.52	22.17
	2507.5	37	0	23.37	22.00
	2007.0	37	18	23.55	21.04
		37	38	23.55	21.78
		75	0	23.37	21.90
		1	0	23.30	21.70
15		1	37	24.05	22.27
		1	74	23.89	22.09
	2535.0	37	0	23.89	22.44
	2000.0	37	18	22.88	21.16
		37	38	22.93	21.24
		<u>37</u>	0	22.86	21.19
		<u>75</u> 1	0	22.80	21.23
	2562.5	1	37	23.33	21.94
				/ .) 44	L ZL.97

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 179

SHENZHEN LCS COMPL	SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			-X7 Report	No.: LCS190617048AEB
		1	74	23.27	21.71
		37	0	23.25	21.55
		37	18	23.29	21.55
		37	38	23.33	21.59
		75	0	23.35	21.60
		1	0	23.32	21.82
		1	49	23.75	22.28
		1	99	23.57	21.97
	2510.0	50	0	23.36	21.75
		50	25	23.51	21.74
	Γ	50	50	23.69	21.96
		100	0	23.48	21.79
		1	0	23.72	22.23
		1	49	23.86	22.25
20		1	99	23.94	22.35
20	2535.0	50	0	22.79	21.06
		50	25	22.91	21.16
		50	50	22.88	21.10
		100	0	22.78	21.06
		1	0	23.52	22.18
		1	49	23.47	22.12
		1	99	23.21	21.79
	2560.0	50	0	23.43	21.72
		50	25	23.32	21.69
		50	50	23.27	21.62
		100	0	23.34	21.61

<WLAN 2.4GHz Conducted Power>

Mode	Channel	Frequency (MHz)	Data rate (Mbps)	Average Output Power (dBm)
			1	12.91
	4	0440	2	12.65
	1	2412	(MHz) Data fate (Mbps) Power (dBr 2412 1 12.91 2 12.65 12.43 11 12.24 1 2437 1 12.52 2437 2 12.49 2437 1 12.52 2437 2 12.49 5.5 12.34 11 2462 1 12.54 2462 5.5 12.33 11 12.54 2 2462 5.5 12.33 11 12.29 8.36 9 8.14 12.29 2412 6 8.46 9 8.14 12.29 2412 18 8.27 2412 6 7.32 9 7.28 36 36 8.22 48 48 7.00 54 2437 18 7.19 2437 18 7.19 <tr tbox<="" tr=""> <tr tbody=""></tr></tr>	12.43
			11	12.24
				12.52
IEEE 802.11b	6	2427		
	0	2437	5.5	
			11	12.26
	11	2462		
		2462	5.5	12.33
	1	2412		
		2412		
				8.30
IEEE 802.11g				
ILLL 002.11g	3			
	6	2/37		
	0	2437		
	11	2462	6	7.70
	11	2402	9	7.57

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 179

IEEE 802.11n HT20 6 2437 7 18 7 36 7 36 7 36 7 36 7 48 7 54 7 54 7 54 7 54 7 0 MCS0 9 MCS1 9 0 MCS2 9 MCS3 9 0 MCS5 9 MCS6 9 0 MCS6 9 MCS1 8 0 MCS1 8 MCS2 8	45 23 37 49 66 53 25 22 10 23 12 00 05 17 15
IEEE 802.11n HT20 6 2437 7 18 7 36 7 36 7 36 7 36 7 48 7 54 7 54 7 54 7 54 7 0 MCS0 9 MCS1 9 0 MCS2 9 MCS3 9 0 MCS5 9 MCS6 9 0 MCS6 9 MCS1 8 0 MCS2 8 MCS2 8	23 37 49 66 53 25 22 10 23 12 00 05 17
IEEE 802.11n 6 24 7.3 1 2412 7.3 MCS0 9.3 MCS2 9.3 MCS3 9.3 MCS5 9.1 MCS6 9.1 MCS1 8.3 MCS2 9.3 MCS3 9.3 MCS4 9.3 MCS6 9.4 MCS1 8.3 MCS1 8.3 MCS1 8.3 MCS1 8.3 MCS2 8.3 MCS3 8.3 MCS3 8.3 MCS3 8.3 MCS3 8.3 MCS4 8.3	37 49 66 53 25 22 10 23 12 00 05 17
IEEE 802.11n HT20 6 2437 36 7.4 36 7.4 48 7.4 48 7.4 7.4 54 7.4 7.4 MCS0 9.1 9.1 MCS2 9.1 9.1 MCS3 9.1 9.1 MCS3 9.1 9.1 MCS3 9.1 9.1 MCS4 9.1 9.1 MCS5 9.1 9.1 MCS6 9.1 9.1 MCS1 8.1 MCS1 8.1 MCS2 8.1 MCS3 8.1 MCS3 8.1 MCS4 8.1	49 66 53 25 22 10 23 12 00 05 17
IEEE 802.11n HT20 6 2437 MCS3 MCS1 MCS0 MCS1 MCS2 9. 9. MCS0 9. MCS1 9. 9. MCS3 9. MCS3 9. 9. MCS5 9. MCS5 9. 9. MCS1 9. MCS3 9. 9. MCS2 9. MCS4 9. 9. MCS5 9. MCS5 9. 9. MCS6 9. MCS6 8. 9. MCS1 8. MCS1 8. 8. MCS3 8. MCS3 8. 8.	66 53 25 22 10 23 12 00 05 17
IEEE 802.11n HT20 6 2437 MCS0 9.1 1 2437 MCS0 9.1 9.1 9.1 MCS2 9.1 MCS3 9.1 9.1 9.1 MCS3 9.1 MCS3 9.1 9.1 1 <td>53 25 22 10 23 12 00 05 17</td>	53 25 22 10 23 12 00 05 17
IEEE 802.11n HT20 6 2437 MCS0 MCS1 MCS1 MCS2 9. MCS3 9. MCS3 9. MCS3 9. MCS3 9. MCS3 9. MCS3 9. MCS3 9. MCS3 9. MCS3 9. MCS1 8. MCS1 8. MCS1 8. MCS2 8. MCS1 8. MCS2 8. MCS3 8. MCS1 8. MCS2 8. MCS3 8. MCS1 8. MCS1 8. MCS1 8. MCS1 8. MCS1 8. MCS1 8. MCS2 8. MCS3 8. MCS1 8. MCS3 8. MCS1 8. MCS3 8. MCS4 MCS4 MCS4 MCS4 MCS4 MCS4 MCS4 MCS4	25 22 10 23 12 00 05 17
MCS1 9 1 2412 MCS2 9. MCS3 9 9 9 MCS4 9 MCS5 9 MCS5 9 MCS6 9 MCS6 9 MCS7 9 MCS0 8 MCS1 8 MCS2 8 MCS2 8 MT20 6 2437 MCS3 8	22 10 23 12 00 05 17
MCS2 9. MCS3 9. MCS4 9. MCS5 9. MCS6 9. MCS6 9. MCS6 9. MCS6 9. MCS2 8. MCS1 8. MCS2 8. MCS3 8. MCS1 8. MCS3 8. MCS3 8. MCS4 8.	10 23 12 00 05 17
1 2412 MCS3 9.1 MCS4 9. MCS5 9.1 MCS6 9.1 MCS6 9.1 MCS6 9.1 MCS6 9.1 MCS7 9.1 MCS1 8.1 MCS1 8.1 MCS2 8.1 MT20 6 2437 MCS3 8.1	23 12 00 05 17
I 2412 MCS4 9. MCS5 9. MCS6 9. MCS6 9. MCS7 9. MCS7 9. MCS0 8. MCS1 8. MCS2 8. MT20 6 2437 MCS3 8.	12 00 05 17
IEEE 802.11n HT20 6 2437 MCS4 9. MCS5 9. MCS5 9. MCS6 9. MCS6 9. MCS7 9. MCS0 8. MCS2 8. MCS3 8. MCS3 8. MCS4 8.	00 05 17
MCS6 9. MCS7 9. MCS0 8. MCS1 8. MCS2 8. MCS3 8. MCS4 8.	05 17
MCS7 9. MCS0 8. MCS1 8. MCS2 8. MCS3 8. MCS3 8. MCS3 8. MCS4 8.	17
IEEE 802.11n HT20 6 2437 MCS0 8. MCS1 8. MCS2 8. MCS3 8. MCS3 8.	
IEEE 802.11n 6 2437 MCS1 8. MCS2 8. MCS3 8. MCS4 8. 8.	15
IEEE 802.11n 6 2437 MCS2 8. HT20 6 2437 MCS3 8.	
IEEE 802.11n 6 2437 MCS3 8. HT20 6 2437 MCS4 8.	12
IEEE 802.11n 6 2437 MCS3 8. HT20 6 2437 MCS4 8.	10
HT20 6 2437 MCS4 8.	
MCS5 7.	98
	90
	05
	76
	53
	72
	56
MCS4 8.	69
MCS5 8.	44
MCS6 8.	32
	64
	81
	75
	66
MCS3 8	31
	45
	53
	44
	21
	45
	33
	21
IEEE 802.11n 6 2427 MCS3 7.	29
	03
	23
	28
	19
	34
	31
	20
	28
MICS4 8.	05
	13
	14
MCS7 8.1	22

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 39 of 179

Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)
	36	5180	10.94
802.11a	40	5200	10.89
	48	5240	10.71
802.11n(20MHz)	36	5180	10.23
	40	5200	11.33
	48	5240	11.92
$000.44 \times (40 \text{ ML})$	38	5190	10.73
802.11n(40MHz)	46	5230	10.68

<WLAN 5GHz U-NI-1 Conducted Power>

<wlan 5ghz="" c<="" th="" u-ni-3=""><th>onducted Power></th></wlan>	onducted Power>
--	-----------------

Mode	Channel	Frequency (MHz)	Conducted Output Power(dBm)
	149	5745	9.93
802.11a	157	5785	9.96
	165	5825	10.18
	149	5745	9.31
802.11n(20MHz)	157	5785	10.15
	165	5825	10.75
$000.44 \times (40 \text{ ML})$	151	5755	9.75
802.11n(40MHz)	159	5795	10.02

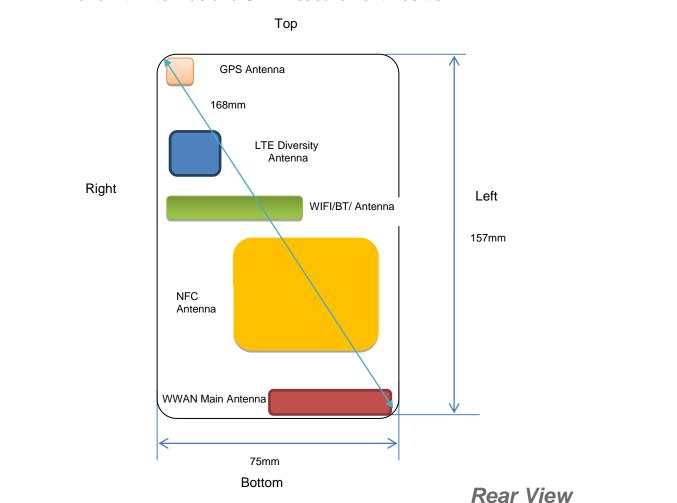
Note: SAR is not required for the following 2.4 GHz OFDM conditions as the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

<bt conducted="" power=""></bt>						
Mode	channel	Frequency (MHz)	Conducted AVG output power (dBm)			
	0	2402	0.446			
GFSK-BLE	19	2440	0.088			
	39	2480	-0.529			
	0	2402	1.842			
GFSK	39	2441	2.389			
	78	2480	1.714			
	0	2402	1.555			
π/4-DQPSK	39	2441	1.575			
	78	2480	1.438			
	0	2402	1.580			
8DPSK	39	2441	1.587			
	78	2480	1.366			

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

• f(GHz) is the RF channel transmit frequency in GHz


- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Bluetooth Turn up	Separation Distance	Frequency	Exclusion
Power (dBm)	(mm)	(GHz)	Thresholds
3.0	5	2.45	0.6

Per KDB 447498 D01v06, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.6< 3.0, SAR testing is not required.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 179

4.2 Transmit Antennas and SAR Measurement Position

Antenna information:

WWAN Main Antenna	GSM/UMTS/LTE TX/RX
LTE Diversity antenna	Only RX
WLAN/GPS/BT Antenna	WLAN/BT TX/RX

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 161mm >160mm, it is considered as "Phablet" device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/Kg.

3). According to the KDB941225 D06 Hot Spot SAR v02, the edges with less than 25 mm distance to the antennas need to be tested for SAR.

Distance of The Antenna to the EUT surface and edge (mm)							
Antennas	Antennas Front Back Top Side Bottom Side Left Side Right Side						
WWAN	<5	<5	123	<5	<5	32	
BT/WLAN	<5	<5	68	83	25	13	

Positions for SAR tests; Hotspot mode							
Antennas Front Back Top Side Bottom Side Left Side Right Side							
WWAN	Yes	Yes	No	Yes	Yes	No	
BT/WLAN	Yes	Yes	No	No	Yes	Yes	

General Note: Referring to KDB 941225 D06 v02, When the overall device length and width are \geq 9cm*5cm, the test distance is 10mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 179

Report No.: LCS190617048AEB

4.3 SAR Measurement Results

The calculated SAR is obtained by the following formula: Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift) Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
Speech for GSM850/1900	1:8
GPRS850	1:2.67
GPRS1900	1:2.67
UMTS	1:1
LTE	1:1
WLAN2450	1:1
5GWLAN	1:1

4.3.1 SAR Results

	SAR Values [GSM 850]													
	_	<i>T</i> :	T (Conducted	Maximum F	Power	o "	SAR _{1-g} res						
Ch.	Freq. (MHz)	Time slots	Test Position	Power (dBm)	Allowed Power	Drift (%)	Scaling Factor	Measured	Reported	Graph Results				
			measu	· · ·	<i>(dBm)</i> SAR numbers									
400	000.0	Maina						0.040	0.040					
190	836.6	Voice	Left Cheek	32.53	33.00	2.16	1.114	0.218	0.243					
190	836.6	Voice	Left Tilt	32.53	33.00	1.43	1.114	0.113	0.126					
190	836.6	Voice	Right Cheek	32.53	33.00	-0.63	1.114	0.542	0.604	Plot 1				
190	836.6	Voice	Right Tilt	32.53	33.00	2.17	1.114	0.397	0.442					
		meas	sured / reported	SAR numbers	- Body (hotspo	t open, di	stance 10n	nm) <sim1></sim1>						
190	836.6	2Txslots	Front	29.85	30.00	-1.39	1.035	0.090	0.093					
190	836.6	2Txslots	Rear	29.85	30.00	1.73	1.035	0.129	0.134	Plot 2				
190	836.6	2Txslots	Left	29.85	30.00	2.00	1.035	0.110	0.114					
190	836.6	2Txslots	Bottom	29.85	30.00	3.15	1.035	0.060	0.062					

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (2Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (2Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

	SAR Values [GSM 1900]													
Ch.	Freq. (MHz)	time slots	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results				
			mea	sured / reported	SAR numbers	– Head <s< td=""><td>SIM1></td><td></td><td></td><td></td></s<>	SIM1>							
661														
512	1850.2	Voice	Left Cheek	29.45	30.00	-0.06	1.135	0.700	0.795					
810	1909.8	Voice	Left Cheek	29.16	30.00	1.34	1.213	0.625	0.758					
661	1880.0	Voice	Left Tilt	29.50	30.00	2.43	1.122	0.684	0.767					
661	1880.0	Voice	Right Chee	k 29.50	30.00	0.36	1.122	0.672	0.754					
661	1880.0	Voice	Right Tilt	29.50	30.00	2.00	1.122	0.535	0.600					
		measu	ured / reported	SAR numbers -	- Body (hotspor	t open, dis	stance 10m	m) <sim1></sim1>						
661	1880.0	4Txslots	Front	26.86	27.00	1.28	1.033	0.178	0.184					
661	1880.0	4Txslots	Rear	26.86	27.00	-3.85	1.033	0.363	0.375	Plot 4				
661	1880.0	4Txslots	Left	26.86	27.00	2.13	1.033	0.201	0.208					
661	1880.0	4Txslots	Bottom	26.86	27.00	-3.07	1.033	0.246	0.254					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 42 of 179

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. The frame average of GPRS (4Tx slots) higher than GSM and sample can support VoIP function, tested at GPRS (4Tx slots) mode for head.

3. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

	SAR Values [WCDMA Band V]													
Ch.	Freq. (MHz)	Channel Type	Test Position	Conducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results				
	r			sured / reported	SAR numbers	– Head <	SIM1>							
4182	836.4	RMC*	Left Cheek	23.34	24.00	-2.14	1.164	0.951	1.107	Plot 5				
4132	826.4	RMC*	Left Cheek	23.02	24.00	2.07	1.253	0.634	0.794					
4233	846.6	RMC*	Left Cheek	23.21	24.00	-3.41	1.199	0.584	0.701					
4182	836.4	RMC*	Left Tilt	23.34	24.00	1.15	1.164	0.630	0.733					
4182	836.4	RMC*	Right Chee	k 23.34	24.00	-2.78	1.164	0.662	0.771					
4182	836.4	RMC*	Right Tilt	23.34	24.00	0.03	1.164	0.574	0.668					
		meas	ured / reported	SAR numbers	 Body (hotspot 	open, dis	tance 10m	m) <sim1></sim1>						
4182	836.4	RMC*	Front	23.34	24.00	0.01	1.164	0.601	0.700					
4182	836.4	RMC*	Rear	23.34	24.00	-0.46	1.164	0.915	1.065	Plot 6				
4132	826.4	RMC*	Rear	23.02	24.00	2.10	1.253	0.684	0.857					
4233	846.6	RMC*	Rear	23.21	24.00	3.54	1.199	0.621	0.745					
4182	836.4	RMC*	Left	23.34	24.00	-1.76	1.164	0.593	0.690					
4182	836.4	RMC*	Bottom	23.34	24.00	1.09	1.164	0.487	0.567					

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

SAR Values [WCDMA Band II]

3. RMC* - RMC 12.2kbps mode;

Graph Results Plot 9
Plot 9
Plot 9
Plot 10

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

3. RMC* - RMC 12.2kbps mode;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 179

<u>SHEN</u>	[ZHE]	N LCS C(<u>)MPLIANCE (</u>	TESTING LAB	<u>ORA</u>			CC ID: 2AT	TU-X7	Report No	o.: LCS19061	7048AEB
<u>ا</u>	_					SAR Valu	ues [LTE Bai	nd 2]				
Ch.		Freq. (MHz)	Channel Type (20M)	Test Position	ŀ	onducted Power (dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} resu Measured	sults(W/kg) Reporte d	Graph Results
				mea	sure	d / reported	SAR numbers	:– Head <	SIM1>			
1870	0	1860.0	1RB	Left Cheek		23.80	24.00	-2.38	1.047	0.448	0.469	1
1870		1860.0	1RB	Left Tilt	-	23.80	24.00	0.09	1.047	0.362	0.379	í l
1870		1860.0	1RB	Right Chee	۶k	23.80	24.00	-4.43	1.047	0.747	0.782	Plot 11
1870		1860.0	1RB	Right Tilt		23.80	24.00	3.21	1.047	0.635	0.665	· · · · · · · · · · · · · · · · · · ·
1870		1860.0	50%RB	Left Cheek		22.86	23.00	0.57	1.033	0.303	0.313	· · · · · · · · · · · · · · · · · · ·
1870		1860.0	50%RB	Left Tilt	-	22.86	23.00	3.14	1.033	0.267	0.276	· · · · · · · · · · · · · · · · · · ·
1870		1860.0	50%RB	Right Chee	۶k	22.86	23.00	1.85	1.033	0.540	0.558	í
1870		1860.0	50%RB	Right Tilt		22.86	23.00	0.94	1.033	0.378	0.390	i]
	Č	1011					- Body (hotspot				_ •·	
1870	<u>, or</u>	1860.0	1RB	Front		23.80	24.00	-4.28	1.047	0.196	0.205	1
1870		1860.0	1RB	Rear	-	23.80	24.00	-2.12	1.047	0.291	0.305	Plot 12
1870		1860.0	1RB	Left		23.80	24.00	2.37	1.047	0.118	0.124	1
1870		1860.0	1RB	Bottom	+	23.80	24.00	2.17	1.047	0.095	0.099	· · · · · · · · · · · · · · · · · · ·
1870		1860.0	50%RB	Front	\rightarrow	22.86	23.00	4.12	1.033	0.000	0.114	· · · · · · · · · · · · · · · · · · ·
1870		1860.0	50%RB	Rear	+	22.86	23.00	-0.08	1.033	0.156	0.161	
-	18700 1860.0 50%RB		Left	+	22.86	23.00	1.17	1.033	0.075	0.077	[]	
1870		1860.0	50%RB	Bottom	+	22.86	23.00	-4.22	1.033	0.073	0.077	[]
1		1000.0	0070112		L	22.00	20.00		1.000	0.00 .	0.000	
						SAR Val	ues [LTE Bai	nd 5]				
1		1	Channel		Cor	nducted	Maximum	Power		SAR1-g res	sults(W/kg)	
Ch.		req. 1Hz)	Type (10M)	Test Position	Pa (a	Power dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
							d SAR numbers	1 1				_
2045		829.0	1RB	Left Che		23.80	24.00	-2.79	1.047	0.180	0.188	
2045		829.0	1RB	Left Tilt		23.80	24.00	0.64	1.047	0.130	0.136	
2045		829.0	1RB	Right Che		23.80	24.00	-0.89	1.047	0.222	0.232	Plot 15
2045		829.0	1RB	Right Ti		23.80	24.00	2.12	1.047	0.157	0.164	
2045	0ز	829.0	50%RB	Left Che	ek	22.86	23.00	3.87	1.033	0.097	0.100	
2045		829.0	50%RB	Left Tilt		22.86	23.00	2.35	1.033	0.085	0.088	
2045		829.0	50%RB	Right Che		22.86	23.00	1.17	1.033	0.174	0.180	
2045	0ز	829.0	50%RB	Right Ti		22.86	23.00	-0.14	1.033	0.128	0.132	
			1			1	- Body (hotspot	1 1				
2045		829.0	1RB	Front		23.80	24.00	1.50	1.047	0.082	0.086	
2045		829.0	1RB	Rear		23.80	24.00	1.41	1.047	0.131	0.137	Plot 16
2045		829.0	1RB	Left		23.80	24.00	2.66	1.047	0.103	0.108	
2045		829.0	1RB	Botton		23.80	24.00	4.12	1.047	0.074	0.077	
2045	0ز	829.0	50%RB		ί	22.86	23.00	1.31	1.033	0.057	0.059	
2045		829.0	50%RB			22.86	23.00	0.57	1.033	0.099	0.102	
2045		829.0	50%RB			22.86	23.00	2.31	1.033	0.067	0.069	
2045		829.0	50%RB			22.86	23.00	-0.45	1 033	0.064	0.066	

23.00

-0.45

1.033

0.064

0.066

50%RB

Bottom

22.86

829.0

20450

	SAR Values [LTE Band 7]												
Ch.	Freq. (MHz)	Channe I Type	Test Position	Condu cted Power	Maximum Allowed Power	Power Drift (%)	Scaling Factor	SAR _{1-g} rest Measured	ults(W/kg) Reporte d	Graph Results			
		(20M)	measured	(dBm)	(dBm) SAR numbers		SIM15						
21100	2535.0	1RB	Left Cheek	23.80	24.00	-1.78	1.047	0.133	0.139	Plot 17			
21100	2535.0	1RB	Left Tilt	23.80	24.00	0.09	1.047	0.111	0.116				
21100	2535.0	1RB	Right Cheek	23.80	24.00	-0.32	1.047	0.045	0.047				
21100	2535.0	1RB	Right Tilt	23.80	24.00	2.13	1.047	0.031	0.032				
20850	2510.0	50%RB	Left Cheek	22.88	23.00	2.31	1.028	0.107	0.110				
20850	2510.0	50%RB	Left Tilt	22.88	23.00	3.14	1.028	0.088	0.090				
20850	2510.0	50%RB	Right Cheek	22.88	23.00	1.57	1.028	0.036	0.037				
20850	2510.0	50%RB	Right Tilt	22.88	23.00	0.45	1.028	0.029	0.030				
			red / reported SAF		Body (hotspot	_ ·	tance 10mi	m) <sim1></sim1>					
21100	2535.0	1RB	Front	23.80	24.00	-0.15	1.047	0.093	0.097				
21100	2535.0	1RB	Rear	23.80	24.00	-0.43	1.047	0.124	0.130	Plot 18			
21100	2535.0	1RB	Left	23.80	24.00	1.52	1.047	0.098	0.103				
21100	2535.0	1RB	Bottom	23.80	24.00	-0.75	1.047	0.065	0.068				
20850	2510.0	50%RB	Front	22.88	23.00	1.52	1.028	0.045	0.046				
20850	2510.0	50%RB	Rear	22.88	23.00	2.63	1.028	0.039	0.040				
20850	2510.0	50%RB	Left	22.88	23.00	3.48	1.028	0.021	0.022				
20850	2510.0	50%RB	Bottom	22.88	23.00	1.14	1.028	0.019	0.020				

Remark:

1. The value with black color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

	SAR Values [WIFI2.4G]													
Ch.	Freq. (MHz)	Service	Test Position	P (0	nducted ower dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results			
			mea	surec	l / reported	SAR numbers	– Head <s< td=""><td>SIM1></td><td></td><td></td><td></td></s<>	SIM1>						
1	2412.0	802.11b	Left Chee	ək	12.91	13.00	-3.57	1.021	0.202	0.206				
1	2412.0	802.11b	Left Tilt	t	12.91	13.00	1.39	1.021	0.130	0.133				
1	2412.0	802.11b	Right Che	ek	12.91	13.00	-3.12	1.021	0.277	0.283	Plot 23			
1	2412.0	802.11b	Right Ti	lt	12.91	13.00	0.34	1.021	0.158	0.161				
		meas	ured / reported	I SAR	? numbers	 Body (hotspot 	open, dis	tance 10m	m) <sim1></sim1>					
1	2412.0	802.11b	Front		12.91	13.00	-1.79	1.021	0.110	0.112				
1	2412.0	802.11b	Rear		12.91	13.00	-0.52	1.021	0.462	0.472	Plot 24			
1	2412.0	802.11b	Right		12.91	13.00	2.98	1.021	0.338	0.345				
1	2412.0	802.11b	Left		12.91	13.00	3.04	1.021	0.215	0.220				

SAR Values [5GWIFI U-NII-1]

				Conducted	Maximum	Power		SAR _{1-g} res	ults(W/kg)	
Ch.	Ln ' Service		Test Position	Power (dBm)	Allowed Power (dBm)	Drift (%)	Scaling Factor	Measured	Reported	Graph Results
		measu		sured / reporte	d SAR numbers	- Head <s< td=""><td>SIM1></td><td></td><td></td><td></td></s<>	SIM1>			
48	5240	802.11n20	Left Chee	ek 11.92	12.00	4.11	1.019	0.226	0.230	
48	5240	802.11n20	Left Tilt	11.92	12.00	0.09	1.019	0.119	0.121	
48	5240	802.11n20	Right Che	ek 11.92	12.00	-2.58	1.019	0.326	0.332	Plot 25
48	5240	802.11n20	Right Til	lt 11.92	12.00	1.17	1.019	0.234	0.238	
		measu	ired / reported	SAR numbers	: - Body (hotspot	open, dis	tance 10m	m) <sim1></sim1>		
48	5240	802.11n2	0 Front	11.92	12.00	-1.02	1.019	0.075	0.076	
48	5240	802.11n2	0 Rear	11.92	12.00	0.25	1.019	0.315	0.321	Plot 26
48	5240	802.11n2	0 Right	11.92	12.00	2.38	1.019	0.114	0.116	
48	5240	802.11n2	0 Left	11.92	12.00	4.98	1.019	0.093	0.095	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 179

SAR Values [WIEI2 /G]

<u>SHENZ</u>	HEN LCS	COMPLIANC	E TESTING LAB	ORA	TORY LTD.	FC	CID: 2AT	TU-X7	Report No	o.: LCS19061	7048AEB			
	SAR Values [5GWIFI U-NII-3]													
Ch.	Freq. (MHz)	Service	Test Position	F	nducted Power dBm)	Maximum Allowed Power (dBm)	Power Drift (%)	Scaling Factor	SAR _{1-g} res Measured	ults(W/kg) Reported	Graph Results			
	measured					SAR numbers	– Head <s< td=""><td>SIM1></td><td></td><td></td><td></td></s<>	SIM1>						
165	165 5825 802.11n20 Left Cheek					11.00	0.21	1.059	0.136	0.144				
165	5825	802.11n20	Left Til	t	10.75	11.00	3.87	1.059	0.102	0.108				
165	5825	802.11n20	Right Che	ek	10.75	11.00	-2.26	1.059	0.262	0.278	Plot 27			
165	5825	802.11n20	Right Ti	lt	10.75	11.00	1.21	1.059	0.165	0.175				
		meas	sured / reported	d SAF	Rnumbers	- Body (hotspot	open, dis	tance 10m	m) <sim1></sim1>					
165	5825	802.11n20	Front		10.75	11.00	-3.50	1.059	0.390	0.413	Plot 28			
165	5825	802.11n20	Rear		10.75	11.00	1.46	1.059	0.286	0.303				
165	5825	802.11n20	Right		10.75	11.00	0.60	1.059	0.137	0.145				
165	5825	802.11n20	Left		10.75	11.00	2.17	1.059	0.098	0.104				

Remark:

1. The value with blue color is the maximum SAR Value of each test band.

2. Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is \leq 0.8 W/kg then testing at the other channels is optional for such test configuration(s).

4.3.2 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01,simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit,SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio= $\frac{(SAR_1+SAR_2)^{1.5}}{(resch lossering separation mm)} < 0.04$

(peak location separation,mm)

	Estimated stand alone SAR												
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)								
Bluetooth*	2450	Head	3.00	5	0.083								
Bluetooth*	2450	Hotspot	3.00	10	0.042								
Bluetooth*	2450	Body-worn	3.00	10	0.042								

Remark:

- 1. Bluetooth*- Including Lower power Bluetooth
- 2. Maximum average power including tune-up tolerance;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Body as body use distance is 10mm from manufacturer declaration of user manual

4.4 Simultaneous TX SAR Considerations

4.4.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For the DUT, the BT and WiFi modules sharing same antenna, GSM, WCDMA and LTE modules sharing a single antenna; BT/WLAN and GSM/UMTS/LTE can simultaneous transmit;

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)
	850	VO	Yes,WLAN or BT/BLE	N/A
GSM	1900	VO	Tes, WEAN OF BT/BEE	
	GPRS	DT	Yes,WLAN or BT/BLE	N/A
WCDMA	Band II/BandV	DT	Yes,WLAN or BT/BLE	N/A
LTE	Band2 / Band5/Band7	DT	Yes,WLAN or BT/BLE	N/A
WLAN	2450/5200/5800	DT	Yes,GSM,GPRS, UMTS,LTE	Yes
BT/BLE	2450	DT	Yes,GSM,GPRS, UMTS,LTE	N/A
Note:VO-Voice	Service only;DT-Digital Tra	ansport		

Application Simultaneous Transmission information:

Note:

BT and WLAN can be active at the same time, but only with interleaving of packages switched on board level. That means that they don't transmit at the same time.

BLE-Bluetooth low energy;

BT- Classical Bluetooth;

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 179

4.4.2 Evaluation of Simultaneous SAR

Head Exposure Conditions

	Simultaneous transmission SAR for WiFi and GSM									
Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	WiFi5.2G Reported SAR1-g (W/kg)	WiFi5.8G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required	
Left Cheek	0.243	1.222	0.206	0.230	0.144	1.452	1.6	no	no	
Left Tilt	0.126	0.767	0.133	0.121	0.108	0.900	1.6	no	no	
Right Cheek	0.604	0.754	0.283	0.332	0.278	1.086	1.6	no	no	
Right Tilt	0.442	0.600	0.161	0.238	0.175	0.838	1.6	no	no	

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	WiFi5.2G Reported SAR1-g (W/kg)	WiFi5.8G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1-g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	1.107	0.785	0.206	0.230	0.144	1.337	1.6	no	no
Left Tilt	0.733	0.555	0.133	0.121	0.108	0.866	1.6	no	no
Right Cheek	0.771	0.658	0.283	0.332	0.278	1.103	1.6	no	no
Right Tilt	0.668	0.555	0.161	0.238	0.175	0.906	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Deported SAD1 g(M//kg)		Те	st Position	
Reported SAR1-g(W/kg)	Left Cheek	Left Tilt	Right Cheek	Right Tilt
LTE Band2	0.469	0.379	0.782	0.665
LTE Band5	0.188	0.136	0.232	0.164
LTE Band7	0.139	0.116	0.047	0.032
WiFi2.4G	0.206	0.133	0.283	0.161
5GWIFI U-NII-1	0.230	0.121	0.332	0.238
5GWIFI U-NII-3	0.144	0.108	0.278	0.175
MAX. ΣSAR1-g (W/kg)	0.699	0.512	1.114	0.903
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no
Simut Meas. Required	no	no	no	no

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR _{1-g} (W/kg)	GSM1900 Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	0.243	1.222	0.083	1.305	1.6	no	no
LeftTilt	0.126	0.767	0.083	0.850	1.6	no	no
Right Cheek	0.604	0.754	0.083	0.837	1.6	no	no
Right Tilt	0.442	0.600	0.083	0.683	1.6	no	no

Simultaneous transmission SAR for BT and UMTS

Test Position	UMTS Band V Reported SAR _{1-g} (W/kg)	UMTS Band II Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Left Cheek	1.107	0.785	0.083	1.190	1.6	no	no
LeftTilt	0.733	0.555	0.083	0.816	1.6	no	no
RightChek	0.771	0.658	0.083	0.854	1.6	no	no
Right Tilt	0.668	0.555	0.083	0.751	1.6	no	no

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 179 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2ATTU-X7

Report No.: LCS190617048AEB

	Simultaneous transmission SAR for BT and LTE										
Test Position	LTE Band2 Reported SAR _{1-g} (W/kg)	LTE Band5 Reported SAR _{1-g} (W/kg)	LTE Band7 Reported SAR _{1-g} (W/kg)	BT Reported SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR₁ -g Limit (W/k g)	Peak location separati on ratio	Simut Meas. Requir ed			
Left Cheek	0.469	0.188	0.139	0.083	0.552	1.6	no	no			
Left Tilt	0.379	0.136	0.116	0.083	0.462	1.6	no	no			
Right Cheek	0.782	0.232	0.047	0.083	0.865	1.6	no	no			
Right Tilt	0.665	0.164	0.032	0.083	0.748	1.6	no	no			

Body Hotspot Exposure Conditions

Simultaneous transmission SAR for WiFi and GSM

Test Position	GSM850 Reported SAR1-g (W/kg)	GSM1900 Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	WiFi5.2G Reported SAR1-g (W/kg)	WiFi5.8G Reported SAR1-g (W/kg)	MAX. ΣSAR1- g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.093	0.184	0.112	0.076	0.413	0.597	1.6	no	no
Rear	0.134	0.375	0.472	0.321	0.303	0.847	1.6	no	no
Left	0.114	0.208	0.345	0.116	0.145	0.553	1.6	no	no
Right	/	/	0.220	0.095	0.104	0.220	1.6	no	no
Bottom	0.062	0.254	/	/	/	0.254	1.6	no	no
Тор	/	/	/	/	/	/	1.6	no	no

Simultaneous transmission SAR for WiFi and UMTS

Test Position	UMTS Band V Reported SAR1-g (W/kg)	UMTS Band II Reported SAR1-g (W/kg)	WiFi2.4G Reported SAR1-g (W/kg)	WiFi5.2G Reported SAR1-g (W/kg)	WiFi5.8G Reported SAR1-g (W/kg)	MAX. ΣSAR1-g (W/kg)	SAR1- g Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.700	0.896	0.112	0.076	0.413	1.309	1.6	no	no
Rear	1.065	0.750	0.472	0.321	0.303	1.537	1.6	no	no
Left	0.690	0.587	0.345	0.116	0.145	1.035	1.6	no	no
Right	/	/	0.220	0.095	0.104	0.220	1.6	no	no
Bottom	0.567	0.535	/	/	/	0.567	1.6	no	no
Тор	/	/	/	/	/	/	1.6	no	no

Simultaneous transmission SAR for WiFi and LTE

Boported SAB1 g(M//kg)			Test F	Position		
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор
LTE Band2	0.205	0.305	0.124	/	0.099	/
LTE Band5	0.086	0.137	0.108	/	0.077	/
LTE Band7	0.097	0.130	0.103	/	0.068	/
WiFi2.4G	0.112	0.472	0.345	0.220	/	/
5GWIFI U-NII-1	0.076	0.321	0.116	0.095	/	/
5GWIFI U-NII-3	0.413	0.303	0.145	0.145	/	/
MAX. ΣSAR1-g (W/kg)	0.618	0.777	0.469	0.220	0.099	/
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6
Peak location separation ratio	no	no	no	no	no	no
Simut Meas. Required	no	no	no	no	no	no

Simultaneous transmission SAR for BT and GSM

Test Position	GSM850 Reported SAR _{1-g} (W/kg)	GSM1900 Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.093	0.184	0.042	0.226	1.6	no	no
Rear	0.134	0.375	0.042	0.417	1.6	no	no
Left	0.114	0.208	0.042	0.250	1.6	no	no
Right	/	/	0.042	0.042	1.6	no	no
Bottom	0.062	0.254	/	0.254	1.6	no	no
Тор	/	/	/	/	1.6	no	no

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

FCC ID: 2ATTU-X7

		Innantanioouo	anonnooren				
Test Position	UMTS Band V Reported SAR _{1-g} (W/kg)	UMTS Band II Reported SAR _{1-g} (W/kg)	BT Estimated SAR _{1-g} (W/kg)	MAX. ΣSAR _{1-g} (W/kg)	SAR _{1-g} Limit (W/kg)	Peak location separation ratio	Simut Meas. Required
Front	0.700	0.896	0.042	0.742	1.6	no	no
Rear	1.065	0.750	0.042	1.107	1.6	no	no
Left	0.690	0.587	0.042	0.732	1.6	no	no
Right	/	/	0.042	0.042	1.6	no	no
Bottom	0.567	0.535	/	0.567	1.6	no	no
Тор	/	/	/	/	1.6	no	no

Simultaneous transmission SAR for BT and UMTS

Simultaneous transmission SAR for BT and LTE

Beported SAB1 g(M//kg)	Test Position						
Reported SAR1-g(W/kg)	Front	Rear	Left	Right	Bottom	Тор	
LTE Band2	0.205	0.305	0.124	/	0.099	/	
LTE Band5	0.086	0.137	0.108	/	0.077	/	
LTE Band7	0.097	0.130	0.103	/	0.068	/	
BT Estimated SAR1-g (W/kg)	0.042	0.042	0.042	0.042	/	/	
MAX. ΣSAR1-g (W/kg)	0.247	0.347	0.166	0.042	0.099	/	
SAR1-g Limit (W/kg)	1.6	1.6	1.6	1.6	1.6	1.6	
Peak location separation ratio	no	no	no	no	no	no	
Simut Meas. Required	no	no	no	no	no	no	

Note:

1. The WiFi and BT share same antenna, so cannot transmit at same time.

2. The value with **block** color is the maximum values of standalone

3. The value with blue color is the maximum values of ΣSAR_{1-g}

4.5 SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 3) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- 4) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 5) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 6) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Fraguanay	Jency RF		Repeated	Highest	First Repeated		
Frequency Band (MHz)	Air Interface	Exposure Configuration	Test Position	SAR (yes/no)	Measured SAR _{1-g} (Wkg)	Measued SAR _{1-g} (W/kg)	Largest to Smallest SAR Ratio
	GSM850	Standalone	Cheek-Right	no	0.542	n/a	n/a
850	WCDMA Band V	Standalone	Cheek-Left	no	0.951	0.810	1.174
	LTE Band 5	Standalone	Cheek-Right	no	0.222	n/a	n/a
	GSM1900	Standalone	Cheek-Left	no	1.089	0.987	1.103
1900	WCDMA Band II	Standalone	Body-Front	no	0.752	n/a	n/a
	LTE Band 2	Standalone	Cheek-Right	no	0.747	n/a	n/a
2450	2.4GWLAN	Standalone	Body-Rear	no	0.462	n/a	n/a
2600	LTE Band 7	Standalone	Cheek-Left	no	0.133	n/a	n/a

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 179

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.			FCC ID: 2ATT	U-X7 I	Report No.: LCS	5190617048AEB		
	5G-6G	5GWIFI U-NII-1	Standalone	Cheek-Right	no	0.326	n/a	n/a
	56-66	5GWIFI U-NII-3	Standalone	Body-Rear	no	0.390	n/a	n/a

Remark:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the orignal and first repeated measurement is not > 1.20 or 3 (1-g or 10-g respectively)

4.6 General description of test procedures

- 1. The DUT is tested using CMU 200 communications testers as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- 2. Test positions as described in the tables above are in accordance with the specified test standard.
- 3. Tests in body position were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- 4. Tests in head position with GSM were performed in voice mode with 1 timeslot unless GPRS/EGPRS/DTM function allows parallel voice and data traffic on 2 or more timeslots.
- 5. UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- WiFi was tested in 802.11b/g/n mode with 1 Mbit/s and 6 Mbit/s. According to KDB 248227 the SAR testing for 802.11g/n is not required since When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 7. Required WiFi test channels were selected according to KDB 248227
- 8. According to FCC KDB pub 248227 D01, When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement and when there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.
- 9. According to FCC KDB pub 941225 D06 this device has been tested with 10 mm distance to the phantom for operation in WiFi hot spot mode.
- 10. Per FCC KDB pub 941225 D06 the edges with antennas within 2.5 cm are required to be evaluated for SAR to cover WiFi hot spot function.
- 11. According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- 12. According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
 - \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 13. IEEE 1528-2003 require the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band.
- 14. Per KDB648474 D04 require when the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is < 1.2 W/kg.
- 15. Per KDB648474 D04 require when the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, using the same wireless mode test configuration for voice and data, such as UMTS, LTE and Wi-Fi, and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface)
- 16. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.
- 17. Per KDB648474 D04 require for phablet SAR test considerations, For EUT with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 18. 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg.

4.7 Measurement Uncertainty (450MHz-6GHz)

Not required as SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR accoridng to KDB865664D01.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 179

Report No.: LCS190617048AEB

4.8 System Check Results

Test mode:835MHz(Head) Product Description:Validation Model:Dipole SID835 E-Field Probe:SE2(SN 31/17 EPGO324) Test Date: June 18, 2019

Frequency (MHz)Relative permittivity (real part)Conductivity (S/m)Input powerCrest FactorConversion FactorVariation (%)SAR 10g (W/Kg)SAR 1g (W/Kg)SURFACE SAR	835.0000 41.19 0.87 100mW 1.0 1.55 1.110000 0.602142 0.949375 VOLUME SAR
SAU Virtualization drephical Interface Serface Reliated Intensity Coders Scale (V/kz) Coders Scale (V/kz) (Coders Scale (V/kz) (V/kz) (Coders Scale (V/kz) (Coders Scale (V/kz) (Coders Scale (V/kz) (V/	SAE Virtualization Graphical Interface Colors Scale 0 (V/kz) 0 0 02750 0 0 0000 0 0 0000 0 0 0000 0 0 0000 0 0 00000 0 0 00000 0 0 00000 0 0 000000 0 0 0000000 0 0 0000000 0 0 000000000000000000000000000000000

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 179

Report No.: LCS190617048AEB

Test mode:1900MHz(Head) Product Description:Validation Model :Dipole SID1900 E-Field Probe: SE2(SN 31/17 EPGO324) Test Date: June 19, 2019

Medium(liquid type)	HSL_1900 1900.0000
Frequency (MHz)	
Relative permittivity (real part)	39.73
Conductivity (S/m)	1.34
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.86
Variation (%)	-1.420000
SAR 10g (W/Kg)	2.033962
SAR 1g (W/Kg)	4.005126
SURFACE SAR	VOLUME SAR
Suffice Relisted Interface Origo Suffice Relisted Interface 0120 0 020 0 02100 0 02100 0 02100 0 02100 0 02100 0 02100 0 021000 0	SAM Visualisation Graphical Interface Colors Scale Total 01x2 530705 0 Statistical Colors 100 0 Statistical Colo

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 179

Report No.: LCS190617048AEB

Test mode:2450MHz(Head) Product Description:Validation Model:Dipole SID2450 E-Field Probe:SE2(SN 31/17 EPGO324) Test Date: June 20, 2019

Medium(liquid type)	HSL_2450
Frequency (MHz)	2450.0000
Relative permittivity (real part)	38.57
Conductivity (S/m)	1.75
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.91
Variation (%)	-3.280000
SAR 10g (W/Kg)	2.362963
SAR 1g (W/Kg)	5.215714
SURFACE SAR	VOLUME SAR
Colars Scale 0/Ld	Chars Scale 0
<i>This report shall not be reproduced except in full, without the written</i>	

Page 54 of 179

Report No.: LCS190617048AEB

Test mode:2600MHz(Head) Product Description:Validation Model:Dipole SID2600 E-Field Probe:SE2(SN 31/17 EPGO324) Test Date: June 25, 2019

Medium(liquid type) HSL_2600 Frequency (MHz) 2600.0000 Relative permittivity (real part) 40.14 Conductivity (S/m) 1.88 Input power 100mW Crest Factor 1.0 Conversion Factor 1.89 Variation (%) 0.050000 SAR log (W/Kg) 2.336752 SAR log (W/Kg) 5.555463 SURFACE SAR VOLUME SAR Image: the second seco		
Relative permittivity (real part)40.14Conductivity (S/m)1.88Input power100mWCrest Factor1.0Conversion Factor1.89Variation (%)0.050000SAR 10g (W/Kg)2.336752SAR 1g (W/Kg)5.555463VOLUME SARVolume sanImage: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Conversion FactorSAR 10g (W/Kg)2.336752SAR 1g (W/Kg)5.555463Image: Colspan="2">Image: Colspan="2"Image: C	Medium(liquid type)	HSL_2600
Conductivity (S/m)1.88Input power100mWCrest Factor1.0Conversion Factor1.89Variation (%)0.050000SAR 10g (W/Kg)2.336752SAR 1g (W/Kg)5.555463SURFACE SARVOLUME SARImage: Strategy and the		
Input power100mWCrest Factor1.0Conversion Factor1.89Variation (%)0.050000SAR 10g (W/Kg)2.336752SAR 1g (W/Kg)5.555463VOLUME SARImage: transformed and transform		
Crest Factor1.0Conversion Factor1.89Variation (%)0.050000SAR 10g (W/Kg)2.336752SAR 1g (W/Kg)5.555463VOLUME SARImage: Superscript and the set of the	Conductivity (S/m)	
Conversion Factor1.89Variation (%)0.050000SAR 10g (W/Kg)2.336752SAR 1g (W/Kg)5.555463VOLUME SARImage: Section of the information of	Input power	100mW
Variation (%)0.050000SAR 10g (W/Kg)2.336752SAR 1g (W/Kg)5.555463VOLUME SARImage: Second colspan="2">Image: Second colspan="2" Image: Second	Crest Factor	1.0
SAR 10g (W/Kg) 2.336752 SAR 1g (W/Kg) 5.555463 SURFACE SAR OULUME SAR OULUME SAR	Conversion Factor	1.89
SAR 1g (W/Kg) SURFACE SAR UCLUME SAR 5.555463 UCUME SAR Control of the state dataset dataset of the state dat	Variation (%)	
	SAR 10g (W/Kg)	
SM Treadutation Organical Interface Subject	SAR 1g (W/Kg)	5.555463
Image: Control Contro Control Control Control Control Control Control Control Control C	SURFACE SAR	VOLUME SAR
	$\begin{array}{c} \text{Surface Related Intensity} \\ \hline \\ \text{Calors State} \\ \text{Surface State} \\ \text{Surface Related Intensity} \\ \hline \\ \ \\ \text{Surface Related Intensity} \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \ \ \ \ \ \ \ \$	Volume Locit test Ladiated Intensity Zown Tar/Out 0/12/0 5 09966 100 100 0/12/0 6 68102 00 00 0 0.00088 60 00 0 0.00088 00 00 1 0.00088 00 00 1 0.00088 00 00 0 0.00088 00 00 0 0.00088 00 00 0 0.00088 00 00 0 0.00088 00 00 0 0.00088 00 00 0 0.00088 00 00 0 0.00088 00 00 0 0.00088 00 00 00 0 0.00088 00 00 00 00 0 0.00088 00 00 00 00 00 0 0.00088 00 00 00 00 <td< td=""></td<>

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 179

Report No.: LCS190617048AEB

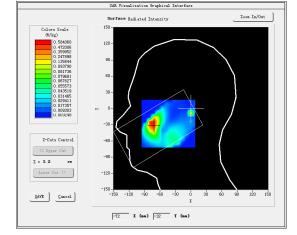
Test mode:5200MHz(Head) Product Description: Validation Model:Dipole SID5000 E-Field Probe: SE2(SN 31/17 EPGO324) Test Date: June 26, 2019

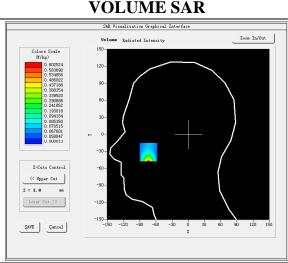
Medium(liquid type)	MSL_5000
Frequency (MHz)	5000.0000
Relative permittivity (real part)	35.88
Conductivity (S/m)	4.85
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.50
Variation (%)	-1.450000
SAR 10g (W/Kg)	5.483426
SAR 1g (W/Kg)	15.864271
SURFACE SAR	VOLUME SAR
14.80057 9.944501	1/19/142 1/20- 1/19/142 0/0- 0/19/142 0/0- 1/19/142 1/19/142
is report shall not be reproduced except in full, without the writter Page 56 of	n approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

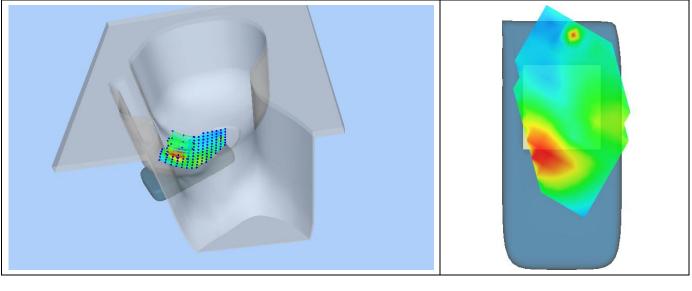
Test mode:5800MHz(Head) Product Description:Validation Model:Dipole SID5000 E-Field Probe: SSE2(SN 31/17 EPGO324) Test Date: July 03, 2019

Medium(liquid type)	MSL_5000
Frequency (MHz)	5000.0000
Relative permittivity (real part)	36.56
Conductivity (S/m)	5.11
Input power	100mW
Crest Factor	1.0
Conversion Factor	1.50
Variation (%)	-3.300000
SAR 10g (W/Kg)	5.896420
SAR 1g (W/Kg)	17.723412
SURFACE SAR	VOLUME SAR
	Image: set of the set of
This report shall not be reproduced except in full, without the writte	n approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 57	

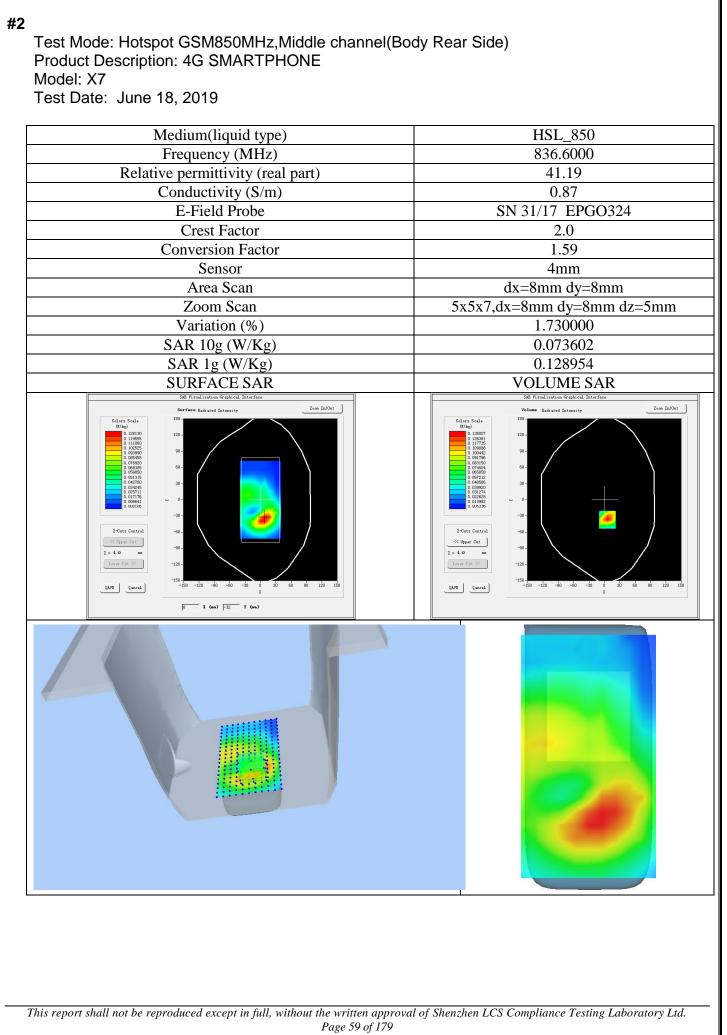
4.10 SAR Test Graph Results


SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02;


#1

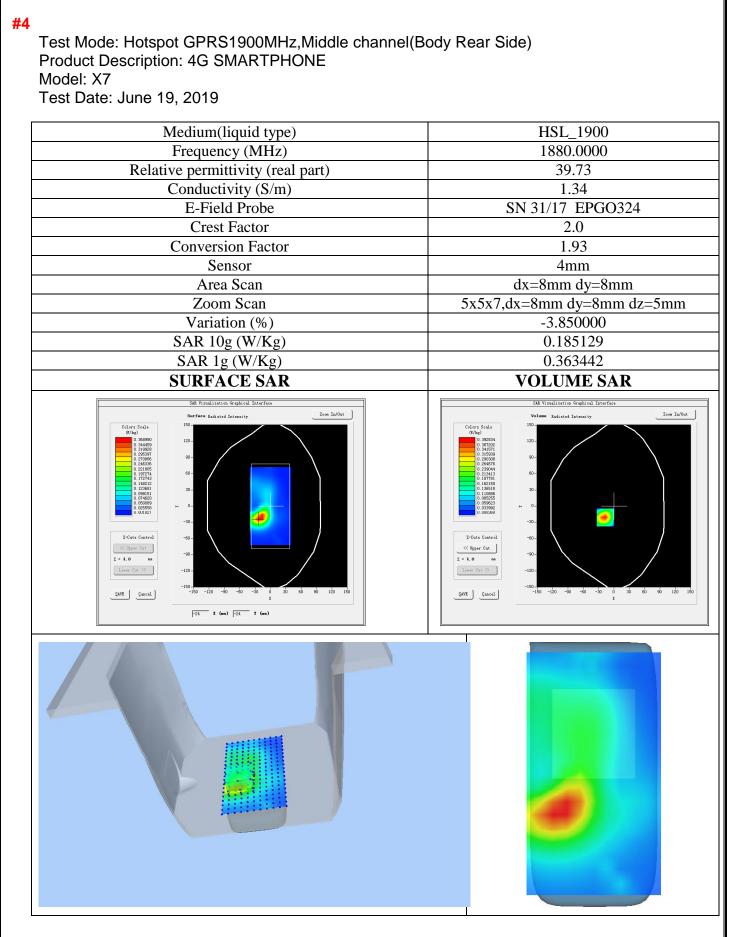

Test Mode:GSM 850MHz,Middle channel(Head Right Cheek) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 18, 2019

Test Date: June 18, 2019	
Medium(liquid type)	HSL_850
Frequency (MHz)	836.6000
Relative permittivity (real part)	41.19
Conductivity (S/m)	0.87
E-Field Probe	SN 31/17 EPGO324
Crest Factor	8.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.630000
SAR 10g (W/Kg)	0.183710
SAR 1g (W/Kg)	0.542216



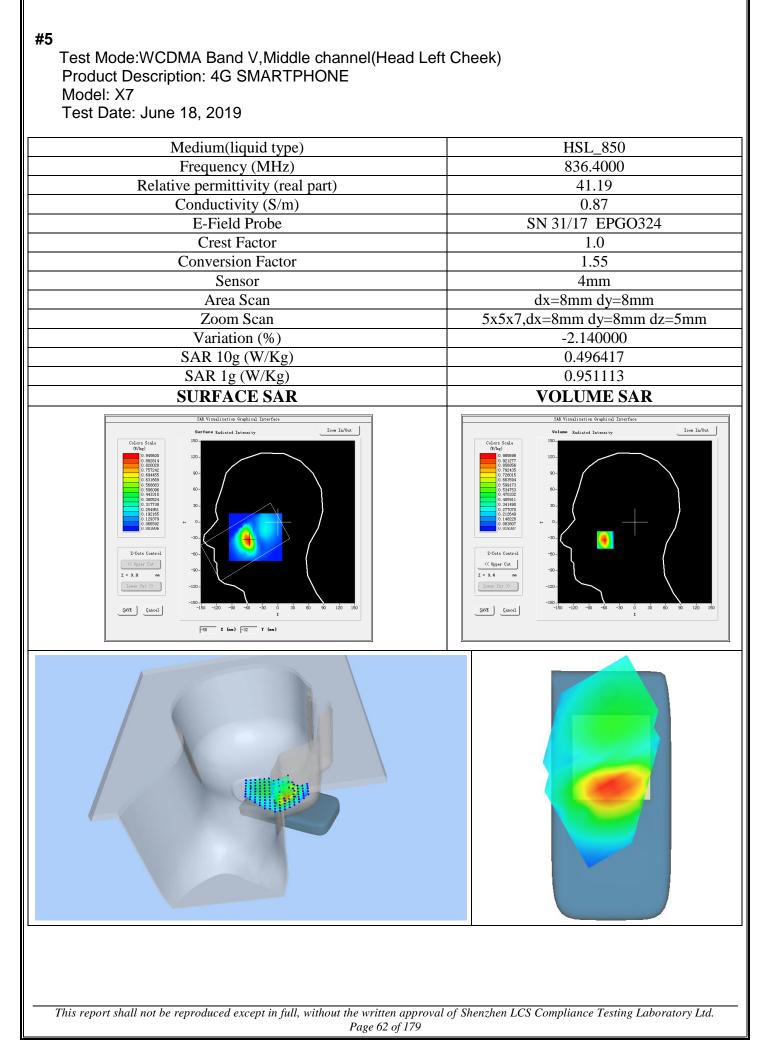
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 179

Report No.: LCS190617048AEB


Report No.: LCS190617048AEB

Zoon In/Out

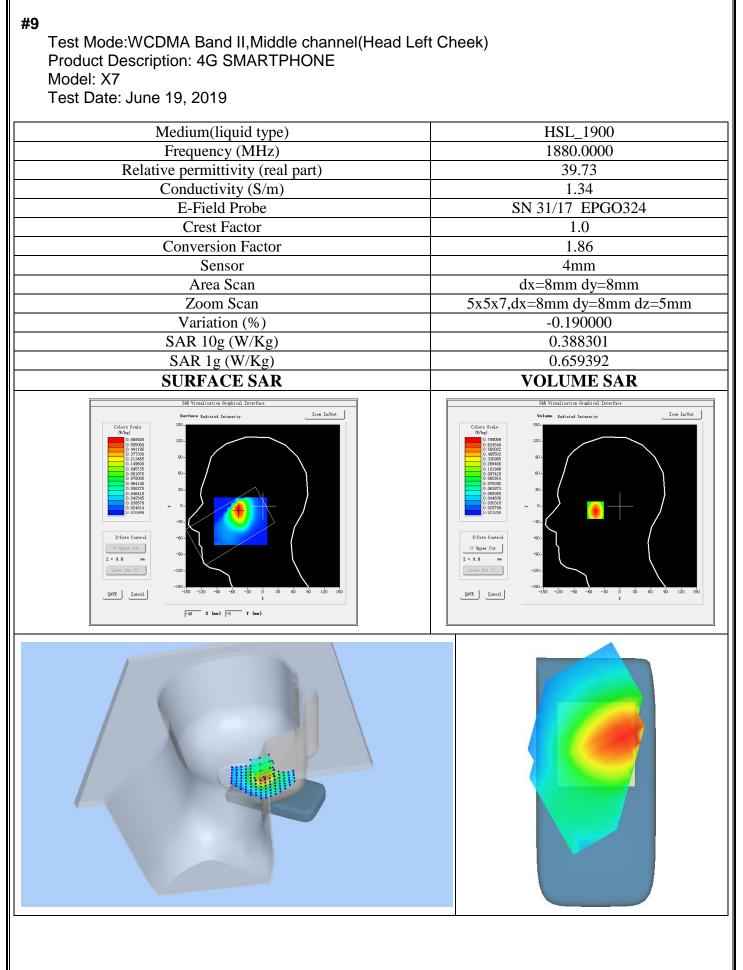
#3 Test Mode:GSM 1900MHz,Middle channel(Head Left Cheek) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 19, 2019 Medium(liquid type) HSL 1900 Frequency (MHz) 1880.0000 Relative permittivity (real part) 39.73 Conductivity (S/m) 1.34 **E-Field Probe** SN 31/17 EPGO324 **Crest Factor** 8.0 **Conversion Factor** 1.86 Sensor 4mm Area Scan dx=8mm dy=8mm Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Variation (%) 0.260000 SAR 10g (W/Kg) 0.524747 SAR 1g (W/Kg) 1.088771 **SURFACE SAR VOLUME SAR** on Graphical Interfa ualization Graphical Interf Surface Radiated Int Zoon In/Out Volume Radiated Inten: 150 Colors Scale (N/kg) 120 120 9026 29057 19847 10638 01428 01428 287538 196121 104705 013285 830088 737990 645892 553794 461696 369598 277501 Z-Cuts Control Z-Cuts Control << Upper Cut Z = 0.2 Z = 0.9 SAVE _____ SAVE Cancel -64 X (mm) -16 Y (mm)


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 60 of 179

Report No.: LCS190617048AEB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 61 of 179

Report No.: LCS190617048AEB


Report No.: LCS190617048AEB

Test Mode: Hotspot WCDMA Band V,Middle channel(Body Rear Side) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 18, 2019

Medium(liquid type)	HSL_850
Frequency (MHz)	836.4000
Relative permittivity (real part)	41.19
Conductivity (S/m)	0.87
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.59
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.010000
SAR 10g (W/Kg)	0.546169
SAR 1g (W/Kg)	0.914917
SURFACE SAR	VOLUME SAR
SAE Virulisation Graphical Interface	SAR Visualisation Graphical Interface
Color: Scale Surface Radiated Intensity Zeem In/Omt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>Volume Fach sted Intensity Zom In/Out 0</td>	Volume Fach sted Intensity Zom In/Out 0
This report shall not be reproduced except in full, without the written approver Page 63 of 179	al of Shenzhen LCS Compliance Testing Laboratory Ltd.

Report No.: LCS190617048AEB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 64 of 179

Report No.: LCS190617048AEB

#10

Test Mode: Hotspot WCDMA Band II,Middle channel(Body Front Side) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 19, 2019

Medium(liquid type)	HSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	39.73
Conductivity (S/m)	1.34
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.93
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	1.720000
SAR 10g (W/Kg)	0.370954
SAR 1g (W/Kg)	0.752496
SURFACE SAR	VOLUME SAR
548. Virualization Graphical Interface	SAR Visualisation Graphical Interface
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	C-Cres Scala (1) (1) (1) (1) (1) (1) (1) (1)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 65 of 179

|--|

Report No.: LCS190617048AEB

Test Mode: Hotspot LTE Band 2, 1RB,Low channel(Head Right Cheek) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 19, 2019

	1
Medium(liquid type)	HSL_1900
Frequency (MHz)	1860.0000
Relative permittivity (real part)	39.73
Conductivity (S/m)	1.34
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.65
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-4.430000
SAR 10g (W/Kg)	0.349854
SAR 1g (W/Kg)	0.746633
SURFACE SAR	VOLUME SAR
SAE Virsulisation Graphical Interface	SAE Virualization Graphical Interface
$\begin{bmatrix} Cderr, Stale \\ 0/120 \\ 0/73500 \\ 0 & 773400 \\ 0 & 773$	$\begin{array}{c c} \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
This report shall not be reproduced except in full, without the written approve Page 66 of 179	al of Shenzhen LCS Compliance Testing Laboratory Ltd.

Report No.: LCS190617048AEB

#12

Test Mode: Hotspot LTE Band 2, 1RB,Low channel(Body Rear Side) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 19, 2019

HSL_1900
1860.0000
39.73
1.34
SN 31/17 EPGO324
1.0
1.68
4mm
dx=8mm dy=8mm
5x5x7,dx=8mm dy=8mm dz=5mm
-2.120000
0.160848
0.291208
VOLUME SAR
SAE Viscalization Graphical Interface Volume Satisfact Transity Zeen In/Out
$\begin{array}{c} 0/k_{0} \\ 0 & 50563 \\ 0 & 250564 \\ 0 & 250564 \\ 0 & 250564 \\ 0 & 250564 \\ 0 & 250564 \\ 0 & 250564 \\ 0 & 250564 \\ 0 & 11377 \\ 0 & 11$

Page 67 of 179

Report No.: LCS190617048AEB

#15

Test Mode: LTE Band 5, 1RB,Low channel(Head Right Cheek) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 18, 2019

Medium(liquid type)	HSL_835
Frequency (MHz)	829.0000
Relative permittivity (real part)	41.19
Conductivity (S/m)	0.87
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.89000
SAR 10g (W/Kg)	0.122734
SAR 1g (W/Kg)	0.221610
SURFACE SAR	VOLUME SAR
	$\begin{array}{c} \label{eq:charge} Volume \ Relisted \ Intensity \\ \hline \\ $
This report shall not be reproduced except in full, without the written approval Page 68 of 179	of Shenzhen LCS Compliance Testing Laboratory Ltd.

|--|

Report No.: LCS190617048AEB

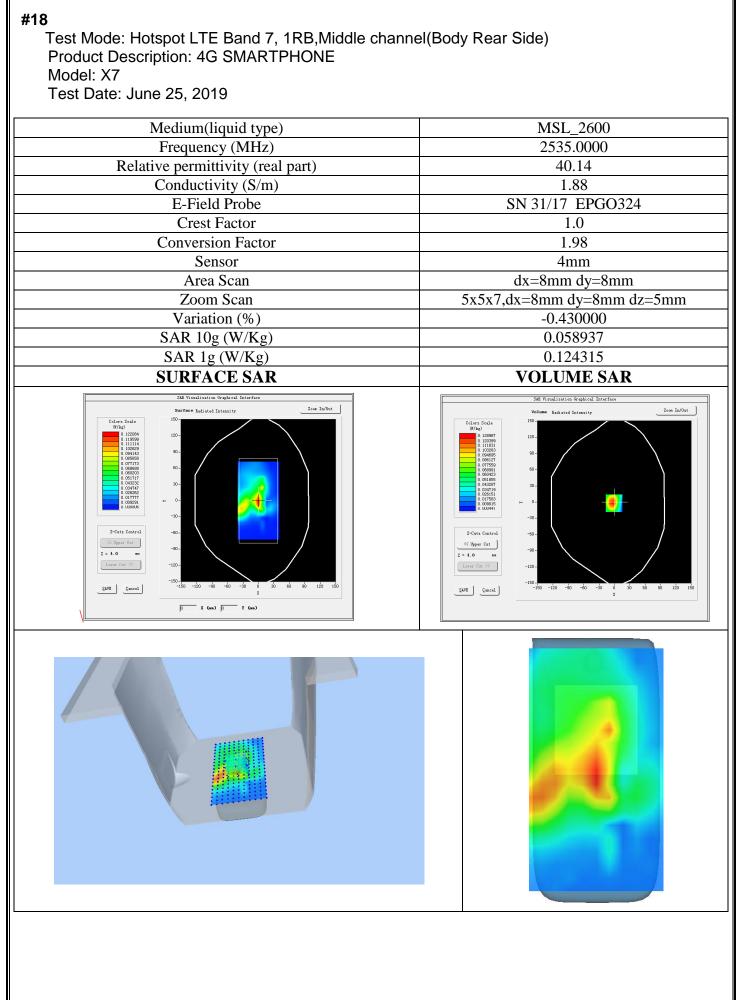
Test Mode: Hotspot LTE Band 5, 1RB,Low channel(Body Rear Side) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 18, 2019

Medium(liquid type)	HSL_835
Frequency (MHz)	829.0000
Relative permittivity (real part)	41.19
Conductivity (S/m)	0.87
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.59
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	1.410000
SAR 10g (W/Kg)	0.075743
SAR 1g (W/Kg)	0.130563
SURFACE SAR	VOLUME SAR
SAB Virualization Graphical Interface	SAE Visualization Graphical Interface
Surface Eddiated Intensity Zoom In/Out Colors Scale 150-	Volume Essisted Intensity Zoom In/Out Colors Scale 150-
2 - 0.0584 0 0.0594 0 0.	2-Cut Central 2-Cut
	I

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 69 of 179

Report No.: LCS190617048AEB

#17


Test Mode: LTE Band 7, 1RB,Middle channel(Head Left Cheek) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 25, 2019

Medium(liquid type)	HSL_2600
Frequency (MHz)	2535.0000
Relative permittivity (real part)	40.14
Conductivity (S/m)	1.88
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.89
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.780000
SAR 10g (W/Kg)	0.059888
SAR 1g (W/Kg)	0.133418
SURFACE SAR	VOLUME SAR
S&S Visualization Graphical Interface Surface Solisted Intensity Zoon In/Out	SAE Virtualisation Graphical Interface Volume Reducted Intensity Zeon In/Out
$\begin{bmatrix} 0/L_2 \\ 0.00339 \\ 0.0039 \\$	$\begin{array}{c} 0^{(1)} L_{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

Page 70 of 179

|--|

Report No.: LCS190617048AEB

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 71 of 179

Report No.: LCS190617048AEB

#23

Test Mode:802.11b(WiFi2.4G),Low channel (Head Right Cheek) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 20, 2019

Medium(liquid type)	HSL_2450
Frequency (MHz)	2412.0000
Relative permittivity (real part)	38.57
Conductivity (S/m)	1.75
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.91
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-3.120000
SAR 10g (W/Kg)	0.117790
SAR 1g (W/Kg)	0.276955
SURFACE SAR	VOLUME SAR
SAR Visualization Graphical Interface	SAR Visualization Graphical Interface
Sufface Radiated Intensity Zoom InvOut Colors Scale (N/kg)	Volume Radiated Intensity Celors Scale (0/Kg)
$\begin{bmatrix} 2 - 0x + 5 & cm + 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
This report shall not be reproduced except in full, without the written approva	l of Shenshen LCS Compliance Testing Laboratory Ltd

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 72 of 179

Report No.: LCS190617048AEB

#24

Test Mode: Hotspot 802.11b(WiFi2.4G),Low channel (Body Rear Side) Product Description: 4G SMARTPHONE Model: X7 Test Date: June 20, 2019

Medium(liquid type)	HSL_2450
Frequency (MHz)	2412.0000
Relative permittivity (real part)	38.57
Conductivity (S/m)	1.75
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.95
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.520000
SAR 10g (W/Kg)	0.221605
SAR 1g (W/Kg)	0.461871
SURFACE SAR	VOLUME SAR
SAE Viroulisation Graphical Interface	SAE Visualization Graphical Interface
Surface Reliated Intensity Zoom In/Out	Volume Radiated Intensity Zeem In/Out
$\begin{bmatrix} 2^{-Cuts Central} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	0.44700 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.53531 0.54141 0.50544 <td< td=""></td<>

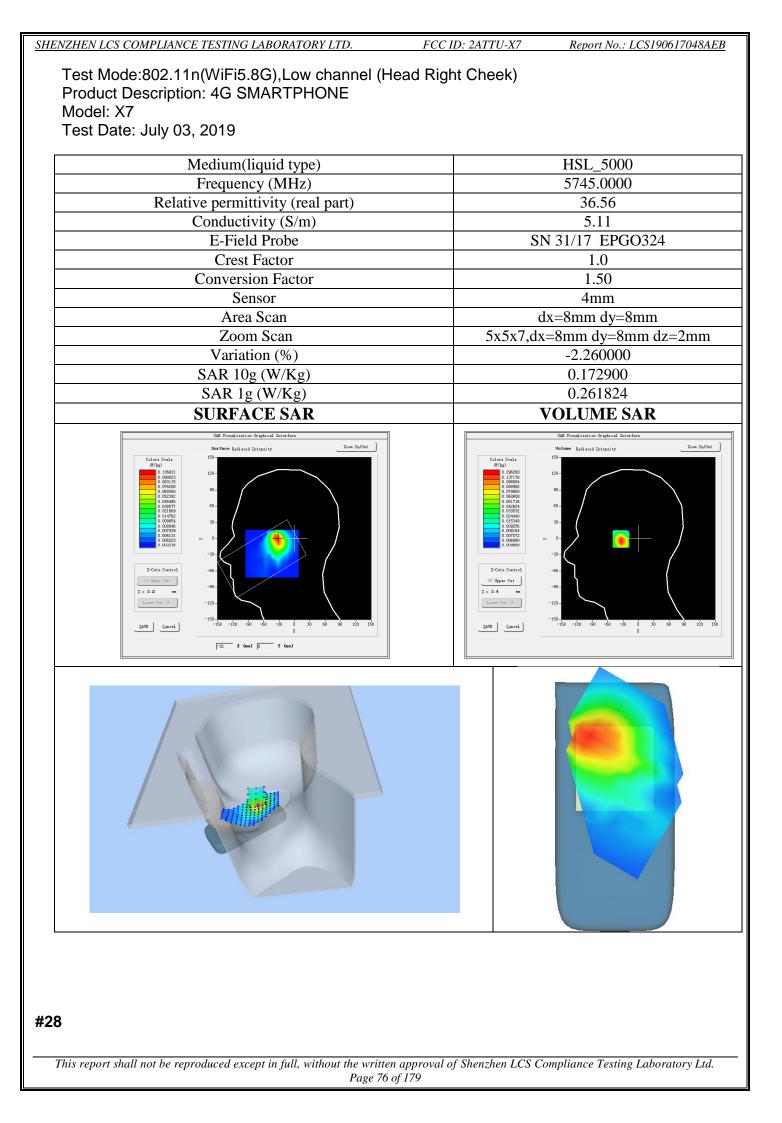
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 179

Report No.: LCS190617048AEB

#25

Test Mode:802.11n(WiFi5.2G),Low channel (Head Right Cheek) Product Description: 4G SMARTPHONE Model: X7 Test Date: July 03, 2019

Medium(liquid type)	HSL_5000
Frequency (MHz)	5190.0000
Relative permittivity (real part)	35.88
Conductivity (S/m)	4.85
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.50
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=2mm
Variation (%)	-2.580000
SAR 10g (W/Kg)	0.110616
SAR 1g (W/Kg)	0.325686
SURFACE SAR	VOLUME SAR
SAR Virsulisation Graphical Interface	SAE Visualisation Graphical Interface
Surface Echisted Intensity Zoom In/Out Colors Scale 150- (0/1z)	Volume Redisted Intensity Zoom In/Out O(/xg)
$\begin{bmatrix} 2 - Cuts Central \\ C + Dyper Cut \\ Z = D. 2 me \\ Cut = Cut x \\ Cut x \\ Cut = Cut x \\ Cut$	0.15500 0.05500 0.15600 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 0.05500 2Cuts Central 0.05500 2Sum 0.05000 2Sum 0.050000 2Sum


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 74 of 179

#26

Test Mode: Hotspot 802.11n(WiFi5.2G),Low channel (Body Rear Side) Product Description: 4G SMARTPHONE Model: X7 Test Date: July 03, 2019

Medium(liquid type)	HSL_5000
Frequency (MHz)	5190.0000
Relative permittivity (real part)	35.88
Conductivity (S/m)	4.85
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.56
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=2mm
Variation (%)	0.250000
SAR 10g (W/Kg)	0.147222
SAR 1g (W/Kg)	0.315442
SURFACE SAR	VOLUME SAR
SAE Virsalization Graphical Interface	SAE Visualization Graphical Interface
$ \begin{array}{c} $	0'123 100- 0'123 100- 0'123 100- 0'13000 1007 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100- 0'10070 100-

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 75 of 179

HENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ATTU-X7 Report No.: LCS190617048AEB
Test Mode: Hotspot 802.11n(WiFi5.8G),Low cha Product Description: 4G SMARTPHONE Model: X7 Test Date: July 03, 2019	ınnel (Body Front Side)
Medium(liquid type)	HSL_5000
Frequency (MHz)	5745.0000
Relative permittivity (real part)	36.56
Conductivity (S/m)	5.11
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.55
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=2mm
Variation (%)	-3.500000
	0.166092
SAR 10g (W/Kg) SAR 1g (W/Kg)	0.389830
SAR 1g (W/Rg) SURFACE SAR	VOLUME SAR
SURFACE SAR	SA Viralistice Graphed Interface
$\begin{bmatrix} Sar Face K_{kd} tstel Istensity \\ \hline \\ $	Volume Redisted Intensity Zen Th/Out 0 0.42163 0 0.421630 0 0.421630 0 0.421630 0 0.421630 0 0.421630 0 0.4216300 0 0.4116300000000000000000000000000000000000
This report shall not be reproduced except in full without the written.	

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 77 of 179