

Page 105 of 133

Page 106 of 133

Page 107 of 133

Page 108 of 133

Page 109 of 133

Page 110 of 133

Page 111 of 133

Page 112 of 133

Page 113 of 133

Page 114 of 133

Page 115 of 133

Page 116 of 133

Page 117 of 133

Page 118 of 133

Page 119 of 133

Page 120 of 133

Page 121 of 133

Page 122 of 133

Page 123 of 133

Page 124 of 133

Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:	Frequency Detector RBW VBW Remark							
				RBW	VBW	Remark		
-	30MHz	-1GHz	peak	120kHz	300kHz	Peak		
0	Above	1GHz	Peak	1MHz	3MHz	Peak		
Measurement Procedure:	 Below 1GHz test procedure as below: 1). The EUT was powered ON and placed on a 0.8m high table in the chamber., mount the equipment with the manufacturer specified antenna in a vertical orientation on a manufacturer. The antenna of the transmitter was extended to its maximum length. 2). The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made. 3). Steps 1) and 2) were performed with the EUT and the receive antenna in both vertica and horizontal polarization. 4). The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter. 5). A signal at the disturbance was fed to the substitution antenna by means of a nonradiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the est receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions. 6). The output power into the substitution antenna was then measured. 7). Steps 5) and 6) were repeated with both antennas polarization. 8). Calculate power in dBm by the following formula: ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd) where: Pg is the generator output power into the substitution antenna. Above 1GHz test procedure as below: 1). Different between above is the test site, change from Semi- Anechoic Chamber t fully Anechoic Chamber ; up to 18GHz a measurement distance of 3 meters is used Above 18GHz the distance is 1 meter. 2). Calculate power in dBm by the following formula: EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) EIRP							
Limit:	Repeat above	procedures u	intil all frequen	cies measure	d was comple	ete.		
	Mode	GSM 850	9	GS	SM 1900			
	Frequency	824 - 849	MHz		50 – 1910MH	Z		
12	Limit 38.45dBm (7W) 33.01dBm (2W)							

Page 126 of 133

Data	1.40	N	(10)	A	
		GPRS 850	0		
Azimuth (deg)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
61	18.37	38.45	-20.08	Pass	н
360	23.76	38.45	-14.69	Pass	V
312	17.22	38.45	-21.23	Pass	н
38	23.91	38.45	-14.54	Pass	V
305	17.22	38.45	-21.23	Pass	H
20	23.12	38.45	-15.33	Pass	V
	Azimuth (deg) 61 360 312 38 305	Azimuth (deg) ERP (dBm) 61 18.37 360 23.76 312 17.22 38 23.91 305 17.22	GPRS 850 Azimuth (deg) ERP (dBm) Limit (dBm) 61 18.37 38.45 360 23.76 38.45 312 17.22 38.45 38 23.91 38.45 305 17.22 38.45	GPRS 850Azimuth (deg)ERP (dBm)Limit (dBm)Over Limit (dB)6118.3738.45-20.0836023.7638.45-14.6931217.2238.45-21.233823.9138.45-14.5430517.2238.45-21.23	GPRS 850 Azimuth (deg) ERP (dBm) Limit (dBm) Over Limit (dB) Result 61 18.37 38.45 -20.08 Pass 360 23.76 38.45 -14.69 Pass 312 17.22 38.45 -21.23 Pass 38 23.91 38.45 -14.54 Pass 305 17.22 38.45 -21.23 Pass

			GPRS 1900			
Channel/fc (MHz)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
512/1850.2	307	16.06	33.01	-16.95	Pass	— н
	204	16.47	33.01	-16.54	Pass	V
	297	15.85	33.01	-17.16	Pass	Н
661/1880.0	344	16.62	33.01	-16.39	Pass	V
810/1909.8	308	16.06	33.01	-16.95	Pass	н
	334	16.91	33.01	-16.1	Pass	V

Appendix H) Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark							
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak							
	30MHz-1GHz	Peak	120kHz	300kHz	Peak							
	Above 1GHz	Peak	1MHz	3MHz	Peak							
Measurement	Below 1GHz test procedu	ire as below:	1	67		0						
Procedure:	 The EUT was powered the equipment with the manufacturer. The ante The disturbance of the raising and lowering fro antenna was tuned to h 360° the turntable. Afte 	ON and placed manufacturer s inna of the trans transmitter was om 1m to 4m (fo neights 1 meter) r the fundamen	pecified ant smitter was maximized r the test fre the receive tal emission	enna in a ve extended to on the test equency of antenna an was maxin	ertical orientat o its maximum receiver displa below 30MHz, nd by rotating nized, a field s	ion on a length. ay by the through trength						
	measurement was mad		measureme	ents are per	formed in X, Y	, Z axis						
	positioning be lower 30 3) Steps 1) and 2) were pe		e FUT and	the receive	antenna in bo	oth						
2)	3). Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.											
1	4). The transmitter was then removed and replaced with another antenna. The center of											
	the antenna was approximately at the same location as the center of the transmitter 5). A signal at the disturbance was fed to the substitution antenna by means of a non-											
Ì	radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum readin at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions.											
	6). The output power into the substitution antenna was then measured.											
	7). Steps 5) and 6) were repeated with both antennas polarized and EUT.											
	8) Calculate power in dBm by the following formula:											
0	ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)											
	where: Pg is the generator output power into the substitution antenna.											
	Above 1GHz test procedure as below:											
	1)Different between above is the test site, change from Semi- Anechoic											
(3)	Chamber to fully Anechoic Chamber ; up to 18GHz a measurement distance of 3 meters is used, Above 18GHz the distance is 1 meter.											
	2) Calculate power in dBm by the following formula:											
	EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB											
	where:											
9	Pg is the generator output power into the substitution antenna.											
	3.Test the EUT in the lowest channel, the middle channel the Highest channel The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode,And found the X axis positioning which it is worse case.											
2000			-		Repeat above procedures until all frequencies measured was complete.							

			~ /	-			-	/
Mode	e:	GPRS	_		~			
Band	:	850		Channel:		190		
Rema	ark:							
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polar
1	44.5529	150	209	-73.98	-13.00	60.98	Pass	Horizo
2	89.1818	150	359	-66.93	-13.00	53.93	Pass	Horizo
3	168.7377	150	359	-68.79	-13.00	55.79	Pass	Horizo
4	324.9390	150	359	-71.25	-13.00	58.25	Pass	Horizo
5	411.8684	150	327	-72.52	-13.00	59.52	Pass	Horizo
6	876.0092	150	359	-56.02	-13.00	43.02	Pass	Horizo
7	1319.0319	150	1	-53.31	-13.00	40.31	Pass	Horizo
8	3347.2674	150	228	-46.81	-13.00	33.81	Pass	Horizo
9	5045.3523	150	36	-51.14	-13.00	38.14	Pass	Horizo
10	8151.2576	150	344	-45.94	-13.00	32.94	Pass	Horizo
11	13012.2506	150	267	-43.93	-13.00	30.93	Pass	Horizo
12	14472.5736	150	57	-42.91	-13.00	29.91	Pass	Horizo

Mode	e:	GPRS	GPRS					
Band	:	850		Channel:		190		
Rema	ark:							
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	53.6727	150	313	-63.42	-13.00	50.42	Pass	Vertical
2	87.0474	150	266	-73.95	-13.00	60.95	Pass	Vertical
3	120.0340	150	266	-72.33	-13.00	59.33	Pass	Vertical
4	208.9038	150	266	-67.90	-13.00	54.90	Pass	Vertical
5	440.0040	150	173	-69.64	-13.00	56.64	Pass	Vertical
6	876.0092	150	1	-44.47	-13.00	31.47	Pass	Vertical
7	1673.6674	150	301	-49.80	-13.00	36.80	Pass	Vertical
8	2504.7505	150	46	-50.52	-13.00	37.52	Pass	Vertical
9	3507.0254	150	74	-40.24	-13.00	27.24	Pass	Vertical
10	4951.5976	150	228	-51.06	-13.00	38.06	Pass	Vertical
11	8242.7621	150	134	-46.34	-13.00	33.34	Pass	Vertical
12	14448.5724	150	36	-42.45	-13.00	29.45	Pass	Vertical

Page 129 of 133

Mod	e:	GPRS	1	/	CA		12	<u></u>
Band	d:	1900	(N)	Channel:	£7.)	661	(6))
Rem	nark:		~				0	e
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	44.7469	150	255	-74.49	-13.00	61.49	Pass	Horizontal
2	91.8984	150	359	-66.89	-13.00	53.89	Pass	Horizontal
3	170.4841	150	336	-69.37	-13.00	56.37	Pass	Horizontal
4	296.9974	150	80	-73.37	-13.00	60.37	Pass	Horizontal
5	413.8088	150	325	-72.74	-13.00	59.74	Pass	Horizontal
6	687.5975	150	325	-69.23	-13.00	56.23	Pass	Horizontal
7	1377.0377	150	172	-52.37	-13.00	39.37	Pass	Horizontal
8	1947.4947	150	242	-40.91	-13.00	27.91	Pass	Horizontal
9	2408.5409	150	1	-45.36	-13.00	32.36	Pass	Horizontal
10	3897.0449	150	36	-42.10	-13.00	29.10	Pass	Horizontal
11	8155.7578	150	172	-46.40	-13.00	33.40	Pass	Horizontal
12	14324.0662	150	95	-42.56	-13.00	29.56	Pass	Horizontal

Mode: GPRS								
Band		1900	20	Channel:	2	661		
Rema	ark:	1					0	/
NO.	Freq. [MHz]	Height [cm]	Azimuth [deg]	Level [dBm]	Limit [dBm]	Margin [dB]	Result	Polarity
1	53.4787	150	10	-62.27	-13.00	49.27	Pass	Vertical
2	86.8534	150	231	-74.80	-13.00	61.80	Pass	Vertical
3	208.9038	150	126	-67.83	-13.00	54.83	Pass	Vertical
4	413.0326	150	196	-69.82	-13.00	56.82	Pass	Vertical
5	625.1170	150	21	-68.81	-13.00	55.81	Pass	Vertical
6	875.0390	150	45	-65.97	-13.00	52.97	Pass	Vertical
7	1298.2298	150	150	-50.89	-13.00	37.89	Pass	Vertical
8	1947.8948	150	348	-40.69	-13.00	27.69	Pass	Vertical
9	2424.7425	150	290	-21.10	-13.00	8.10	Pass	Vertical
10	3894.7947	150	360	-48.42	-13.00	35.42	Pass	Vertical
11	8157.2579	150	360	-45.95	-13.00	32.95	Pass	Vertical
12	14184.5592	150	151	-42.70	-13.00	29.70	Pass	Vertical

Note:

1) Scan from 9kHz to 25GHz, the disturbance above 15GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.