

TEST REPORT

bikefinder **Product**

fahrradfinden **Trade mark** bike**finder**

Model/Type reference BFG1T **Serial Number** N/A

Report Number EED32O81469401 FCC ID 2ATRU-BFG1S

Date of Issue Nov. 11, 2022

Test Standards 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

BikeFinder AS

Veritasveien 25, 4007 Stavanger, Postbox 4004 4092 Stavanger, Norway

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark. che

Mark Chen

MOVIN

Reviewed by:

Tom Chen

Date:

Nov. 11, 2022

Aaron Ma

Check No.: 7002190922

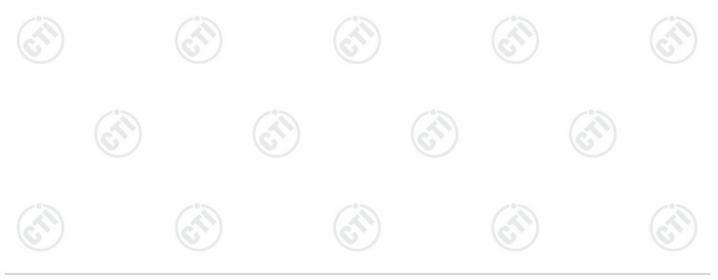
Report No.: EED32O81469401

2 Version

Version No. Date		Version No. Date Descript			Description	9
00	Nov. 11, 2022		Original			
	**		0			
(,	(5)	(50)	(6,70)	(0,7)		

Report No.: EED32O81469401 Page 3 of 54

3 Test Summary


7 - 2 3 3 7			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	N/A
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

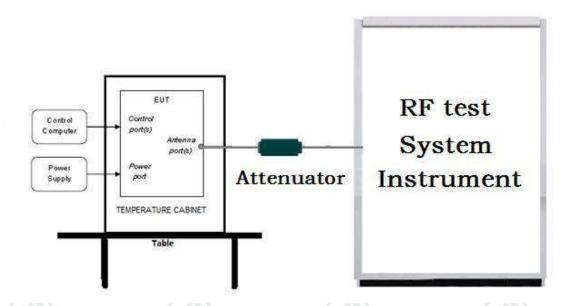
Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. This report only changed the product model No.,product name,trade mark,Address of Applicant,Address of Manufacturer,All test data come from the report of No. EED32L00192301. Remark:

1.Product add FPC temperature sensor, change antenna position and antenna elements dimensions, add Spurious emissions and AC Power Line Conducted Emission test.

Report No.: EED32O81469401 Page 4 of 54

4 Content

1 COVER PAGE			1
2 VERSION			2
3 TEST SUMMARY			3
4 CONTENT			
5 TEST REQUIREMENT			
5.1.1 For Conducted test sets 5.1.2 For Radiated Emissions 5.1.3 For Conducted Emissio 5.2 TEST ENVIRONMENT	ups test setupns test setup		
6 GENERAL INFORMATION			,
6.2 GENERAL DESCRIPTION OF EU 6.3 PRODUCT SPECIFICATION SUE 6.4 DESCRIPTION OF SUPPORT UI 6.5 TEST LOCATION	UT BJECTIVE TO THIS STANDARD NITS ARD CONDITIONS STED BY THE CUSTOMER (95% CONFIDENCE LEVELS, K=2)		
7 EQUIPMENT LIST			10
	MENTS SPECIFICATION		
Appendix B): Conducted Pea Appendix C): Band-edge for I Appendix D): RF Conducted Appendix E): Power Spectral Appendix F): Antenna Requir Appendix G): AC Power Line Appendix H): Restricted band	Bandwidth k Output Power RF Conducted Emissions Spurious Emissions Density rement Conducted Emission ds around fundamental frequency (Radiate	ed)	
PHOTOGRAPHS OF TEST SETU	P		4
PHOTOGRAPHS OF EUT CONST	TRUCTIONAL DETAILS		47



Report No.: EED32O81469401 Page 5 of 54

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

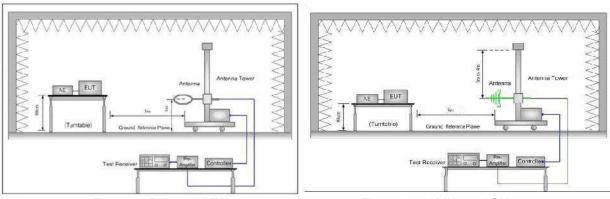


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

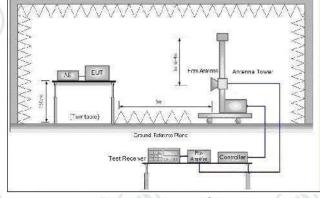
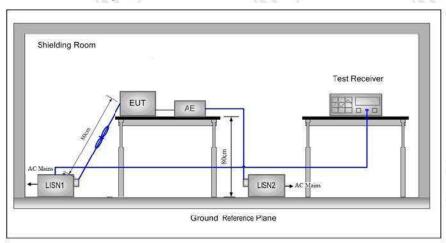



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

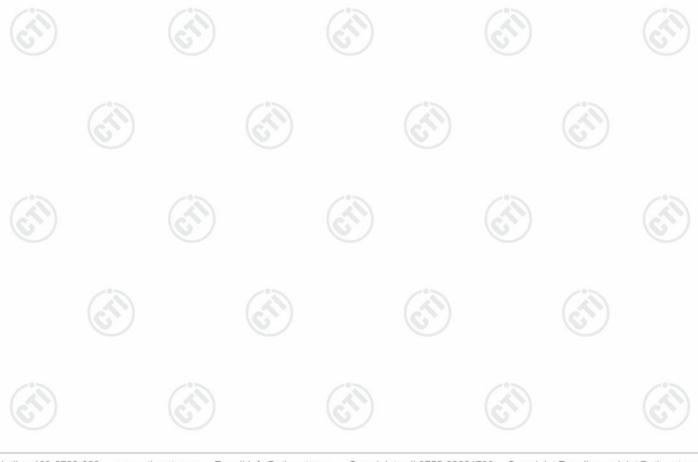
Operating Environment:			
Temperature:	25.0 °C		
Humidity:	56 % RH	-05	
Atmospheric Pressure:	101kPa		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx	RF Channel			
١	rest Mode	TA/NX	Low(L)	Middle(M)	High(H)	
/	05014	04000411- 0400 0411-	Channel 1	Channel 20	Channel 40	
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
	Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind or rate.				

Report No. : EED32O81469401 Page 7 of 54


6 General Information

6.1 Client Information

Applicant:	BikeFinder AS
Address of Applicant:	Veritasveien 25, 4007 Stavanger, Postbox 4004 4092 Stavanger, Norway
Manufacturer:	BikeFinder AS
Address of Manufacturer:	Veritasveien 25, 4007 Stavanger, Postbox 4004 4092 Stavanger, Norway
Factory:	High Quality PCB Co., Limited
Address of Factory:	1701 RM, Floor 17, Yunhua Shidai, Shajing Bao'an, Shenzhen

6.2 General Description of EUT

Product Name:	bikefinder		(41)	
Model No.(EUT):	BFG1T			
Trade mark:	[®] bike fin	der Fahrrad finden		
EUT Supports Radios application:		mode, 2402-2480MHz		
Power Supply:	AC Adapter:	N/A		0
	Battery:	Model: XHP11300 Polymer Lithium Ion Batteries 3.8V		
Sample Received Date:	Jul. 19, 2019	/°>	('')	
Sample tested Date:	Jul. 19, 2019 t	to Jul. 29, 2019		
Sample Received Date:	Sep. 19, 2022			
Sample tested Date:	Sep. 19, 2022	2 to Oct. 26, 2022		

Report No. : EED32O81469401 Page 8 of 54

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH	z~2480MHz	100		100	/
Bluetooth V	/ersion:	BT4.2 Si	ngle mode				
Modulation	Type:	GFSK					
Number of	Channel:	40					(2)
Test Power	Grade:	5	6.		0		6.
Test Softwa	are of EUT:	Smart RI	F™ studio7				
Antenna Ty	pe and Gain:		onopole LDS <i>F</i> G -2.12dBi	Antenna			
Test Voltag	je:	DC 3.8V		(6,2))	(0,))
Operation F	requency eac	h of channe	el				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Report No.: EED32O81469401 Page 9 of 54

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.6 Abnormalities from Standard Conditions

None.

6.7 Other Information Requested by the Customer

None.

6.8 Measurement Uncertainty (95% confidence levels, k=2)

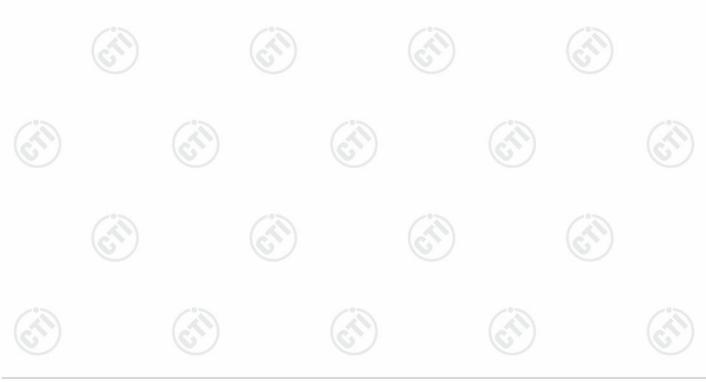
Item	Measurement Uncertainty
Radio Frequency	7.9 x 10 ⁻⁸
DE nower conducted	0.46dB (30MHz-1GHz)
Kr power, conducted	0.55dB (1GHz-40GHz)
Dedicted Churique emission test	4.3dB (30MHz-1GHz)
Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
Conduction emission	3.5dB (9kHz to 150kHz)
Conduction emission	3.1dB (150kHz to 30MHz)
Temperature test	0.64°C
Humidity test	3.8%
DC power voltages	0.026%
	Radio Frequency RF power, conducted Radiated Spurious emission test Conduction emission Temperature test Humidity test

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(6)	01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Report No.: EED32O81469401 Page 11 of 54

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3	(C.)	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	<u> </u>	7
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u></u>	70.
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	<i></i>
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	_ @	/
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u> </u>	-(1)
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u> </u>	
					L

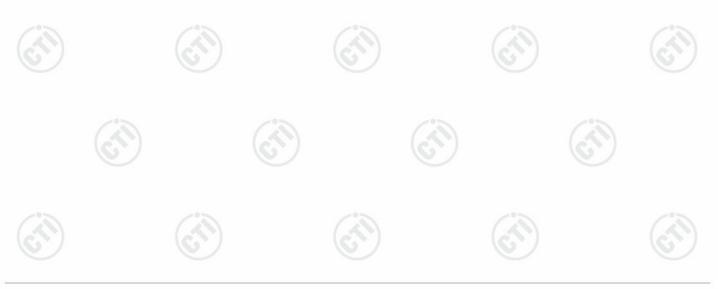


Report No.: EED32O81469401

_	40	•	- 4
Page	12	OΤ	54

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023			
Temperature/ Humidity Indicator	Defu TH128		1		(3			
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023			
Barometer	changchun	DYM3	1188					

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test									
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date					
3M Chamber & Accessory Equipment	TDK	SAC-3		05-22-2022	05-21-2025					
Receiver	R&S	ESCI7	100938-003	09-28-2022	09-27-2023					
TRILOG Broadband Antenna	adband schwarzbeck VULB 9163		9163-618	05-22-2022	05-21-2023					
Multi device Controller	maturo	NCD/070/10711112	/ *5	/*:						
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04-14-2024					
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-17-2021	04-16-2024					
Microwave Agilent 8449B		3008A02425	06-20-2022	06-19-2023						

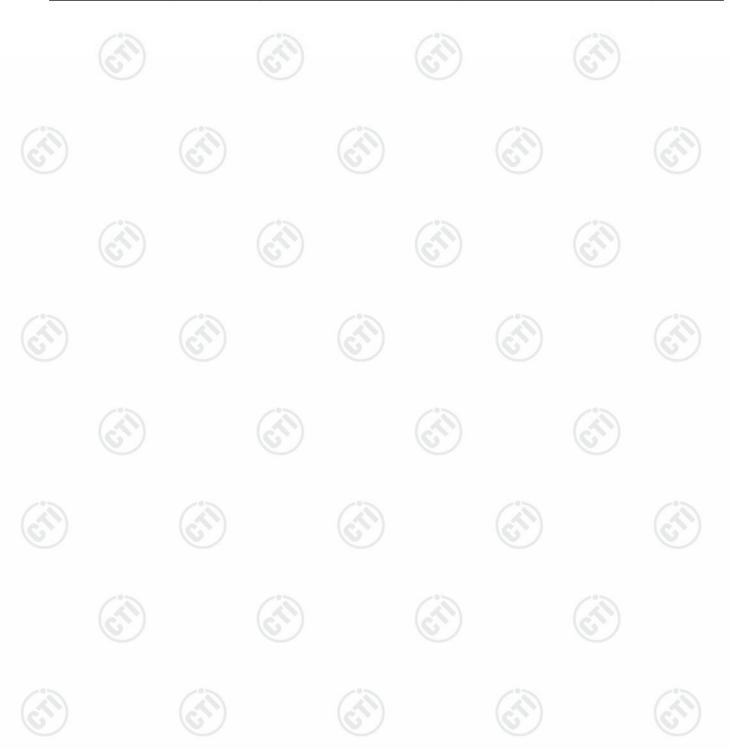

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est Nesulis List.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209 ANSI C63.10		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



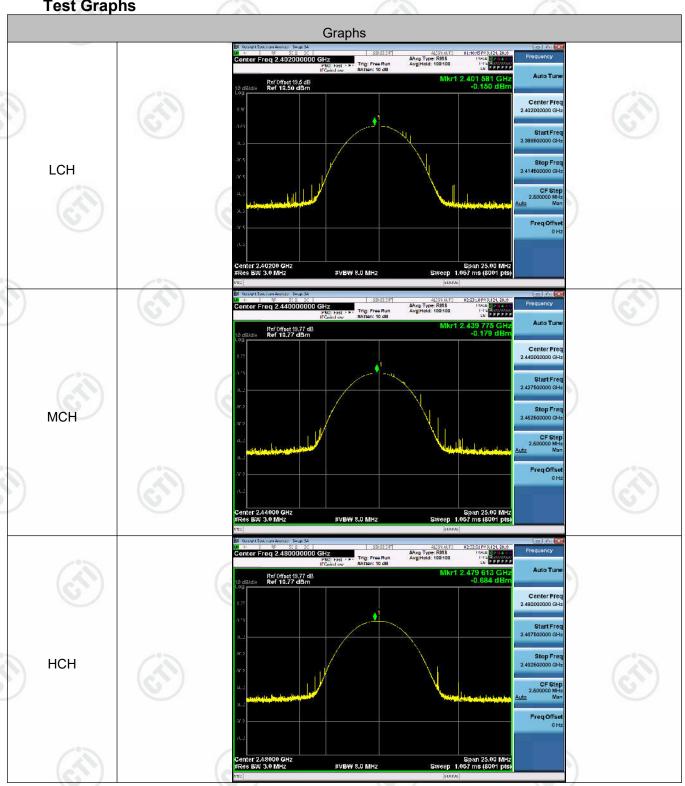
Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6939	1.0737	PASS
BLE	MCH	0.7170	1.0880	PASS
BLE	НСН	0.7247	1.0838	PASS

Appendix B): Conducted Peak Output Power

Test Result

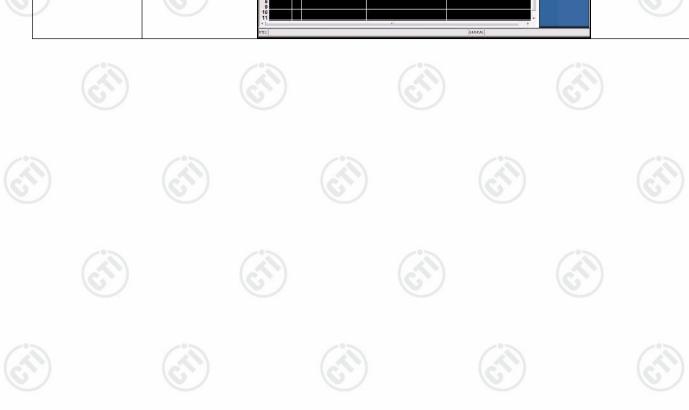

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.15	PASS
BLE	MCH	-0.179	PASS
BLE	НСН	-0.684	PASS

Page 16 of 54

Report No. : EED32O81469401 Page 18 of 54

Appendix C): Band-edge for RF Conducted Emissions

Result Table


	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	-0.981	-60.263	-20.98	PASS
	BLE	НСН	-0.840	-51.052	-20.84	PASS



Report No. : EED32O81469401 Page 20 of 54

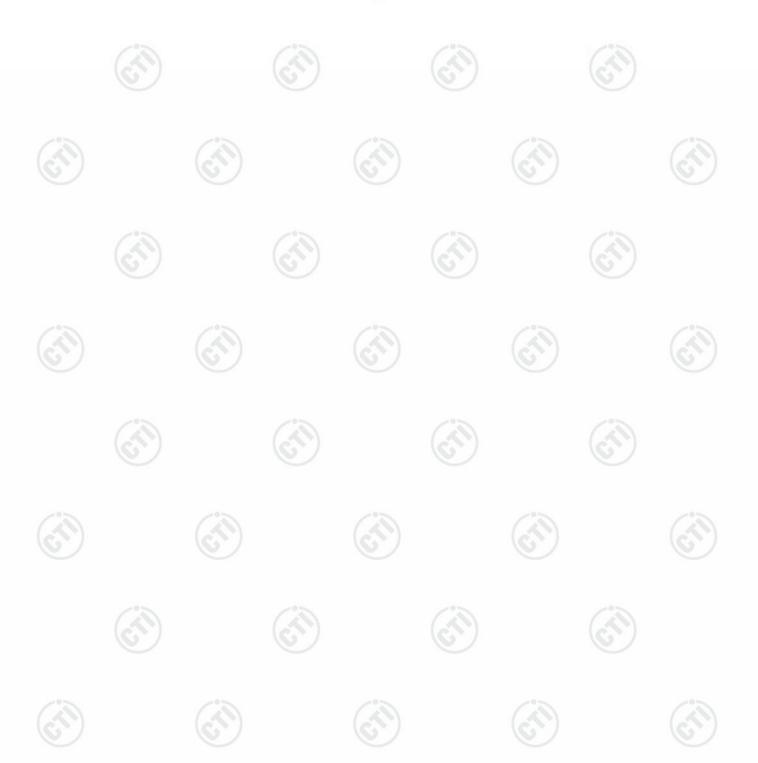
Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-0.812	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-0.756	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-1.229	<limit< td=""><td>PASS</td></limit<>	PASS

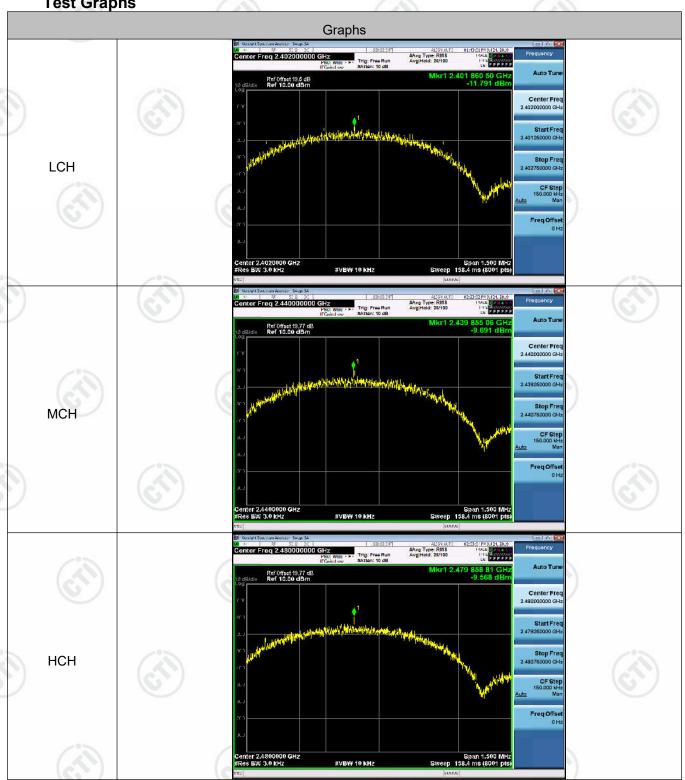


Report No.: EED32O81469401



Report No.: EED32O81469401 Page 24 of 54

Appendix E): Power Spectral Density


Result Table

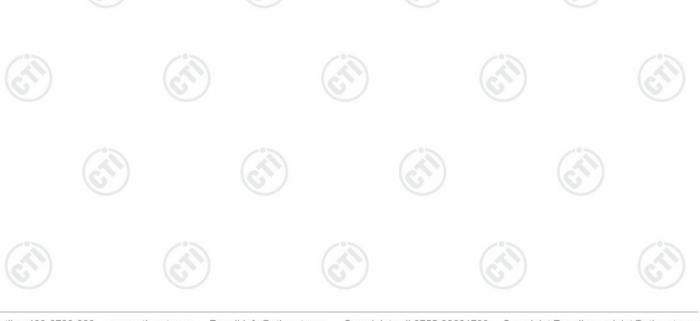
	-	100	
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-11.791	PASS
BLE	MCH	-9.691	PASS
BLE	НСН	-9.568	PASS



Appendix F): Antenna Requirement

15.203 requirement:

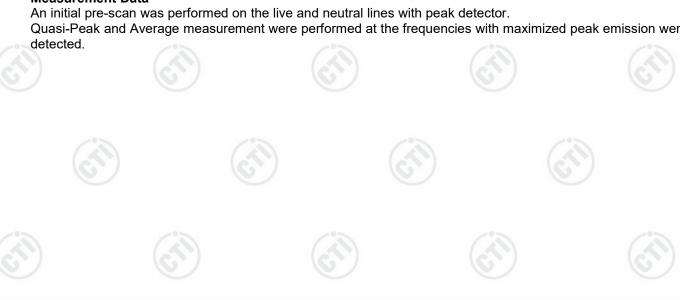
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

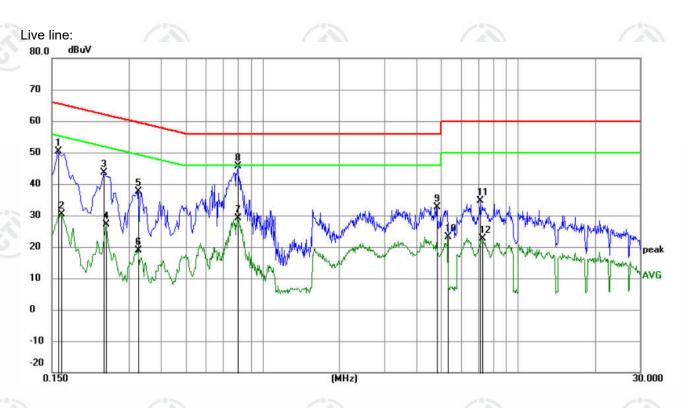
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -2.12dBi.



Appendix G): AC Power Line Conducted Emission

	Test frequency range :150KH:							
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to Stabilization Network) whi power cables of all other u	ch provides a 50Ω/50μ	uH + 5Ω linear imp	edance. Th				
	which was bonded to the of for the unit being measure multiple power cables to a exceeded.	ed. A multiple socket o	outlet strip was use	d to connec				
	3)The tabletop EUT was place reference plane. And for flucture horizontal ground reference	oor-standing arrangem						
	4) The test was performed w EUT shall be 0.4 m from the reference plane was bond	ne vertical ground refer	ence plane. The ve	rtical groun				
	1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference							
	plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the							
	All other tinus of the EUT :	and associated equipm	ent was at least 0 :	8 m from th				
	LISN 2.	and associated equipm	nent was at least 0.8	8 m from th				
	LISN 2.							
		m emission, the relative	e positions of equip	ment and a				
(FI)	LISN 2. 5) In order to find the maximu	m emission, the relative	e positions of equip	ment and a				
_imit:	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement.	m emission, the relative must be changed a	e positions of equip ccording to ANSI	ment and a				
_imit:	LISN 2. 5) In order to find the maximu of the interface cables	m emission, the relative	e positions of equip ccording to ANSI	ment and a				
Limit:	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement.	m emission, the relative must be changed as Limit (d	e positions of equip ccording to ANSI IBµV)	ment and a				
Limit:	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement. Frequency range (MHz)	m emission, the relative must be changed as Limit (d	e positions of equip ccording to ANSI IBµV) Average	ment and a				
Limit:	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	m emission, the relative must be changed as Limit (d	e positions of equip ccording to ANSI IBµV) Average 56 to 46*	ment and a				
Limit:	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz.	m emission, the relative must be changed as Limit (do Quasi-peak 66 to 56* 56 60 with the logarithm of the change	e positions of equipoccording to ANSI BµV) Average 56 to 46* 46 50 the frequency in the	ment and a				
Limit:	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly	m emission, the relative must be changed as Limit (do Quasi-peak 66 to 56* 56 60 with the logarithm of the change	e positions of equipoccording to ANSI BµV) Average 56 to 46* 46 50 the frequency in the	ment and a				
easurement Data	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is appl	m emission, the relative must be changed as Limit (do Quasi-peak 66 to 56* 56 60 with the logarithm of the l	e positions of equipoccording to ANSI BµV) Average 56 to 46* 46 50 the frequency in the	ment and a				
easurement Data n initial pre-scan wa	LISN 2. 5) In order to find the maximu of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz.	Limit (do	e positions of equipoccording to ANSI IBµV) Average 56 to 46* 46 50 the frequency in the frequency	ment and a C63.10 of				

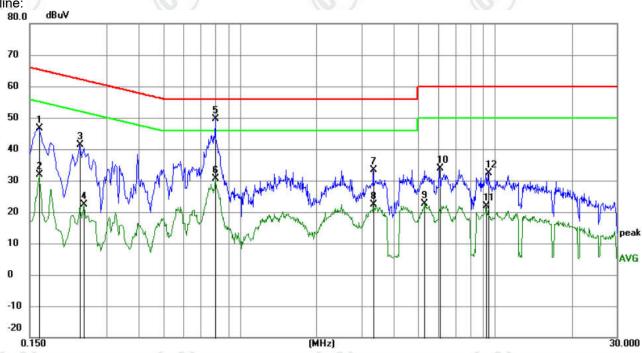


Report No.: EED32O81469401 Page 28 of 54

Product Bikefinder Model/Type reference BFG1T

Temperature : 23° C **Humidity** 54%

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	40.53	9.87	50.40	65.52	-15.12	QP	
2		0.1635	20.59	9.87	30.46	55.28	-24.82	AVG	
3		0.2400	33.63	9.95	43.58	62.10	-18.52	QP	
4		0.2445	17.25	9.96	27.21	51.94	-24.73	AVG	
5		0.3255	27.58	10.04	37.62	59.57	-21.95	QP	
6		0.3255	8.90	10.04	18.94	49.57	-30.63	AVG	
7		0.7979	19.29	9.85	29.14	46.00	-16.86	AVG	
8	*	0.8025	35.68	9.85	45.53	56.00	-10.47	QP	
9		4.8029	22.92	9.78	32.70	56.00	-23.30	QP	
10		5.3070	13.29	9.78	23.07	50.00	-26.93	AVG	
11		7.1205	24.82	9.79	34.61	60.00	-25.39	QP	
12		7.2465	12.76	9.79	22.55	50.00	-27.45	AVG	



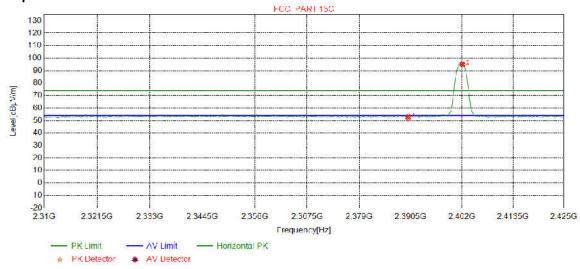
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1635	36.84	9.87	46.71	65.28	-18.57	QP	
2	0.1635	21.96	9.87	31.83	55.28	-23.45	AVG	
3	0.2355	31.44	9.94	41.38	62.25	-20.87	QP	
4	0.2445	12.32	9.96	22.28	51.94	-29.66	AVG	
5 *	0.8025	39.74	9.85	49.59	56.00	-6.41	QP	
6	0.8025	20.70	9.85	30.55	46.00	-15.45	AVG	
7	3.3405	23.70	9.79	33.49	56.00	-22.51	QP	
8	3.3405	12.48	9.79	22.27	46.00	-23.73	AVG	
9	5.2845	12.96	9.78	22.74	50.00	-27.26	AVG	
10	6.0675	24.21	9.79	34.00	60.00	-26.00	QP	
11	9.2130	12.13	9.78	21.91	50.00	-28.09	AVG	
12	9.4020	22.68	9.78	32.46	60.00	-27.54	QP	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

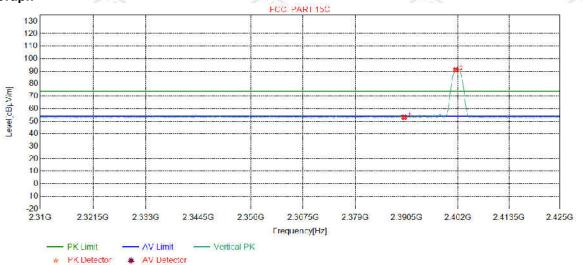
Appendix H): Restricted bands around fundamental frequency (Radiated)

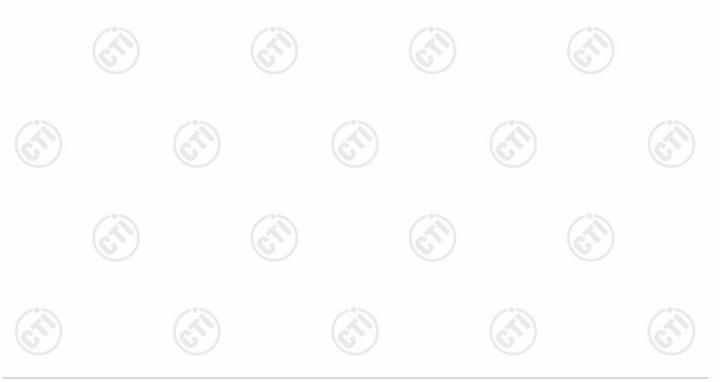
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 4011=	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	at a 3 meter semi determine the post. b. The EUT was set was mounted on to the control of the co	cedure as below: ced on the top of a re- anechoic camber. The sition of the highest ra 3 meters away from the top of a variable- th is varied from one ximum value of the fi e antenna are set to ed emission, the EUT auned to heights from degrees to 360 deg system was set to Pe aximum Hold Mode. the end of the restrice	otating table he table was adiation. the interfere meight anter meter to for eld strength make the make the make the torees to find eak Detect Foted band cl	0.8 meters rotated 3 ence-receinna tower. ur meters and Both horneasurements at meters at the maximunction and losest to the	rs above the grade of the grade	whice bund ertica d the ble
		spectrum analyzer plo				
	bands. Save the second for lowest and high above 1GHz test proof. G. Different between to fully Anechoic (18GHz the distant). Test the EUT in i. The radiation means transmitting mod	spectrum analyzer plothest channel cedure as below: above is the test site Chamber change formous is 1 meter and tab the lowest channel, asurements are perfore, and found the X ax	e, change from table 0.8 in table 0.8 in the Highest ormed in X, Niks positionin	or each po om Semi- meter to 1 er). channel Y, Z axis p ng which i	Anechoic Cha .5 meter(Abo positioning for t is worse cas	ulatio ambe
imit:	bands. Save the second for lowest and high above 1GHz test programmed. Above 1GHz test programmed. Big Different between to fully Anechoic (18GHz the distant h. Test the EUT in i. The radiation mean transmitting mod j. Repeat above programmed.	spectrum analyzer plothest channel cedure as below: above is the test site Chamber change formous 1 meter and tab the lowest channel, asurements are performed, and found the X aspectations.	e, change from table 0.8 in table 0.8 in the Highest ormed in X, wis positioning uencies me	or each po om Semi- meter to 1 er). channel Y, Z axis p ng which it asured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe
imit:	bands. Save the s for lowest and hig Above 1GHz test pro g. Different between to fully Anechoic (18GHz the distan h Test the EUT in i. The radiation mea Transmitting mod j. Repeat above pro	pectrum analyzer plothest channel cedure as below: above is the test site Chamber change forroce is 1 meter and tab the lowest channel, asurements are perfore, and found the X as cedures until all freq Limit (dBµV)	e, change from table 0.8 in table 0.8 in table 1.5 met the Highest ormed in X, in the Highest ormed in	or each po om Semi- meter to 1 er). channel Y, Z axis p ng which it asured wa	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe
imit:	bands. Save the second for lowest and high state of the second for lowest and high state of the second for lowest and heart of lowest and high second for lowest and heart of lowest and	spectrum analyzer plothest channel cedure as below: above is the test site Chamber change formous is 1 meter and tab the lowest channel, asurements are performe, and found the X as cedures until all freq Limit (dBµV, 40.0	e, change from table 0.8 in table 0.8 in table 0.8 in the Highest or med in X, wis positioning uencies me 1/m @3m)	om Semi- meter to 1 er). channel Y, Z axis p ng which it asured wa Rer Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete.	ulatio ambe
imit:	bands. Save the s for lowest and hig Above 1GHz test pro g. Different between to fully Anechoic (18GHz the distan h. Test the EUT in i. The radiation mea Transmitting mod j. Repeat above pro Frequency 30MHz-88MHz 88MHz-216MHz	spectrum analyzer plothest channel cocedure as below: above is the test site. Chamber change formous 1 meter and tabouthe lowest channel, assurements are performed, and found the X assurements until all frequedures until all frequedures. Limit (dBµV 40.0 43.6 43.6 43.6 43.6 43.6 43.6 43.6 43.6	e, change from table 0.8 in table 0.8 in table 0.8 in the Highest ormed in X, was positioning uencies me 1/m @3m)	om Semi- meter to 1 er). channel Y, Z axis p ng which it asured wa Rer Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ulatio ambe
imit:	bands. Save the same for lowest and high state of the same for lowest and high same for lowest and high same for fully Anechoic of the same for fully Anechoic of the same for fully Anechoic of the same for the same for same for fully and the same for same for for fully same for same for fully same for ful	spectrum analyzer plothest channel cedure as below: above is the test site Chamber change formous is 1 meter and tab the lowest channel, asurements are performe, and found the X are cedures until all freq Limit (dBµV 40.0 43.9 46.0	e, change from table 0.8 is 1.5 metothe Highest with promed in X, visis positioning uencies med/m @3m)	om Semi- meter to 1 er). channel Y, Z axis p ng which it asured wa Rer Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo oositioning for t is worse cas as complete. mark eak Value eak Value	ulatio ambe
imit:	bands. Save the s for lowest and hig Above 1GHz test pro g. Different between to fully Anechoic (18GHz the distan h. Test the EUT in i. The radiation mea Transmitting mod j. Repeat above pro Frequency 30MHz-88MHz 88MHz-216MHz	spectrum analyzer plothest channel cedure as below: above is the test site Chamber change formous is 1 meter and tab the lowest channel, asurements are performe, and found the X are cedures until all freq Limit (dBµV 40.0 43.9 46.0	e, change from table 0.8 of the Highest ormed in X, visis positioning uencies me/m @3m)	om Semi- meter to 1 er). channel Y, Z axis p ng which it asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ulatio ambe



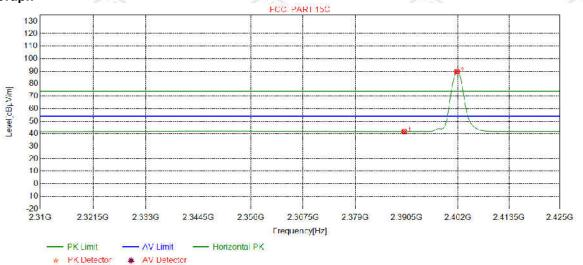
Test plot as follows:

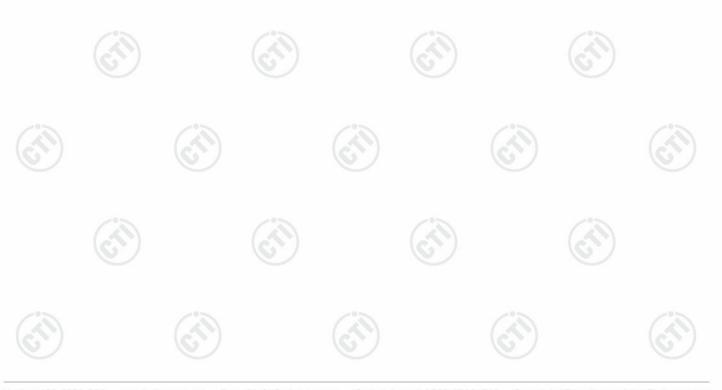
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak		


N O	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Prea m gain [dB]	Readin g [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margi n [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.48	52.66	74.00	21.34	Pass	Horizont
2	2402.1151	32.26	13.31	-42.43	91.81	94.95	74.00	-20.95	Pass	Horizont



	16.5	16.4	167	
Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	Peak			

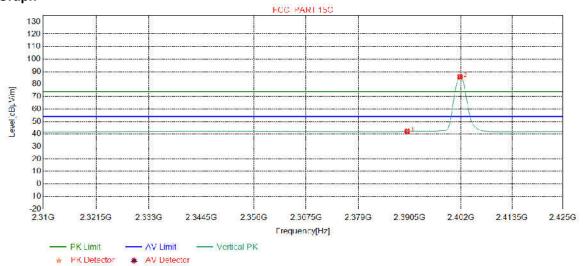

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.14	53.32	74.00	20.68	Pass	Vertical
2	2401.5394	32.26	13.31	-42.43	87.88	91.02	74.00	-17.02	Pass	Vertical

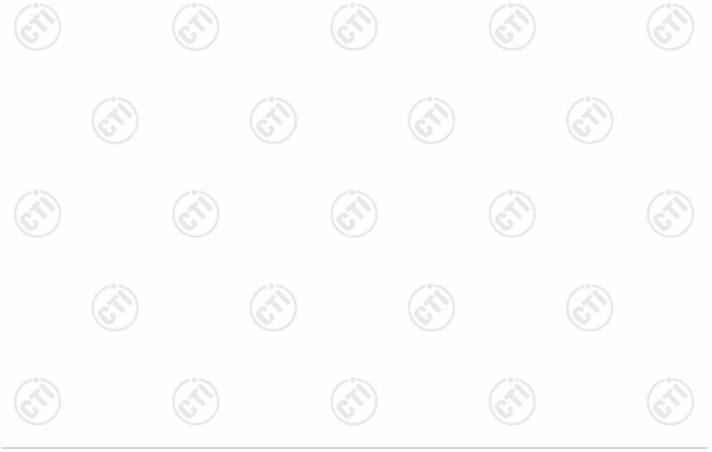


Page 33 of 54 Report No.: EED32O81469401

	16.5	16.4	167	
Mode:	BLE GFSK Transmitting	Channel:	2402	
Remark:	Peak			

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.72	41.90	54.00	12.10	Pass	Horizontal
2	2401.8273	32.26	13.31	-42.43	86.48	89.62	54.00	-35.62	Pass	Horizontal



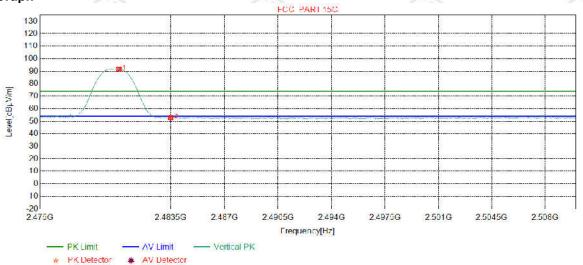


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	Peak	(25)	(25)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	39.02	42.20	54.00	11.80	Pass	Vertical
2	2401.8273	32.26	13.31	-42.43	82.79	85.93	54.00	-31.93	Pass	Vertical

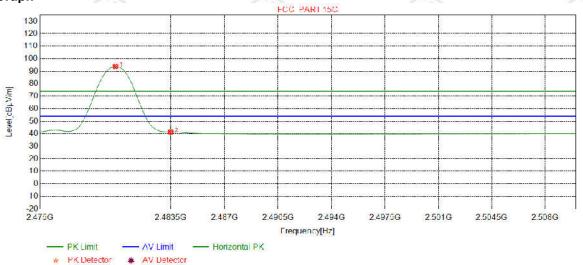
Report No. : EED32O81469401 Page 35 of 54

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak	·	·


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.5995	32.37	13.39	-42.39	91.18	94.55	74.00	-20.55	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.61	52.97	74.00	21.03	Pass	Horizontal

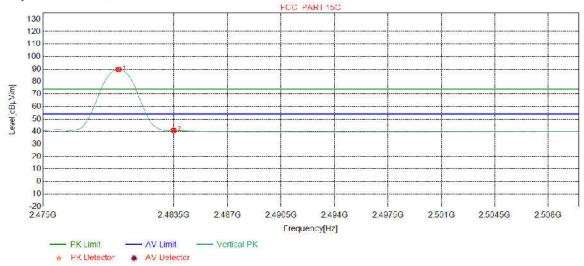
Report No. : EED32O81469401 Page 36 of 54

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak	·	·


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.1252	32.37	13.39	-42.40	88.37	91.73	74.00	-17.73	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.44	52.80	74.00	21.20	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak	·	·

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9061	32.37	13.39	-42.39	90.47	93.84	54.00	-39.84	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	38.19	41.55	54.00	12.45	Pass	Horizontal

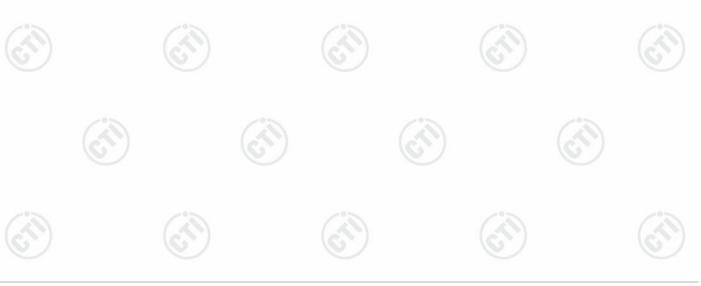


Report No.: EED32O81469401

Page 38 of 54

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	Peak		

Test Graph



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9061	32.37	13.39	-42.39	86.35	89.72	54.00	-35.72	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	37.47	40.83	54.00	13.17	Pass	Vertical


1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

	The state of the s	5.00.00				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
-)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
(2)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

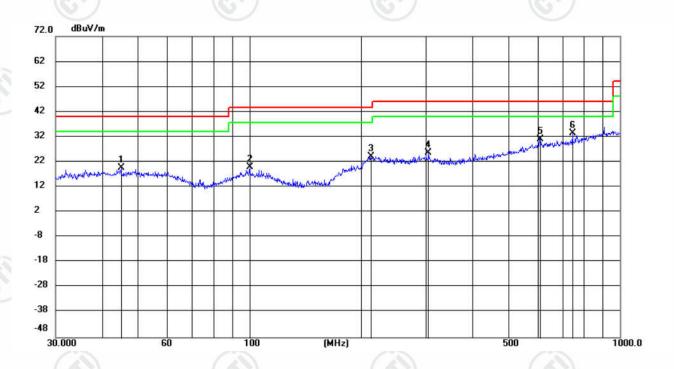
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	_ ° <u>-</u>	300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.



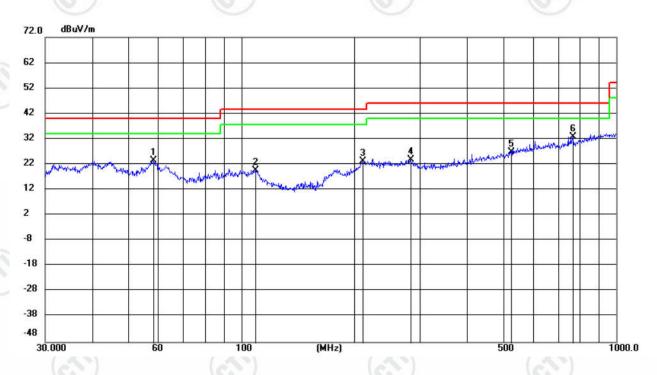
Radiated Spurious Emissions test Data:

Product : Bikefinder Model/Type reference BFG1T Temperature : 23°C Humidity 54%

Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		45.0583	5.24	14.40	19.64	40.00	-20.36	peak	100	188	
2		100.2285	5.87	14.01	19.88	43.50	-23.62	peak	100	14	
3		213.0151	9.81	14.23	24.04	43.50	-19.46	peak	100	310	
4		304.6099	8.39	17.35	25.74	46.00	-20.26	peak	100	238	
5		609.9217	6.87	24.10	30.97	46.00	-15.03	peak	100	75	
6	*	744.8660	7.88	25.48	33.36	46.00	-12.64	peak	100	188	



Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
58.2030	9.96	13.69	23.65	40.00	-16.35	peak	100	202	
109.0286	6.94	12.76	19.70	43.50	-23.80	peak	100	4	
210.0482	9.12	14.13	23.25	43.50	-20.25	peak	100	191	
281.9946	7.22	16.63	23.85	46.00	-22.15	peak	100	295	
522.7180	4.67	22.11	26.78	46.00	-19.22	peak	100	295	
766.0571	7.15	25.83	32.98	46.00	-13.02	peak	100	4	
	MHz 58.2030 109.0286 210.0482 281.9946 522.7180	Freq. Level MHz dBuV 58.2030 9.96 109.0286 6.94 210.0482 9.12 281.9946 7.22 522.7180 4.67	Freq. Level Factor MHz dBuV dB 58.2030 9.96 13.69 109.0286 6.94 12.76 210.0482 9.12 14.13 281.9946 7.22 16.63 522.7180 4.67 22.11	Freq. Level Factor ment MHz dBuV dB dBuV/m 58.2030 9.96 13.69 23.65 109.0286 6.94 12.76 19.70 210.0482 9.12 14.13 23.25 281.9946 7.22 16.63 23.85 522.7180 4.67 22.11 26.78	Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 58.2030 9.96 13.69 23.65 40.00 109.0286 6.94 12.76 19.70 43.50 210.0482 9.12 14.13 23.25 43.50 281.9946 7.22 16.63 23.85 46.00 522.7180 4.67 22.11 26.78 46.00	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 58.2030 9.96 13.69 23.65 40.00 -16.35 109.0286 6.94 12.76 19.70 43.50 -23.80 210.0482 9.12 14.13 23.25 43.50 -20.25 281.9946 7.22 16.63 23.85 46.00 -22.15 522.7180 4.67 22.11 26.78 46.00 -19.22	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 58.2030 9.96 13.69 23.65 40.00 -16.35 peak 109.0286 6.94 12.76 19.70 43.50 -23.80 peak 210.0482 9.12 14.13 23.25 43.50 -20.25 peak 281.9946 7.22 16.63 23.85 46.00 -22.15 peak 522.7180 4.67 22.11 26.78 46.00 -19.22 peak	Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 58.2030 9.96 13.69 23.65 40.00 -16.35 peak 100 109.0286 6.94 12.76 19.70 43.50 -23.80 peak 100 210.0482 9.12 14.13 23.25 43.50 -20.25 peak 100 281.9946 7.22 16.63 23.85 46.00 -22.15 peak 100 522.7180 4.67 22.11 26.78 46.00 -19.22 peak 100	Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 58.2030 9.96 13.69 23.65 40.00 -16.35 peak 100 202 109.0286 6.94 12.76 19.70 43.50 -23.80 peak 100 4 210.0482 9.12 14.13 23.25 43.50 -20.25 peak 100 191 281.9946 7.22 16.63 23.85 46.00 -22.15 peak 100 295 522.7180 4.67 22.11 26.78 46.00 -19.22 peak 100 295

Report No.: EED32O81469401 Page 42 of 54

Transmitter Emission above 1GHz

Mode	:	ВІ	_E Transmittir	ng		Channel:		2402 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1134.8135	0.83	41.03	41.86	74.00	32.14	Pass	Н	PK
2	1853.2853	3.68	40.05	43.73	74.00	30.27	Pass	Н	PK
3	4804.1203	-16.23	65.88	49.65	74.00	24.35	Pass	Н	PK
4	7457.2972	-11.27	51.60	40.33	74.00	33.67	Pass	Н	PK
5	10768.5179	-6.31	50.83	44.52	74.00	29.48	Pass	Н	PK
6	14384.7590	0.97	46.41	47.38	74.00	26.62	Pass	Н	PK
7	1170.4170	0.81	41.56	42.37	74.00	31.63	Pass	V	PK
8	1701.2701	2.94	40.15	43.09	74.00	30.91	Pass	V	PK
9	4803.1202	-16.23	62.49	46.26	74.00	27.74	Pass	V	PK
10	5760.1840	-13.71	56.17	42.46	74.00	31.54	Pass	V	PK
11	8414.3610	-10.94	51.26	40.32	74.00	33.68	Pass	V	PK
12	12011.6008	-5.32	50.46	45.14	74.00	28.86	Pass	V	PK

Mode	e :	ВІ	LE Transmittir	ng		Channel:		2440 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1185.6186	0.81	41.04	41.85	74.00	32.15	Pass	Н	PK
2	1955.2955	4.32	39.16	43.48	74.00	30.52	Pass	Н	PK
3	4880.1253	-16.21	65.43	49.22	74.00	24.78	Pass	Н	PK
4	6694.2463	-12.50	52.36	39.86	74.00	34.14	Pass	Н	PK
5	8828.3886	-9.39	50.32	40.93	74.00	33.07	Pass	Н	PK
6	11260.5507	-6.55	51.42	44.87	74.00	29.13	Pass	Н	PK
7	1149.2149	0.83	41.58	42.41	74.00	31.59	Pass	V	PK
8	2074.7075	4.80	39.07	43.87	74.00	30.13	Pass	V	PK
9	4879.1253	-16.21	62.70	46.49	74.00	27.51	Pass	V	PK
10	5760.1840	-13.71	55.43	41.72	74.00	32.28	Pass	V	PK
11	8439.3626	-10.82	51.61	40.79	74.00	33.21	Pass	V	PK
12	11306.5538	-6.60	52.11	45.51	74.00	28.49	Pass	V	PK

Report No.: EED32O81469401 Page 43 of 54

1 - 20 - 20 1							6] [20,7]			
	Mode:		BI	BLE Transmitting			Channel:		2480 MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
9	1	1207.6208	0.82	40.84	41.66	74.00	32.34	Pass	Н	PK
	2	1841.2841	3.59	39.69	43.28	74.00	30.72	Pass	Н	PK
	3	4133.0755	-18.13	57.74	39.61	74.00	34.39	Pass	Н	PK
	4	4960.1307	-15.97	65.65	49.68	74.00	24.32	Pass	Н	PK
	5	7395.2930	-11.52	53.32	41.80	74.00	32.20	Pass	Н	PK
	6	13281.6854	-3.40	49.66	46.26	74.00	27.74	Pass	Н	PK
	7	1224.4224	0.86	40.96	41.82	74.00	32.18	Pass	V	PK
10	8	1813.0813	3.38	39.51	42.89	74.00	31.11	Pass	V	PK
	9	4133.0755	-18.13	55.00	36.87	74.00	37.13	Pass	V	PK
	10	4959.1306	-15.98	63.16	47.18	74.00	26.82	Pass	V	PK
S.	11	5760.1840	-13.71	56.15	42.44	74.00	31.56	Pass	V	PK
	12	10758.5172	-6.33	50.61	44.28	74.00	29.72	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

