

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190608501

FCC REPORT

Applicant: Lifeplus Inc

Address of Applicant: 4320 Stevens Creek Blvd, San Jose, CA 95129, USA,

Equipment Under Test (EUT)

Product Name: Lifeleaf Smart Watch

Model No.: Lifeleaf G1

FCC ID: 2ATTDBW0190801

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 24 Jun., 2019

Date of Test: 25 Jun., to 01 Jul., 2019

Date of report issued: 02 Jul., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	02 Jul., 2019	Original

Test Engineer

Date:

Winner Many

Date: Tested by: 02 Jul., 2019

02 Jul., 2019 Reviewed by:

Project Engineer

3 Contents

			Page
1	COVER PAGE		1
2	VERSION		2
3			
4			
5	GENERAL INFORMATION	N	5
	5.1 CLIENT INFORMATION		5
	5.2 GENERAL DESCRIPTION	N OF E.U.T	5
	5.3 TEST ENVIRONMENT AN	ND TEST MODE	6
		PORT UNITS	
		RTAINTY	
		Y	
		NC	
	5.8 TEST INSTRUMENTS LIS	ST	7
6	TEST RESULTS AND ME	ASUREMENT DATA	8
	6.1 ANTENNA REQUIREMEN	NT:	8
	6.2 CONDUCTED EMISSION	N	9
	6.3 CONDUCTED OUTPUT I	Power	12
		NSITY	
		ion Method	
		n Method	
		ion Method	
		n Method	
7	TEST SETUP PHOTO		32
8	EUT CONSTRUCTIONAL	. DETAILS	34

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Lifeplus Inc
Address:	4320 Stevens Creek Blvd, San Jose, CA 95129, USA,
Manufacturer:	BLUE IDEA LIMITED
Address:	3rd Floor , Building A, Xi Li Creative workshop, No. 36 ,Industry 1st Road, Da Kan 2nd Village, NanShan District, ShenZhen, China

5.2 General Description of E.U.T.

Product Name:	Lifeleaf Smart Watch
Model No.:	Lifeleaf G1
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.68 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-300mAh
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Report No: CCISE190608501

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 43

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

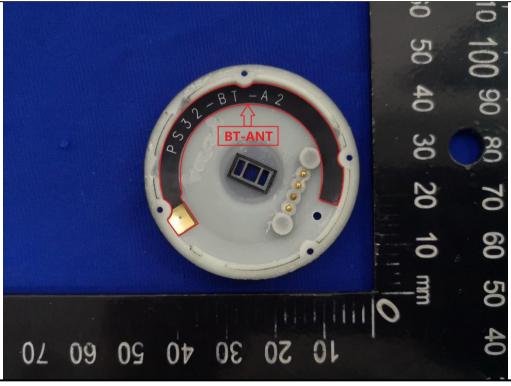
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

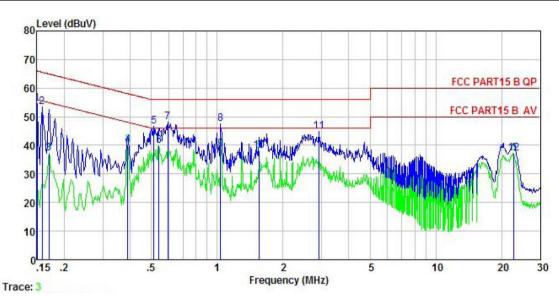

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

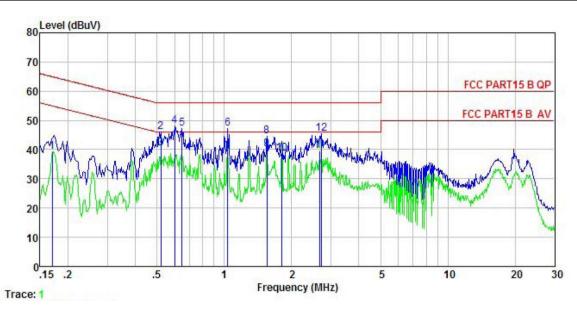
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.68 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:			(dBuV)		
Littit.	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logar 1. The E.U.T and simula				
	 50ohm/50uH coupling 2. The peripheral device a LISN that provides a termination. (Please r photographs). 3. Both sides of A.C. line interference. In order positions of equipmer 	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted 			
Test setup:	Refere	Reference Plane			
	AUX Equipment Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test Instruments:	Refer to section 5.8 for de	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for de	Refer to section 5.3 for details			
Test results:	Passed				

Measurement Data:

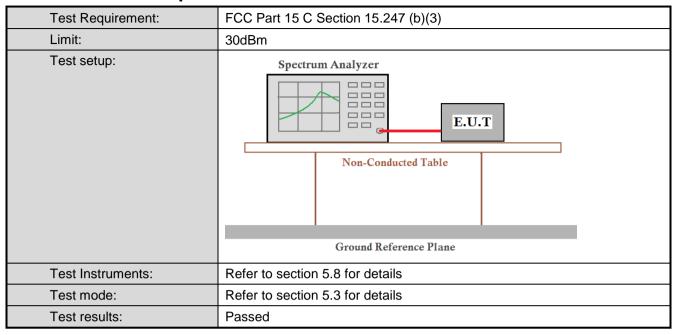
Product name:	Smart Watch	Product model:	Lifeleaf G1
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.150 0.158	44.63 43.24	-0.68 -0.68	10.78 10.77	54.73 53.33		-11.27 -12.23	
1 2 3 4 5 6 7 8	0.170 0.389	27.24	-0.68 -0.64	10.77	37.33	54.94	-17.61	Average
5	0.513		-0.65	10.72	40.22	48.08 56.00	-9.31	
7	0.541 0.595	38.02	-0.64	10.76 10.77	39.80 48.15	46.00 56.00	-7.85	
	1.037 1.037	37.29 28.31	-0.63 -0.63	10.87 10.87	47.53 38.55	56.00 46.00	-7.45	Average
10 11	1.560 2.915	27.73 34.58	-0.66 -0.67	10.93 10.92	38.00 44.83	46.00 56.00	-8.00 -11.17	Average QP
12	22.775	27.73	-1.43	10.90	37.20	50.00	-12.80	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

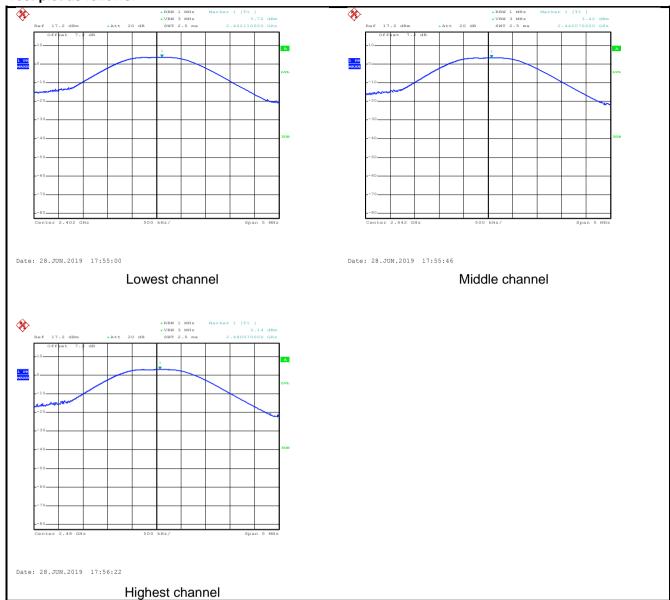
Product name:	Smart Watch	Product model:	Lifeleaf G1
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	₫B		dBu₹	—dBu∇	<u>ab</u>	
1	0.170	29.14	-0.68	10.77	39.23			Average
2	0.521	36.06	-0.65	10.76	46.17	56.00	-9.83	QP
3	0.521	30.28	-0.65	10.76	40.39	46.00	-5.61	Average
4	0.601	38.00	-0.64	10.77	48.13	56.00	-7.87	QP
5	0.647	37.10	-0.64	10.77	47.23	56.00	-8.77	QP
2 3 4 5 6 7 8 9	1.037	37.03	-0.63	10.87	47.27	56.00	-8.73	QP
7	1.037	28.92	-0.63	10.87	39.16	46.00	-6.84	Average
8	1.552	34.42	-0.66	10.93	44.69		-11.31	
9	1.552	29.88	-0.66	10.93	40.15	46.00		Average
10	1.810	28.45	-0.66	10.95	38.74	46.00		Average
11	2.664	29.37	-0.67	10.93	39.63	46.00		Average
12	2.721	35.23	-0.67	10.93	45.49		-10.51	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

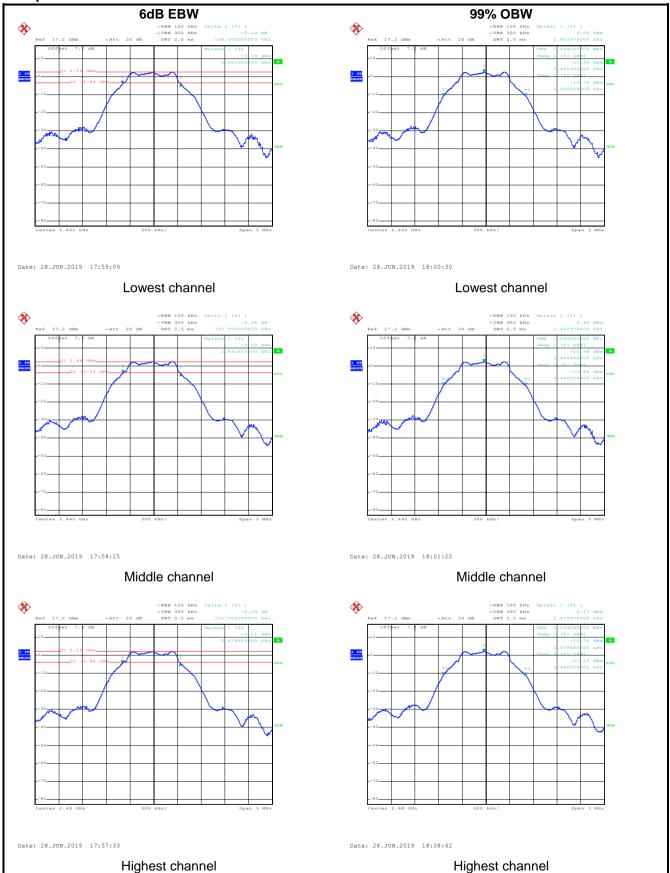


Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	3.72		
Middle	3.42	30.00	Pass
Highest	3.14		

Test plot as follows:

6.4 Occupy Bandwidth

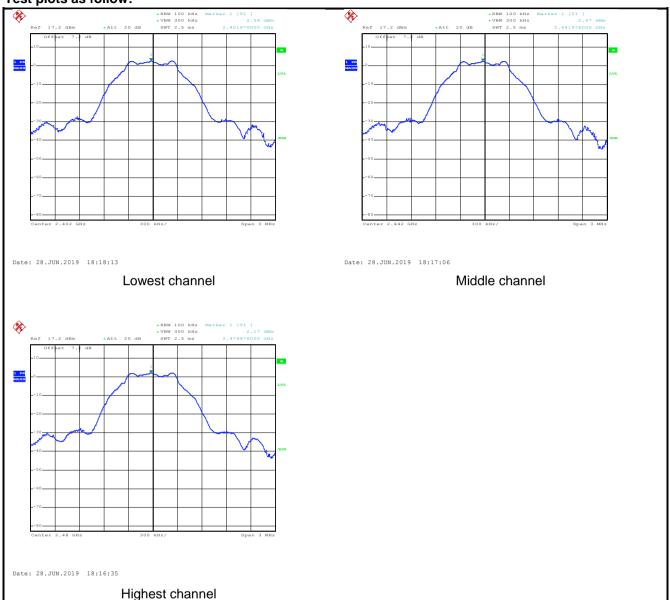

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.738			
Middle	0.732	>500	Pass	
Highest	0.732			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.044			
Middle	Middle 1.044		N/A	
Highest	1.044			

Test plot as follows:

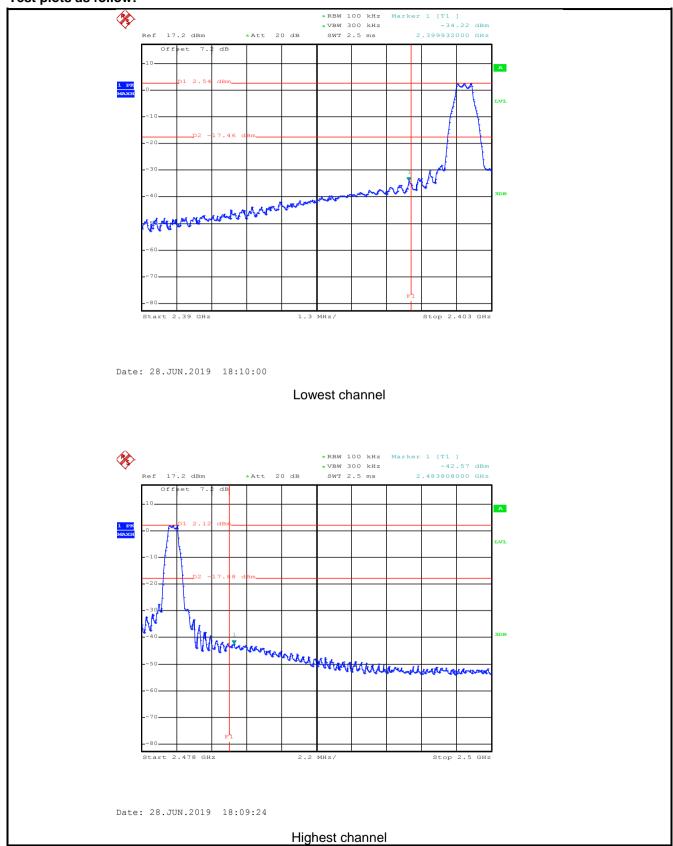
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Limit:	8 dBm				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

 our orrionic Butur			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	2.59		
Middle	2.47	8.00	Pass
Highest	2.17		

Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plots as follow:

6.6.2 Radiated Emission Method

6.6.2 Radiated Emissi	on wethou							
Test Requirement:	FCC Part 15 (FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range	2.3GHz to 2.5	GHz						
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	icy Lin	nit (dBuV/m @: 54.00		Remark verage Value			
	Above 10	GHz	74.00		Peak Value			
Test Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both hori make the 4. For each case and meters are to find the 5. The test-specified 6. If the emit the limit is of the EU have 10 of the formal to determine the limit is of the EU have 10 of the EU the formal to determine the limit is of the EU have 10 of the EU the meters are the limit is of the EU the meters are the limit is of the EU the meters are the limit is of the EU the meters are the limit is of the EU the meters are the limit is of the EU the meters are the limit is of the EU the lim	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	AE Wangs I	Furntable) Ground Test Receiver	Horn Antenna 3m Reference Plane	Antenna Tower				
Test Instruments:	Refer to section	Refer to section 5.8 for details						
Test mode:	Refer to section	Refer to section 5.3 for details						
Test results:	Passed							

Product Name:	Smart Watch	Product Model:	Lifeleaf G1 BLE Tx mode	
Test By:	Carey	Test mode:		
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%	
110 Level (dBuV	//m)			
100				
80			FCC PART 15 (PK)	
60			FCC PART 15 (AV)	
40	who where we are the co	an and and the same	2	
20				
0 2310 23		ency (MHz)	2404	

	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∜	— <u>dB</u> /m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2390,000 2390,000					49.16 40.39			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.00 -23.64 Peak 54.00 -13.52 Average

Product Name:	Sn	nart Watch	h		Р	roduct Mode	el:	Lifeleaf G1					
Test By:	Ca	irey			T	est mode:		BLE Tx mod	de				
Test Channel:	Lo	west char	nnel		Р	olarization:		Horizontal			Horizontal		
Test Voltage:	AC	120V/60	Hz		E	nvironment:	•	Temp: 24℃	Huni: 57%				
Level	dRuV/m)	23											
110 Level (dDd V/III)	-											
100													
80								FCC	PART 15 (PK)				
									<i> </i>				
60		20		20 0-	00.0	~~~~		FCC	PART 15 (AV)				
		are made	~~~		w 0 00 ·		Lumbru						
40													
20													
2310	2320			235	_	/MU-1			2404				
				FIG	equency	(MHZ)							
	Freq	Read.	Antenna Factor	Cable Loss	Pream	p r Level	Limit	: Over					
	MHz	dBu∀	dB/m	dB	C	B dBuV/m	dBuV/r	n dB					

Remark:

1 2

2390.000

2390.000

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

27.08

27.08

18.59

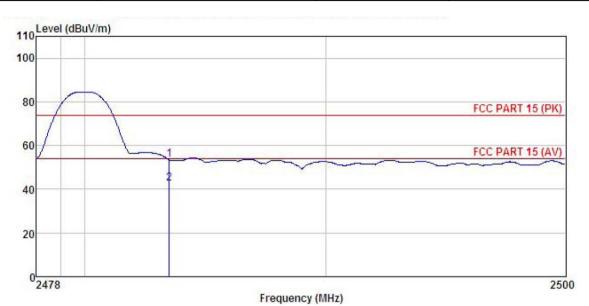
8.71

The emission levels of other frequencies are very lower than the limit and not show in test report.

50.36

40.48

0.00

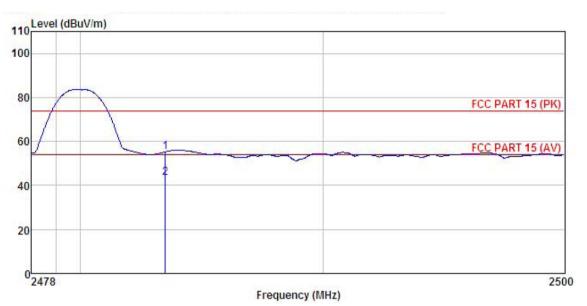

0.00

4.69

4.69

Product Name:	Smart Watch	Product Model:	Lifeleaf G1
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
2	2483, 500 2483, 500								


Remark

1 2

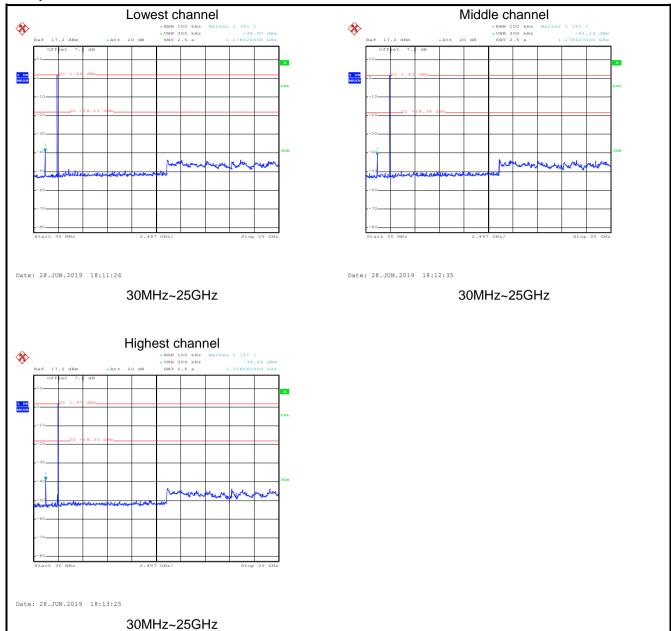
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Watch	Product Model:	Lifeleaf G1
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Re Freq Lev		Antenna Factor						
-	MHz	dBu∜		dB	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

Remark:

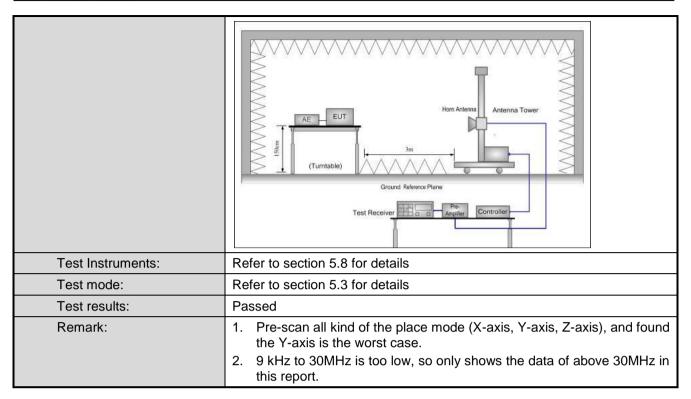
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

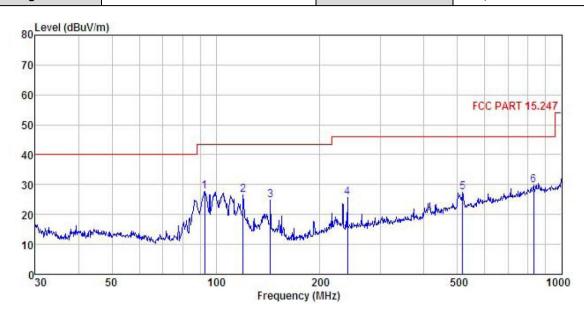
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:



6.7.2 Radiated Emission Method

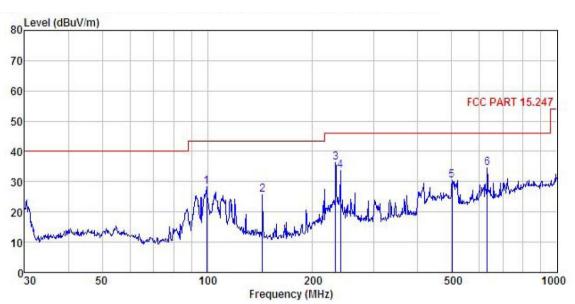
Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW VB		sW	Remark
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz		Peak Value
	Above 10112	RMS	1MHz 3M		Hz	Average Value
Limit:	Frequency	/ Li	mit (dBuV/m @	3m)		Remark
	30MHz-88M	Hz	40.0			Quasi-peak Value
	88MHz-216N		43.5			Quasi-peak Value
	216MHz-960I		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GF	lz —	54.0 74.0			Average Value Peak Value
Test Procedure:	1GHz)/1.5r The table of highest rad 2. The EUT antenna, we tower. 3. The antenna the ground Both horizon make the notes and to find the offind the offind the limit spoof the EUT have 10 dE	m(above 1GHwas rotated 3 iation. was set 3 minimum reasurement. Suspected en the ante deceiver system and with the rota table maximum reasurement of the rota table of t	dz) above the 360 degrees to seters away unted on the standard from one the maximutical polarization was tuned ding. If may be the maximum Hama was tuned ding. If maximum Hama was set the EUT in percesting could be ported. Other did be re-tested.	e groun to deter from the top of a ne met um val tions of EUT wa ed to he from 0 to Pea lold Mo eak mod oe stop wise the d one b	d at a rmine ne intervariation of the a arrange degree deg	table 0.8m(below a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m Im			Antenna Search Antenn Test zeiver	1



Measurement Data (worst case):

Below 1GHz:

Product Name:	Smart Watch	Product Model:	Lifeleaf G1
Test By:	Carey	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Re Freq Lev		Antenna Factor						Remark
	MHz	dBu∜	<u>d</u> B/π	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	92.787	44.57	10.76	2.03	29.56	27.80	43.50	-15.70	QP
1 2 3 4	119.856	42.91	10.89	2.17	29.39	26.58	43.50	-16.92	QP
3	143.830	42.28	9.27	2.44	29.25	24.74	43.50	-18.76	QP
4	239.987	39.10	12.30	2.82	28.59	25.63	46.00	-20.37	QP
5	517.248	34.42	18.27	3.71	29.00	27.40	46.00	-18.60	QP
6	830.400	31.41	22.21			29.79		-16.21	+0.67.7300

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Watch	Product Model:	Lifeleaf G1
Test By:	Carey	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∀	<u>dB</u> /m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>db</u>	
1	99.528	43.53	12.41	1.95	29.53	28.36	43.50	-15.14	QP
2 3 4 5 6	143.830	43.23	9.27	2.44	29.25	25.69	43.50	-17.81	QP
3	232.532	49.97	12.03	2.83	28.64	36.19	46.00	-9.81	QP
4	239.987	47.04	12.30	2.82	28.59	33.57	46.00	-12.43	QP
5	501.179	37.57	18.20	3.63	28.96	30.44	46.00	-15.56	QP
6	631.688	39.88	19.64	3.89	28.84	34.57	46.00	-11.43	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel: Lowest channel									
			De	tector: Peak	Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	47.34	35.99	6.80	41.81	48.32	74.00	-25.68	Vertical	
4804.00	48.45	35.99	6.80	41.81	49.43	74.00	-24.57	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	38.37	35.99	6.80	41.81	39.35	54.00	-14.65	Vertical	
4804.00	39.45	35.99	6.80	41.81	40.43	54.00	-13.57	Horizontal	
				nannel: Midd					
		T		tector: Peak	(Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	47.48	36.38	6.86	41.84	48.88	74.00	-25.12	Vertical	
4884.00	47.32	36.38	6.86	41.84	48.72	74.00	-25.28	Horizontal	
			Dete	ector: Avera	ge Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	38.68	36.38	6.86	41.84	40.08	54.00	-13.92	Vertical	
4884.00	38.16	36.38	6.86	41.84	39.56	54.00	-14.44	Horizontal	
				annel: High					
		1		tector: Peak	k Value				
Г.,	Read	Antenna	Cable	Preamp	Lavial	limait lima	Over	1	

Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.88	36.71	6.91	41.87	49.63	74.00	-24.37	Vertical
4960.00	47.81	36.71	6.91	41.87	49.56	74.00	-24.44	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	38.54	36.71	6.91	41.87	40.29	54.00	-13.71	Vertical
4960.00	38.76	36.71	6.91	41.87	40.51	54.00	-13.49	Horizontal

Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.