KSIGN (Guangdong) Testing Co., Ltd.

KSIGN

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

TEST REPORT

Report No:	KS2103S0358E		
FCC ID:	2ATT4-WO-RC		
Applicant:	Shenzhen Waydoo Intelligence Technology Co., Ltd.		
Address	Office Building A101, No. 3. Keji Road, Zhukeng Community, Longtian Street, PingshanDistrict Shenzhen, China		
Manufacturer	Shenzhen Waydoo Intelligence Technology Co., Ltd.		
Address	Office Building A101, No. 3. Keji Road, Zhukeng Community, Longtian Street, PingshanDistrict Shenzhen,China		
Factory	Shenzhen Waydoo Intelligence Technology Co., Ltd.		
Address	Office Building A101, No. 3. Keji Road, Zhukeng Community, Longtian Street, PingshanDistrict Shenzhen, China		
Product Name:	Waydoo Flyer ONE Remote Control		
Trade Mark	Waydoo		
Model/Type reference	Waydoo Flyer ONE-RC		
Listed Model(s)	1		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of Receipt	Mar. 09, 2021		
Date of Test Date	Mar. 09, 2021~Mar. 31, 2021		
Date of issue	Mar. 31, 2021		
Test result:	Pass		
Compiled by:	Rory Huang Rory Huangsdong) Test		
(Printed name+signature)	Rory Huang		
Supervised by:	FORES		
(Printed name+signature)	Eder Zhan Cder. Chanksin		
Approved by:	Carry Luo		
(Pri ted name+signature)	Cary Luo		
Testing Laboratory Name:	KSIGN(Guangdong) Testing Co., Ltd.		
Address:	West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China		

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS

TABLE OF CONTENTS	Page
1. TEST SUMMARY	
1.1. Test Standards	3
1.2. Report version	3
1.3. TEST DESCRIPTION	4
1.4. Test Facility	5
1.5. Measurement Uncertainty	
1.6. Environmental conditions	
2. GENERAL INFORMATION	
2.1. GENERAL DESCRIPTION OF EUT	7
2.2. OPERATION STATE.	
2.3. MEASUREMENT INSTRUMENTS LIST	
2.5. Test Software	
3. TEST ITEM AND RESULTS	
3.1. ANTENNA REQUIREMENT	
3.2. PEAK OUTPUT POWER.	
3.3. POWER SPECTRAL DENSITY	
3.4. 6dB Bandwidth	
3.5. BAND EDGE AND SPURIOUS EMISSION (CONDUCTED)	
3.6. BAND EDGE EMISSIONS(RADIATED)	
3.7. Spurious Emission (Radiated)	
3.8. CONDUCTED EMISSION	40
4. EUT TEST PHOTOS	
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	

KSIGN

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

KDB 558074 D01 : The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under § 15.247 of the FCC rules (Title 47 of the Code of Federal Regulations)

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No. Date of issue		Description
01	Mar. 31, 2021	Original
S.S.		L
	N/Y	
	100	
	Sec.	
	1	
	15	
		La ser
- 10 A		
	X	
X.		
2		
	No the second se	

1.3. Test Description

FCC Part 15 Subpart C(15.247)					
T = 4.14 and	Standard Section		Test Engineer		
Test Item	FCC	Result			
Antenna Requirement	15.203	Pass	Rory Huang		
Conducted Emission	15.207	Pass	Rory Huang		
Restricted Bands	15.205	Pass	Rory Huang		
Peak Output Power	15.247(b)	Pass	Rory Huang		
Band Edge Emissions	15.247(d)	Pass	Rory Huang		
Power Spectral Density	15.247(e)	Pass	Rory Huang		
Radiated Emission	15.205&15.209	Pass	Rory Huang		
6dB Bandwidth	15.247(a)(2)	Pass	Rory Huang		
Spurious RF Conducted Emission	15.247(d)	Pass	Rory Huang		

Note:

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes	
Transmitter power conducted	0.42 dB	(1)	
Transmitter power Radiated	2.14 dB	(1)	
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)	
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)	
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)	
Radiated Emissions 30~1000MHz	4.70 dB	(1)	
Radiated Emissions 1~18GHz	5.00 dB	(1)	
Radiated Emissions 18~40GHz	5.54 dB	(1)	
Occupied Bandwidth	2.80 dB	(1)	

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. General Description of EUT

Test Sample Number 1:	1-1-1(Normal Sample),1-1-2(Engineering Sample)
Product Name:	Waydoo Flyer ONE Remote Control
Trade Mark:	Waydoo
Model/Type reference:	Waydoo Flyer ONE-RC
Listed Model(s):	
Model Difference:	
Power supply(Work)	Input:DC 3.7V by battery
Hardware version:	WD832A
Software version:	V1.0
Bluetooth V5.0	
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Max Peak Output Power:	-1.42 dBm
Channel number:	40
Channel separation:	2MHz
Antenna type:	PCB Antenna
Antenna gain:	2.34 dBi

2.2. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing. Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
19	2440
20	2442
21	2444
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test mode

NO.	TEST MODE DESCRIPTION
1	Low channel TX (2402MHz)
2	Middle channel TX (2440MHz)
3	High channel TX (2480MHz)

Note:

1. Only the result of the worst case was recorded in the report, if no other cases..

2. The test software is the SecureCRTSecure_V7.0.0.326 which can set the EUT into the individual test modes.

2.3. Measurement Instruments List

1Spectrum AnalyzerR&SFSV40-N10179804/07/2022Vector Signal GeneratorAgilentN5182AMY501425 2004/07/2023Analog Signal GeneratorHP83752A3344A003 3704/07/2024Power SensorAgilentE9304AMY5039000 904/07/2025Power SensorAgilentE9300AMY4149831 504/07/2026Wideband Radio Communication TesterR&SCMW50015728204/07/2027Climate ChamberAngulAGNH80L19030421 2004/07/2028Dual Output DC Power SupplyAgilentE3646AMY4000999 204/07/202		Tonscend JS0806-2 Test system					
2Vector Signal GeneratorAgilentN5182AMY501425 2004/07/202 203Analog Signal GeneratorHP83752A3344A003 3704/07/2024Power SensorAgilentE9304A904/07/2025Power SensorAgilentE9300AMY4149831 504/07/2026Wideband Radio Communication TesterR&SCMW50015728204/07/2027Climate ChamberAngulAGNH80L19030421 2004/07/2028Dual Output DC Power SupplyAgilentE3646AMY4000999 204/07/202	Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
2Vector Signal GeneratorAgilentNS182A2004/07/2023Analog Signal GeneratorHP83752A3344A003 3704/07/2024Power SensorAgilentE9304AMY5039000 904/07/2025Power SensorAgilentE9300AMY4149831 504/07/2026Wideband Radio Communication TesterR&SCMW50015728204/07/2027Climate ChamberAngulAGNH80L19030421 2004/07/2028Dual Output DC Power SupplyAgilentE3646AMY4000999 204/07/202	1	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021	
3Analog Signal GeneratorHP83752A3704/07/2024Power SensorAgilentE9304AMY5039000 904/07/2025Power SensorAgilentE9300AMY4149831 504/07/2026Wideband Radio Communication TesterR&SCMW50015728204/07/2027Climate ChamberAngulAGNH80L19030421 2004/07/2028Dual Output DC Power SupplyAgilentE3646AMY4000999 204/07/202	2	Vector Signal Generator	Agilent	N5182A		04/07/2021	
4Power SensorAgilentE9304A904/07/2025Power SensorAgilentE9300AMY4149831 504/07/2026Wideband Radio Communication TesterR&SCMW50015728204/07/2027Climate ChamberAngulAGNH80L19030421 2004/07/2028Dual Output DC Power SupplyAgilentE3646AMY4000999 204/07/202	3	Analog Signal Generator	HP	83752A	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/07/2021	
5Power SensorAgilentE9300A504/07/2026Wideband Radio Communication TesterR&SCMW50015728204/07/2027Climate ChamberAngulAGNH80L19030421 2004/07/2028Dual Output DC Power SupplyAgilentE3646AMY4000999 204/07/202	4	Power Sensor	Agilent	E9304A	1.7.2.1.1.1.1.1.1. <u>0</u> .2000.000-02200	04/07/2021	
6Communication TesterR&SCMW50015728204/07/2027Climate ChamberAngulAGNH80L19030421 2004/07/2028Dual Output DC Power SupplyAgilentE3646AMY4000999 204/07/202	5	Power Sensor	Agilent	E9300A	and the second second second second second	04/07/2021	
7 Climate Chamber Angul AGNH80L 20 04/07/202 8 Dual Output DC Power Supply Agilent E3646A MY4000999 2 04/07/202	6		R&S	CMW500	157282	04/07/2021	
8 Supply Aglient E3646A 2 04/07/202	7	Climate Chamber	Angul	AGNH80L	A GRANN A ARC KEESS	04/07/2021	
9 RE Control Unit Tonscend IS0806-2 / 04/07/202	8		Agilent	E3646A		04/07/2021	
	9	RF Control Unit	Tonscend	JS0806-2	1	04/07/2021	

	Transmitter spurious emissions & Receiver spurious emissions					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	EMI Test Receiver	R&S	ESR	102525	04/07/2021	
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	04/07/2021	
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	04/07/2021	
4	Spectrum Analyzer	HP	8593E	3831U02087	04/07/2021	
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	04/07/2021	
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	04/07/2021	
7	Spectrum Analyzer	R&S	FSV40-N	101798	04/07/2021	
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	04/07/2021	
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	04/07/2021	
10	Pre-Amplifier	EMCI	EMC051835SE	980662	04/07/2021	

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	LISN	R&S	ENV432	1326.6105.02	03/27/2022
2	EMI Test Receiver	R&S	ESR	102524	04/07/2021
3	Manual RF Switch	JS TOYO	1	MSW-01/002	04/07/2021

Note:

1)The Cal. Interval was one year.

2)The cable loss has calculated in test result which connection between each test instruments. **2.5. Test Software**

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

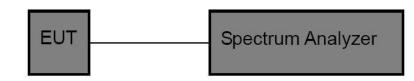
FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Note: The antenna is permanently fixed to the EUT



3.2. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

Test Configuration

Test Procedure

1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator..

2. Spectrum Setting:

Peak Detector: RBW≥DTS Bandwidth, VBW≥3*RBW.

Sweep time=Auto.

Detector= Peak.

Trace mode= Maxhold.

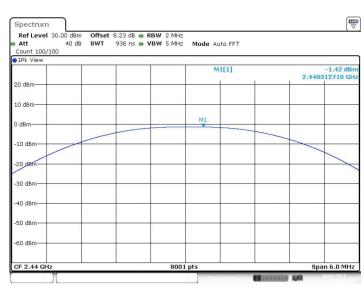
Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2.

Test Result

GFSK_1M


Test Mode:	BLE Mode		
Channel frequ	ency (MHz)	Test Result (dBm)	Limit (dBm)
2402	2	-1.91	
2440)	-1.42	30
2480)	-2.48	
	i	BLE Mode	
		2402 MHz	

BLE Mode

2440 MHz

Date: 18.MAR.2021 17:39:48

BLE Mode 2480 MHz

Spectrum Ref Level 30.00 dBm Offset 8.23 dB RBW 2 MHz Att 40 dB SWT 936 ns \blacksquare VBW 5 MHz Mode Auto FFT Count 100/100 1Pk View M1[1] -2.48 dBr 2.480342710 GH 20 dBm 10 dBm 0 dB -10 dBm -20 dB -30 dBm 40 dBm -50 dBm -60 dBi Span 6.0 MHz 8001 pt CF 2.48 G

Date: 18.MAR.2021 17:41:42

3.3. Power Spectral Density

Limit

	FCC Part 15 Subpart C(15.247	r)
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

Test Configuration

EUT	Spectrum Analyzer

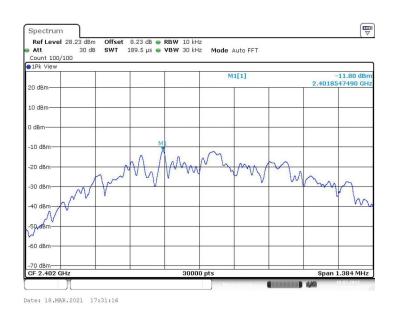
Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.b-6.ii of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyser center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 10 kHz Set the VBW to: 30 kHz Detector: peak Sweep time: auto Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2.

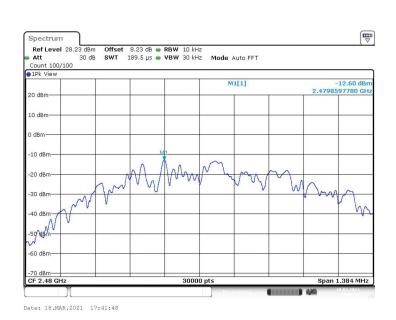

Test Result

Note:

Power Density(dBm/3kHz)=Power Density(dBm/10kHz)-10*Log(10/3)

GFSK_1M

Test Mode:	BLE Mod	e	645	
Channel Fr (MH:		Power Density (dBm/10kHz)	Power Density (dBm/3kHz)	Limit (dBm)
240	2	-11.8	-17.03	
244	0	-11.38	-16.61	8dBm/3kHz
248	0	-12.6	-17.83	
		BLE Mode		
		2402 MHz		



BLE Mode

2440 MHz

BLE Mode 2480 MHz

3.4. 6dB Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

EUT	Spectrum Analyzer

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.
- 3. The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

4. Spectrum Setting:

6dB bandwidth:

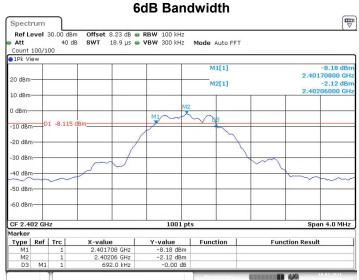
- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) \ge 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.

(7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.2.


Test Results

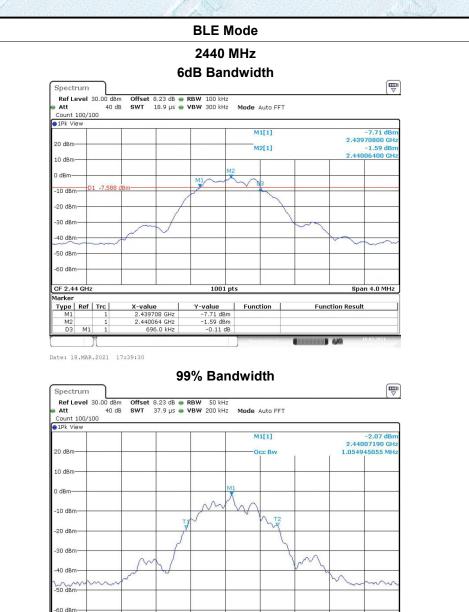
GFSK_1M

Test Mode:	BLE Mode			
Channel freque	ency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)
2402	2	0.692	1.051	
2440)	0.696	1.055	≧0.5
2480)	0.692	1.055	

BLE Mode

2402 MHz

Date: 18.MAR.2021 17:30:52


99% Bandwidth

Date: 18.MAR.2021 17:31:03

Span 4.0 MHz

1001 pts

Date: 18.MAR.2021 17:39:41

CF 2.44 G

KSIGN

BLE Mode 2480 MHz

-8.730 dB					1[1] 2[1]			-8.76 dBn 7971600 GH -2.73 dBn
-8 730 dB				М	2[1]			
-8 730 dB				IM	2[1]			-2.73 uBr
-8 730 dB							2 4	8006800 GH
-8 730 dB						1	2.7	5000000 Gri
-8 730 dB			N	12				
-8 730 dB			MI	5 0				
	m=		1	~	3			_
		1						
						_		-
		1						
		/				Lon		+
		/					-	
~~~							~	~~~
			1001 p	ots		-	S	oan 4.0 MHz
frc	X-value		Y-value		tion	Fun	ction Res	ult
1								
	Frc   1   1   1   1   1   1   1   1   1	1 2.479716 G 1 2.480068 G	1 2.479716 GHz 1 2.480068 GHz	X-value         Y-value           1         2.479716 GHz         -8.76 dBm           1         2.480068 GHz         -2.73 dBm	1 2.479716 GHz -8.76 dBm 1 2.480068 GHz -2.73 dBm	X-value         Y-value         Function           1         2.479716 GHz         -8.76 dBm           1         2.480056 GHz         -2.73 dBm	Y-value         Y-value         Function         Function           1         2.479716 GHz         -8.76 dBm         -8.73 dBm           1         2.480068 GHz         -2.73 dBm         -2.73 dBm	Y-value         Function         Function Rest           1         2,479716 GHz         -8.76 dBm         -8.77 dBm           1         2,480068 GHz         -2.73 dBm         -2.73 dBm

Date: 18.MAR.2021 17:41:24

Spectrum

#### 99% Bandwidth



Date: 18.MAR.2021 17:41:35




### 3.5. Band edge and Spurious Emission (conducted)

#### Limit

#### FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

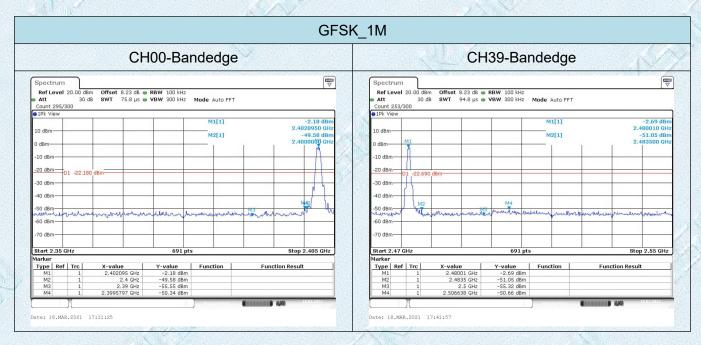
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### **Test Configuration**

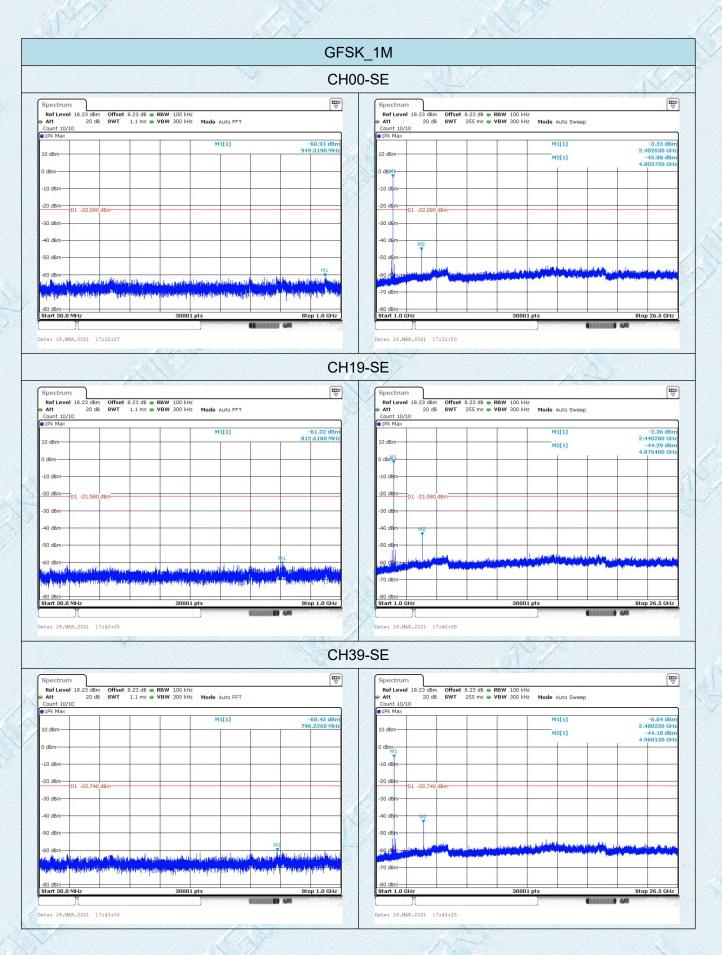


#### Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:
  - RBW=100KHz
  - VBW=300KHz.
  - Detector function: Peak. Trace: Max hold. Sweep = Auto couple.


Allow the trace to stabilize.

#### **Test Mode**


Please refer to the clause 2.2.



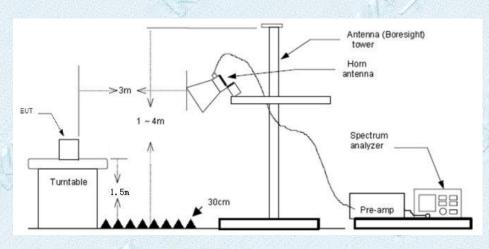
**Test Results** 










### 3.6. Band Edge Emissions(Radiated)

#### Limit

Restricted Frequency Band	(dBuV/	m)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

#### **Test Configuration**



#### Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value.
  - RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value.

#### Test Mode

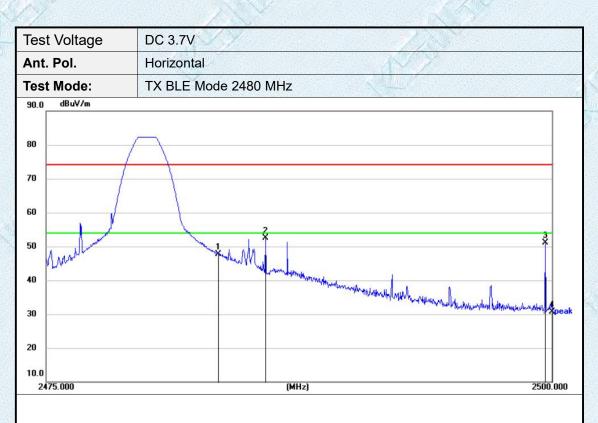
Please refer to the clause 2.2.

#### Test Results

Note:

(1)Measurement = Reading level + Correct Factor

(2)Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor




Test	Volta	.ge DC	3.7V			1/200		
Ant.	Pol.:	Но	rizontal		4	S/Y		
Test	Mode	: TX	BLE Mode 24	402MHz				
90.0	dBuV/n	n						
80							$- \frown$	
70							1	V.
60							_	
50				×				peak
	T	1			2 11	comment for forthe many		
40		1			way and have been and the			
40 30	andersharestory	and warrand her ser	un Ummersensensensensensensensensensensensensens	with the show what you	with the warrant			
ndi	an de charadres	Julian multimour	and morally Andy All	welling any any any any	wrth Er Huelowerymen			
30	10.000	pulsine medleman	and the other the Aresbuttle	(MHz)	winder Human and			2405.000
30	0.000		and therefore the Aresbuttle		wing for the second second			2405.000
30 20 10.0 237	70.000 Mk.	Freq.	Reading		Measure- ment	Limit	Over	2405.000
30 20 10.0 237		Freq. MHz	Reading	(MHz) Correct	Measure-		Over (dB)	2405.000 Detector
30 20 10.0 237	Mk.		Reading Level	(MHz) Correct Factor	Measure- ment	Limit	re and	
30 20 10.0 237	Mk.	MHz	Reading Level (dBuV)	(MHz) Correct Factor (dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
30 20 10.0 237	Mk.	MHz 2385.347	Reading Level (dBuV) 62.06	(MHz) Correct Factor (dB/m) -10.92	Measure- ment (dBuV/m) 51.14	Limit (dBuV/m) 74.00	(dB) 22.86	Detector peak



	<i>/</i>		and the second				LUNC	
lest '	Voltage	DC	3.7V			Sec. 1		
Ant. I	Pol.	Vert	tical 💛 🖊			112		
lest l	Mode:	TX	BLE Mode 24	102MHz	1			
90.0	dBu¥/m							
80							$- \cap$	5
70								W.
60 -								
50		¥				Xe	1	a peal
40 -				18()	2. unidente	Man Martin Martin		
30	manhindunan	wethershereden	independenced	wellow Associated	lun sunningeneral			
20								
10.0 2370	0.000			(MHz)				2405.000
NO.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
NO.		Freq. MHz	-			Limit (dBuV/m)	Over (dB)	Detector
No.			Level	Factor	ment			Detector peak
	237	MHz	Level (dBuV)	Factor (dB/m)	ment (dBuV/m)	(dBuV/m)	(dB)	peak
1	237 239	MHz 7.294	Level (dBuV) 61.28	Factor (dB/m) -10.93	ment (dBuV/m) 50.35	(dBuV/m) 74.00	(dB) 23.65	and the set of
1 2	237 239 239	MHz 7.294 0.000	Level (dBuV) 61.28 46.23	Factor (dB/m) -10.93 -10.92	ment (dBuV/m) 50.35 35.31	(dBuV/m) 74.00 74.00	(dB) 23.65 38.69	peak peak





No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	58.58	-10.88	47.70	74.00	26.30	peak
2	*	2485.840	63.32	-10.88	52.44	74.00	21.56	peak
3		2499.677	61.98	-10.88	51.10	74.00	22.90	peak
4		2500.000	41.54	-10.88	30.66	74.00	43.34	peak



Test Voltage	DC 3.7V
Ant. Pol.	Vertical
Test Mode:	TX BLE Mode 2480 MHz
90.0 dBuV/m	
80	phone in the second sec
70	
60	
50 John Martin	
40	
30	and the set the second wards the of the second the seco
20	
10.0 2475.000	(MHz) 2500.000

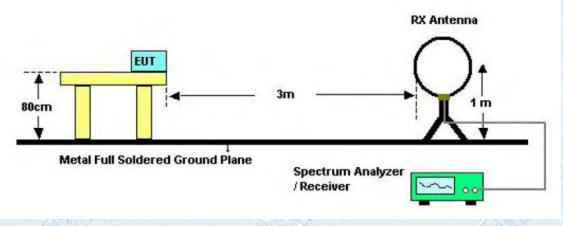
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2483.500	57.69	-10.88	46.81	74.00	27.19	peak
2	*	2486.073	63.56	-10.88	52.68	74.00	21.32	peak
3		2490.385	58.79	-10.89	47.90	74.00	26.10	peak
4		2500.000	40.88	-10.88	30.00	74.00	44.00	peak
_	_							

### 3.7. Spurious Emission (Radiated)

#### Limit

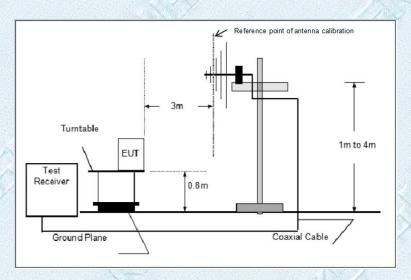
#### Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

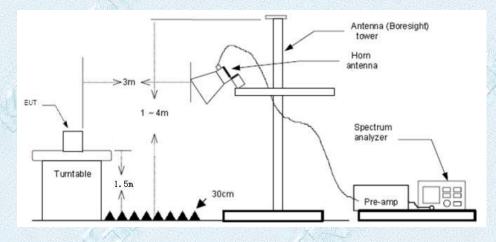

#### Radiated Emission Limit (Above 1000MHz)

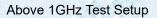
Frequency	Distance Meters(at 3m)					
(MHz)	Peak	Average				
Above 1000	74	54				

#### Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

#### **Test Configuration**





Below 30MHz Test Setup





Below 1000MHz Test Setup





#### Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Below 1 GHz:
  - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz Peak detector for Average value.



#### Test Mode

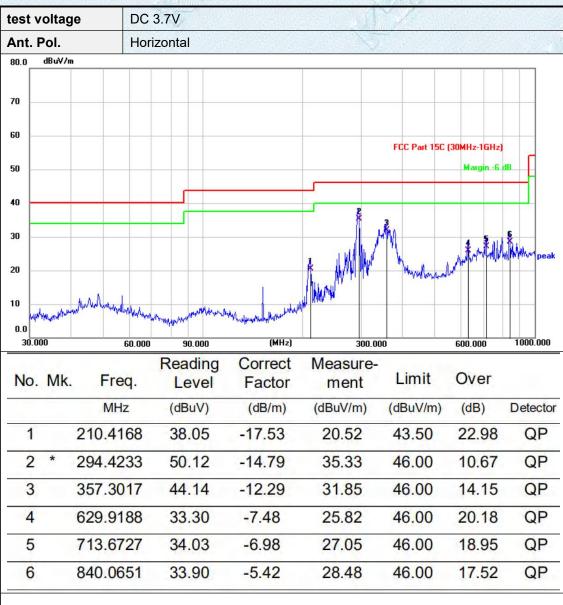
Please refer to the clause 2.2.

#### Test Result

#### 9 KHz~30 MHz and 18GHz~25GHz

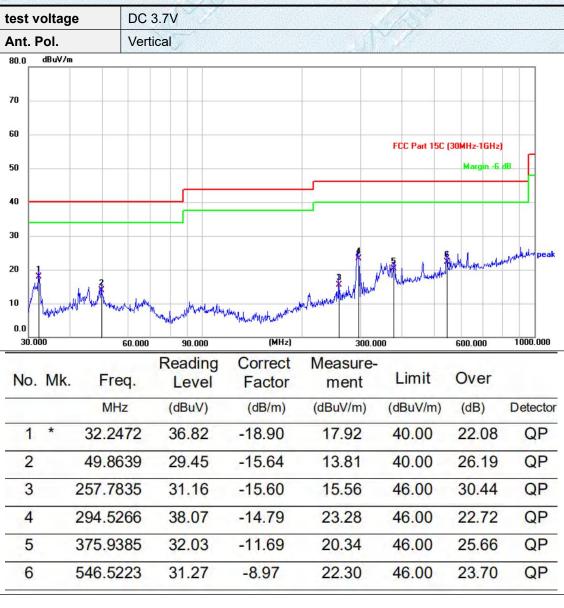
From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

#### Note:


- Measurement = Reading level + Correct Factor Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5) Pre-scan CH00, CH19 and CH39 modulation, and found the GFSK_CH00 which it is worse case for 30MHz-1GHz, so only show the test data for worse case.

#### **BELOW 30MHZ**

No emission found between lowest internal used/generated frequencies to 30MHz.




30MHz-1GHz



Emission Level= Read Level+ Correct Factor

KSIGN



Emission Level= Read Level+ Correct Factor



Adobe 1GHz



No.	Mk.	Freq.	Level	Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	-	4173.900	43.95	-7.85	36.10	74.00	37.90	peak
2		4804.600	44.33	-5.92	38.41	74.00	35.59	peak
3		5982.700	43.31	-3.84	39.47	74.00	34.53	peak
4		8049.900	40.93	2.06	42.99	74.00	31.01	peak
5	1	13918.300	36.96	11.12	48.08	74.00	25.92	peak
6	*	16531.200	36.91	13.76	50.67	74.00	23.33	peak

Emission Level= Read Level+ Correct Factor

KSIGN

est v	oltage	DC	3.7V					
Ant. F	Pol.	Ve	rtical			1200 C		
Fest N	Mode:	ТХ	BLE Mode 2	402MHz	1	$\sim$ /		
90.0	dBu¥/m		1					
80				A A A A A A A A A A A A A A A A A A A	alaughyma wayaan	homewaynahan	Jury Manuscher Martin	AN Peak
- v _t wa	the philosophy and	warden werden	ann an hair thair that the second					
20		and		00.000 (MHz)	6000.000	9000.000		18000.000
20		Freq.		Correct Factor	6000.000 Measure- ment	9000.000 Limit	Over	18000.000
20	000		Reading	Correct	Measure-		Over (dB)	18000.000 Detecto
20	000 Mk.	Freq.	300 Reading Level	Correct Factor	Measure- ment	Limit		
20 10.0 1000.1	000 Mk. 2	Freq. MHz	Reading Level (dBuV)	Correct Factor (dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	(dB)	Detecto peak
20 10.0 1000.0 NO.	000 Mk. 2 3	Freq. MHz 999.200	Reading Level (dBuV) 48.78	Correct Factor (dB/m) -10.59	Measure- ment (dBuV/m) 38.19	Limit (dBuV/m) 74.00	(dB) 35.81	Detecto peak peak
No.	000 Mk. 2 3 3	Freq. MHz 999.200 323.900	300 Reading Level (dBuV) 48.78 46.79	Correct Factor (dB/m) -10.59 -10.01	Measure- ment (dBuV/m) 38.19 36.78	Limit (dBuV/m) 74.00 74.00	(dB) 35.81 37.22	Detecto
20 10.0 1000.1 No. 1 2 3	000 Mk. 2 3 3 4	Freq. MHz 999.200 323.900 721.700	300 Reading Level (dBuV) 48.78 46.79 52.96	Correct Factor (dB/m) -10.59 -10.01 -9.12	Measure- ment (dBuV/m) 38.19 36.78 43.84	Limit (dBuV/m) 74.00 74.00 74.00	(dB) 35.81 37.22 30.16	Detecto peak peak peak

Emission Level= Read Level+ Correct Factor



test	voltag	e DC	3.7V			1	S. M.		
Ant	. Pol.	Но	rizontal						
Test	t Mode	: ТХ	BLE Mode 2	2440N	1Hz	N			
90.0	dBuV/m								
80 70									
60									
50							- Auna man	www.www.	www.ww.peak
40		2003 ST. 1	ng and and the strength of	North and	nonuhamapu	and an and a firm	photo the second of		
30 20	han the state of t	nersenseen seen seen seen seen seen seen	and when the second						
10.0 10	00.000		31	000.000	(MHz)	6000.000	9000.000	0	18000.000
No.	Mk.	Freq.	Reading Level	Cor	rect	Measure-	Limit	Over	
		rioq.			CIOI	ment	Linnit	0.0.	
4		MHz	(dBuV)		3/m)	ment (dBuV/m)	(dBuV/m)	(dB)	Detector
1	:		(dBuV) 43.08		3/m)				Detector peak
2		MHz	V /	(dB	3/m) 37	(dBuV/m)	(dBuV/m)	(dB)	Construction and
	4	MHz 3626.500	43.08	(dE -9.3	3/m) 37 34	(dBuV/m) 33.71	(dBuV/m) 74.00	(dB) 40.29	peak
2	4	MHz 3626.500 4649.900	43.08 44.49	(dB -9.3	3/m) 37 34 72	(dBuV/m) 33.71 38.15	(dBuV/m) 74.00 74.00	(dB) 40.29 35.85	peak peak
2	2	MHz 3626.500 4649.900 4879.400	43.08 44.49 44.38	(dE -9.3 -6.3 -5.7	3/m) 37 34 72 38	(dBuV/m) 33.71 38.15 38.66	(dBuV/m) 74.00 74.00 74.00	(dB) 40.29 35.85 35.34	peak peak peak



test	voltag	е	DC :	3.7V				and the second		
Ant.	Pol.		Verti	ical			N			
Test	t Mode	):	TX E	BLE Mode	2440M	Hz				
90.0	dBuV/n	n								
80										
70										
60										
50							3		milumin	www.man peak
40					*	-	2	providence where the	MM/200	
30	and highlighter has	and the second	ninghanda	two was a superior and	rennethered	and a dama				
20						_				
10.0	00.000				3000.000	(MHz)	6000.000	9000.000		18000.000
5.00			_	Reading	Corr		Measure-	5000.000		
No.	. Mk.	Fre		Level	Fac		ment	Limit	Over	
		MHz	z	(dBuV)	(dB	/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		3730.2	.00	51.14	-9.1	10	42.04	74.00	31.96	peak
2		4881.1	00	45.13	-5.7	71		74.00	34.58	peak
3							39.42	11.00		
3		5992.9	00	51.13	-3.8	31	39.42 47.32	74.00	26.68	peak
4		5992.9 8068.6	4.4	51.13 41.31	-3.8				26.68 30.64	peak peak
		1 21 11 2	00	The state of	-	)5	47.32	74.00		



test	voltag	e DC	C 3.7V					
Ant.	. Pol.	Hc	orizontal		N			
Test	t Mode	: TX	BLE Mode 2	2480MHz				
90.0	dBu¥/m	1						
80								
70								
60								
50						4	-	im.within peak
40				*	2 3 Annother and P	Mr. Rendley marin	porter	
30	haunah	believer the control of the best of the	marthur was his	whenter				
20								
10.0	0.000							
100	0.000							10000.000
			A 1998	Correct	6000.000 Measure-	9000.000		18000.000
No.	Mk.	Freq.	30 Reading Level	Correct Factor	6000.000 Measure- ment	9000.000 Limit	Over	18000.000
No.	Mk.	Freq. MHz	Reading	Correct	Measure-		Lat.	18000.000 Detector
No.			Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	Reading Level (dBuV)	Correct Factor (dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
1		MHz 3731.900	Reading Level (dBuV) 45.33	Correct Factor (dB/m) -9.09	Measure- ment (dBuV/m) 36.24	Limit (dBuV/m) 74.00	Over (dB) 37.76	Detector peak
1		MHz 3731.900 4959.300	Reading Level (dBuV) 45.33 45.40	Correct Factor (dB/m) -9.09 -5.51	Measure- ment (dBuV/m) 36.24 39.89	Limit (dBuV/m) 74.00 74.00	Over (dB) 37.76 34.11	Detector peak peak
1 2 3		MHz 3731.900 4959.300 5986.100	Reading Level (dBuV) 45.33 45.40 43.87	Correct Factor (dB/m) -9.09 -5.51 -3.84	Measure- ment (dBuV/m) 36.24 39.89 40.03	Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) 37.76 34.11 33.97	Detector peak peak peak



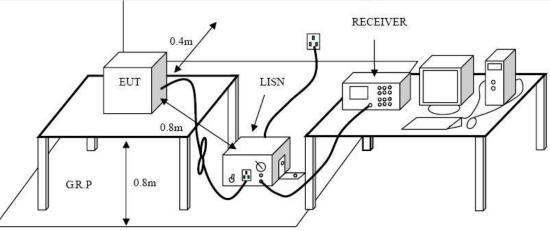
est v	oltage	e	DC	3.7V		Die -			
Ant. I	Pol.		Vert	ical		N			
lest l	Mode	:	TX E	BLE Mode 2	2480MHz				
90.0	dBuV/m								
80									
70									
60 -									
50				[		5	when when	. Mutra	www.muturd peak
					2 X 3	. 4	5 Annother annother	polycological and a second second	
40					1 8	1 manutan	a na lada add		
40	S			an and	and the alexander	- and manual			
30 _{- dela}	in an anna an	green hardenstern	nadethine	nandre verseen grander grander	and and an and and	and any day of the state of the			
30 _{Jel}	haddin Armanda	ward the second by	ngittine	ngand bears and a feature of the set of the	which we wanted				
30 _{- dela}		weekstonethere	ngalillina	and an and a second for a second s	100.000 (MHz)	6000.000	9000.000		18000.000
30 20 10.0 1000.	.000			Reading	DOD.000 (MHz)		9000.000		
30 20 10.0 1000.		Frec		30	100.000 (MHz)	6000.000		Over	
30 20 10.0 1000.	.000		7.	Reading	DOD.000 (MHz)	6000.000 Measure-	9000.000		
30 20 10.0 1000.	 Mk.	Free	<b>q</b> .	30 Reading Level	000.000 (MHz) Correct Factor	6000.000 Measure- ment	9000.000	Over	18000.000
30 , wh 20 10.0 1000.	 Mk.	Free	q. : :	30 Reading Level (dBuV)	Correct Factor (dB/m)	6000.000 Measure- ment (dBuV/m)	9000.000 Limit (dBuV/m)	Over (dB)	18000.000 Detector
30 , , , , , , , , , , , , , , , , , , ,	 Mk.	Frec MHz 3427.60	q. 200 00	30 Reading Level (dBuV) 45.62	Correct Factor (dB/m) -9.81	6000.000 Measure- ment (dBuV/m) 35.81	9000.000 Limit (dBuV/m) 74.00	Over (dB) 38.19	18000.000 Detector peak
30 (10.0) 20 10.0 (1000) NO. 1 2	 Mk.	Frec MHz 3427.60 3735.30	q. 200 200	30 Reading Level (dBuV) 45.62 50.75	илининий 000.000 (МНг) Соггест Factor (dB/m) -9.81 -9.09	6000.000 Measure- ment (dBuV/m) 35.81 41.66	9000.000 Limit (dBuV/m) 74.00 74.00	Over (dB) 38.19 32.34	18000.000 Detector peak peak
30 (10.0) 10.0 (1000) NO. 1 2 3	 Mk.	Frec MHz 3427.60 3735.30 4656.70	4. 00 00 00	30 Reading Level (dBuV) 45.62 50.75 45.33	илининий 000.000 (МНг) Соггест Factor (dB/m) -9.81 -9.09 -6.33	6000.000 6000.000 Measure- ment (dBuV/m) 35.81 41.66 39.00	9000.000 Limit (dBuV/m) 74.00 74.00 74.00	Over (dB) 38.19 32.34 35.00	18000.000 Detector peak peak peak

Note:All modulation modes were tested, and only the worst data of GFSM_1M was recorded in the report.



### 3.8. Conducted Emission

#### Limit


#### **Conducted Emission Test Limit**

Erecuency	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

#### Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### Test Configuration



#### Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.
   The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

#### Test Mode:

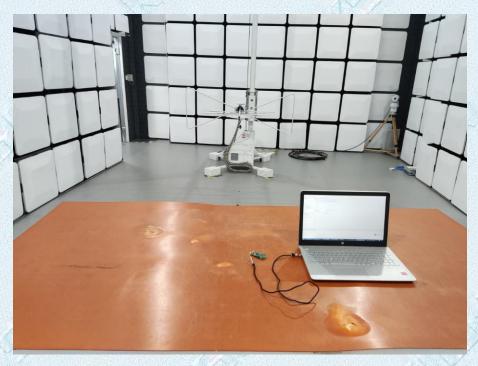
Please refer to the clause 2.2.

#### Test Results

test vo	oltage	AC 1	120V/60Hz			6.13		
Ant. P	ol.	L1						
Test N	/lode:	Cha	rging		X			
80.0 70 60 50 40 30	dBuV	M		Appl Allow Maring			FCC Part 15 C (Q	
10 0.0 0.150		Mart 1	Reading	(MHz) Correct	Measure-			AVG 30.000
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	Detector
1		MHz 0.1980	dBuV 28.87	dB 10.88	dBuV 39.75	dBuV 63.69	dB -23.94	Detector QP
2		0.1980	16.04	10.88	26.92	53.69	-26.77	AVG
3		0.7100	20.06	10.88	30.94	56.00	-25.06	QP
4		0.7100	10.99	10.88	21.87	46.00	-24.13	AVG
5	_	1.1060	18.65	10.87	29.52	56.00	-26.48	QP
6		1.1060	10.21	10.87	21.08	46.00	-24.92	AVG
7		1.5620	19.06	10.87	29.93	56.00	-26.07	QP
8		1.5620	10.02	10.87	20.89	46.00	-25.11	AVG
9		3.3500	14.83	10.93	25.76	56.00	-30.24	QP
10	_	3.3500	6.93	10.93	17.86	46.00	-28.14	AVG
11	1	16.0820	27.40	11.06	38.46	60.00	-21.54	QP
12	* 1	16.0820	20.21	11.06	31.27	50.00	-18.73	AVG

KSIGN

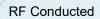
test voltage	AC 1	20V/60Hz					
Ant. Pol.	N			X			
Test Mode:	Char	ging					
80.0 dBuV							
70							
					FC	C Part 15 C (QP)	
60							
50					FCC	Part 15 C (AVG)	
40						AM	
Nh.	A. A.I		MAN MUN	work why prover	1 Martin	My XM	
30 2 2	NAMA I NO	I NV I	1 Mark	Y W	Y III	· NAM	in white
20 mm	A	MANAM	WWWWWWWW	Mushamalen when	VVV	V. M	peak
10	N WWWWW		A Maril				AVG
0.0	10						
0.150		Deading	(MHz)	Maggiuro			30.000
No. Mk.	Freq.	Reading Level	Factor	Measure- ment	- Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1980	30.01	10.88	40.89	63.69	-22.80	QP
2	0.1980	16.16	10.88	27.04	53.69	-26.65	AVG
3 *	0.6060	24.11	10.87	34.98	56.00	-21.02	QP
4	0.6060	12.72	10.87	23.59	46.00	-22.41	AVG
5	0.7140	23.87	10.87	34.74	56.00	-21.26	QP
6	0.7140	10.92	10.87	21.79	46.00	-24.21	AVG
7	1.0060	23.64	10.87	34.51	56.00	-21.49	QP
8	1.0060	11.20	10.87	22.07	46.00	-23.93	AVG
9	1.4580	22.80	10.88	33.68	56.00	-22.32	QP
10	1.4580	10.06	10.88	20.94	46.00	-25.06	AVG
11	16.7139	25.62	11.00	36.62	60.00	-23.38	QP
12	16.7139	16.05	11.00	27.05	50.00	-22.95	AVG


Emission Level= Read Level+ Correct Factor



Page 43 of 46

# **4.EUT TEST PHOTOS**


Radiated Measurement (Below 1GHz)



Radiated Measurement (Above 1GHz)














Page 45 of 46

Report No.:KS2103S0358E

### CONDUCTED EMISSION TEST SETUP





Page 46 of 46

# **5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL**

Please Refer to Internal Photographs and External Photographs

KSIGN(Guangdong) Testing Co., Ltd.

***THE END*****