

Report No.: AGC08506190701FE03 Page 45 of 63

EUT	WIRELESS HEADPHONE	Model Name	ENDURO 100
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4960.022	49.23	0.22	49.45	74.00	-24.55	peak
4960.022	46.45	0.22	46.67	54.00	-7.33	AVG
7440.033	37.84	2.64	40.48	74.00	-33.52	peak
7440.033	35.68	2.64	38.32	54.00	-15.68	AVG
0				0		
	8			- Cr	8	
emark:	- 6	0		~0~	- 6	0
actor = Anter	nna Factor + Cable	Loss – Pre-	-amplifier.			

EUT WIRELESS HEADPHONE ENDURO 100 **Model Name** 25°C 55.4% Temperature **Relative Humidity** 960hPa Pressure **Test Voltage** Normal Voltage **Test Mode** Mode 3 Vertical Antenna

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Value Type
4960.022	48.36	0.22	48.58	74.00	-25.42	peak
4960.022	9 45.11	0.22	45.33	54.00	-8.67	AVG
7440.033	39.24	2.64	41.88	74.00	-32.12	peak
7440.033	34.97	2.64	37.61	54.00	-16.39	AVG
0		- CC				

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

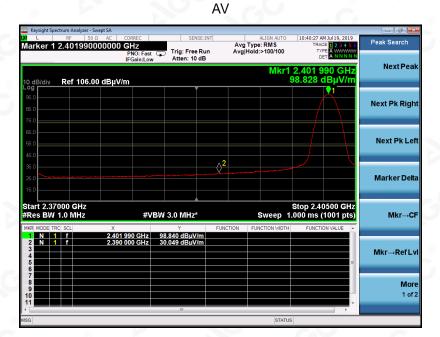
RESULT: PASS

Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The GFSK modulation is the worst case and recorded in the report.

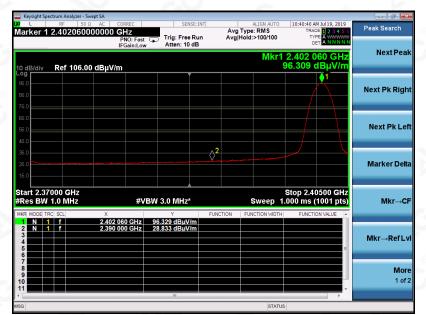


TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

EUT	WIRELESS HEADPHONE	EADPHONE Model Name	
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

PK

RESULT: PASS

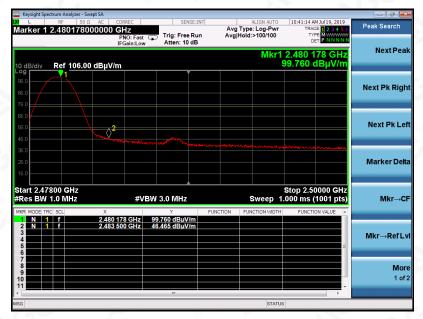

Report No.: AGC08506190701FE03 Page 47 of 63

EUT	WIRELESS HEADPHONE	Model Name	ENDURO 100
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

PK

AV

RESULT: PASS




Report No.: AGC08506190701FE03 Page 48 of 63

EUT	WIRELESS HEADPHONE	SS HEADPHONE Model Name	
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

PK

AV

RESULT: PASS

Report No.: AGC08506190701FE03 Page 49 of 63

EUT	WIRELESS HEADPHONE	Model Name	ENDURO 100
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

PK

arker 1 2.479826000000 GHz Avg Type: Log-Pw Avg Hold:>100/100 Peak Searc Trig: Free Run Atten: 10 dB NextPe 97.712 dB ef 106.00 dBµV/m Next Pk Righ Next Pk L Marker Delt Start 2.47800 GHz Res BW 1.0 MHz Stop 2.50000 GHz 1.000 ms (1001 pts) #VBW 3.0 MHz Sweep Mkr→C 2.479 826 GHz 97.712 dBµV 2.483 500 GHz 43.107 dBµV Mkr→RefL More

AV

RESULT: PASS

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F. All test modes had been pre-tested. The GFSK modulation is the worst case and recorded in the report.

11. NUMBER OF HOPPING FREQUENCY

11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.

2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

3. VBW ≥ RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.

4. Allow the trace to stabilize.

11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

11.4. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF HOPPING CHANNEL	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
	>=15	79	PASS

TEST PLOT FOR NO. OF TOTAL CHANNELS

Note: The GFSK modulation is the worst case and recorded in the report.

12. TIME OF OCCUPANCY (DWELL TIME)

12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Zero span, centered on a hopping channel.

2. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.

3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.

4. Detector function: Peak. Trace: Max hold.

5. Use the marker-delta function to determine the transmit time per hop.

6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time)

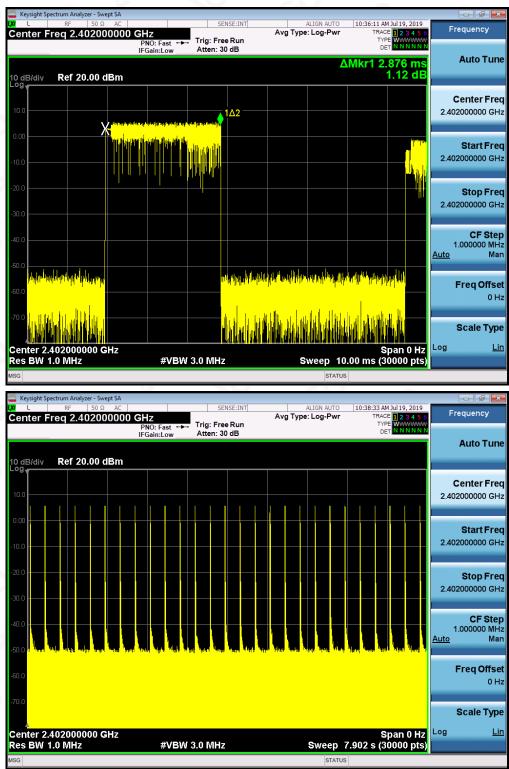
7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6


12.4. LIMITS AND MEASUREMENT RESULT

Channel	Time of Pulse for DH5 (ms)	Number of hops in the period specified in the requirements	Sweep Time (ms)	Limit (ms)
Low	2.876	27*4	310.61	400
Middle	2.876	27*4	310.61	400
High	2.880	27*4	311.04	400

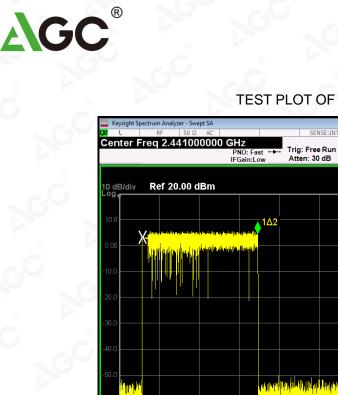
Note: The 8-DPSK modulation is the worst case and recorded in the report.

TEST PLOT OF LOW CHANNEL

Frequency

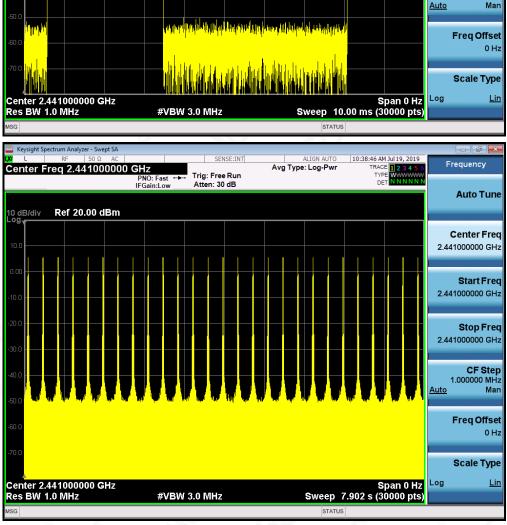
Auto Tune

Center Freq 2.441000000 GHz

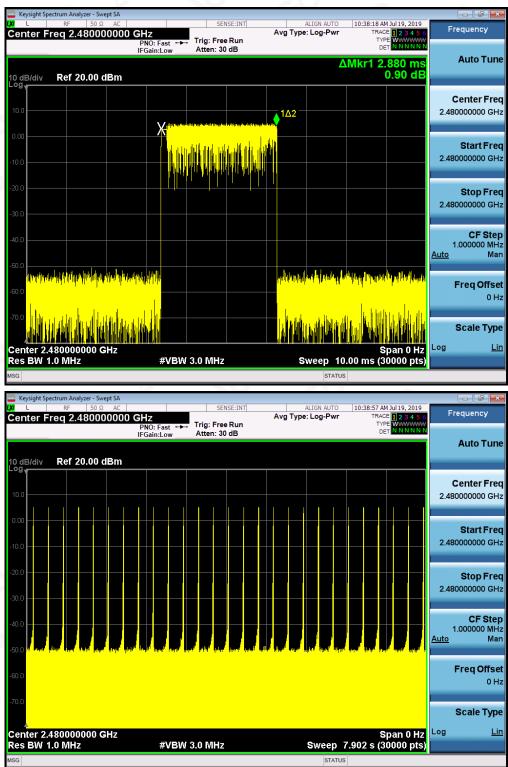

Start Freq 2.441000000 GHz

Stop Freq 2.441000000 GHz

> **CF** Step 1.000000 MH Mar


AM Jul 19, 201

ΔMkr1 2.876 ms 1.08 dB


TEST PLOT OF MIDDLE CHANNEL

Avg Type: Log-Pwr

TEST PLOT OF HIGH CHANNEL

13. FREQUENCY SEPARATION

13.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

1. Span: Wide enough to capture the peaks of two adjacent channels.

2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

3. Video (or average) bandwidth (VBW) \geq RBW.

4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2

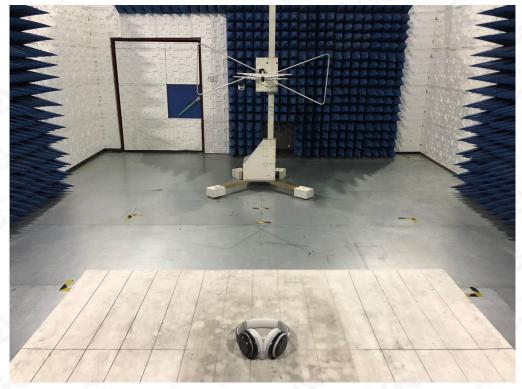
13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

13.4. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	Daga
CH01-CH02	1001	>=25 KHz or 2/3 20 dB BW	Pass

Note: The 8-DPSK modulation is the worst case and recorded in the report.


 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$

TEST PLOT FOR FREQUENCY SEPARATION

Report No.: AGC08506190701FE03 Page 56 of 63

APPENDIX A: PHOTOGRAPHS OF TEST SETUP RADIATED EMISSION TEST SETUP BELOW 1GHZ

RADIATED EMISSION TEST SETUP ABOVE 1GHZ

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Service Hotline:400 089 2118

Report No.: AGC08506190701FE03 Page 57 of 63

APPENDIX B: PHOTOGRAPHS OF EUT ALL VIEW OF EUT

TOP VIEW OF EUT

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Service Hotline:400 089 2118

Report No.: AGC08506190701FE03 Page 58 of 63

BOTTOM VIEW OF EUT

FRONT VIEW OF EUT

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Service Hotline:400 089 2118

Report No.: AGC08506190701FE03 Page 59 of 63

BACK VIEW OF EUT

LEFT VIEW OF EUT

 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$

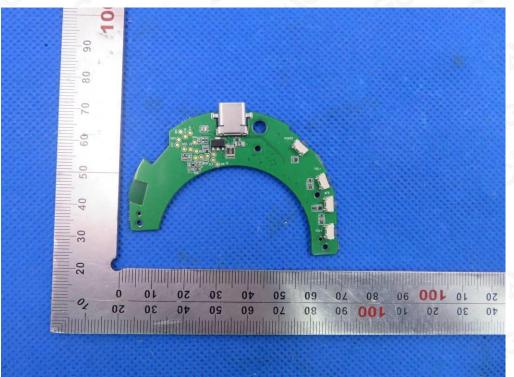
Add: 2/F., Building 2, No.1–4, Chaxi Sanwei Technial Industrial Park, Gushu, Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86–755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Report No.: AGC08506190701FE03 Page 60 of 63

RIGHT VIEW OF EUT

OPEN VIEW OF EUT-1

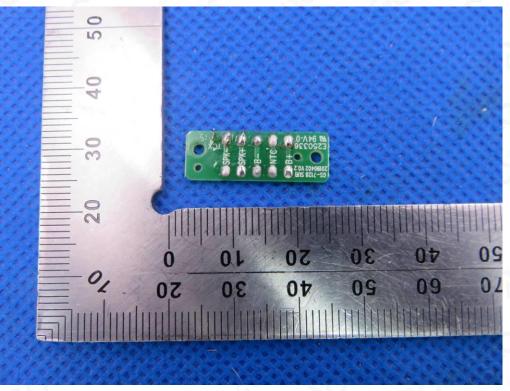
 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$



Report No.: AGC08506190701FE03 Page 61 of 63

OPEN VIEW OF EUT-2

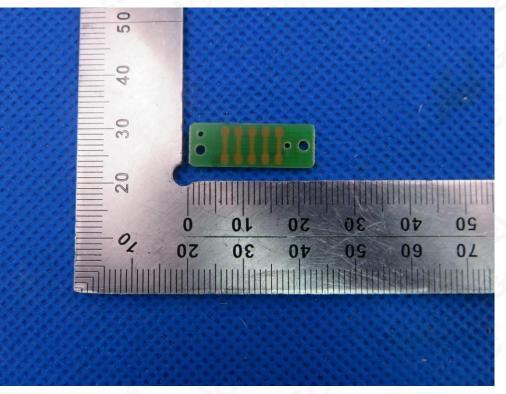
INTERNAL VIEW OF EUT-1



Report No.: AGC08506190701FE03 Page 62 of 63

INTERNAL VIEW OF EUT-2

INTERNAL VIEW OF EUT-3



Report No.: AGC08506190701FE03 Page 63 of 63

INTERNAL VIEW OF EUT-4

----END OF REPORT----

 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$