| CSW 1900 Modulation |  |  |  |  | $\begin{aligned} & \text { PD CSI } \\ & \text { Ptenman } \end{aligned}$ |  | Connect Control |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $+20 \text { Max Le }$ |  | $\text { Low Nise } \quad \text { PCL: }$ |  | Off Channel： $512 \quad$ Meas slot ： 3 |  |  | $\begin{aligned} & \text { HExt.Phase } \\ & \text { EErr.GMSKK } \\ & \hline \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| ＋10 |  |  |  |  |  |  | Appli－ |
|  |  |  |  |  |  |  | cation |
|  |  |  |  |  |  |  | Analyzer |
|  |  |  |  |  |  |  | Level Trg |
|  |  |  |  |  |  |  |  |
| $\frac{15}{150}$ |  | 40.60 | 80 | 100 | $120 \quad{ }_{10}{ }_{140}$ |  | MS Signal |
|  | $0 \quad 20$ |  |  |  |  |  |  |
|  |  |  |  |  | $\begin{gathered} -0.28 \text { Sym. } \\ \text { Timing Advance Error } \end{gathered}$ |  | BS Signal |
|  |  |  |  |  |  |  |  |  |  |  |
| Phase Error | Peak | －40．6． | $40.5{ }^{\circ}$ | －429 ${ }^{\circ}$ |  | 31.4 dBm |  |
|  |  | $3.0{ }^{\circ}$ | $3.0{ }^{\circ}$ | $3.2{ }^{\circ}$ | Avg Burst | Pawer（Cur） | Network |
| Origin Offset IfQ imbalance |  | -44.9 dB-44.6 dB | －44．0 di | －37．5 |  | 00 Eursts |  |
|  |  | －49．4 dB | －39．4 dB |  | tatistic Count |  |  |
|  |  |  | 37 Hz | 32 hz | 40 Hz | $\begin{aligned} & 100.00 \% \\ & \text { Bursts out of Tolerance } \end{aligned}$ |  | Marker |
|  |  |  |  |  |  |  |  |  |
| Overview | Power | Modulation | Spectrum | ReceiuerQuality |  |  | Menus |


| CSM 1900 Modulation |  |  |  |  | $\begin{aligned} & \hline \text { PD CS } 1 \\ & \text { t十 } \\ & \text { T=AMMA } \end{aligned}$ |  | Connect Control |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{ll} \hline \text { Low Nolse } \\ \mathbb{Q} \end{array}$ |  | －$\quad$ Chennel： 512 Meas Slot： 3 |  |  | $\begin{aligned} & \text { HExt.Phase } \\ & \text { Err.GMSK } \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| ＋10 |  |  |  |  |  |  | Appli－ |
| $+5$ |  |  |  |  |  |  | cation |
| $+\frac{0}{-5}$ | mon |  |  |  |  |  | Analyzer |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| －20 |  | 40.60 | 80 | 100  <br> 120  <br> 140  <br> 180  |  |  | MS Signal |
|  | 020 |  |  |  |  |  |  |
| GSMO TSC（correation ok． |  |  | Averace | Max／Mn | $\begin{array}{\|c} -0.28 \mathrm{Sym} \\ \text { Timing Advance Error } \end{array}$ |  |  |
|  |  |  | BS signal |  |  |  |  |
| Phase Error | $\mathrm{L}_{\text {RMS }}^{\text {Peak }}$ | $-402^{\circ}$ |  | $\begin{gathered} 40.4^{\circ} \\ 3.0^{\circ} \end{gathered}$ | －$-42.4^{\circ}$ | $\begin{array}{r} \frac{31.4 \mathrm{dBm}}{\text { Avg Burst Pawer (Cur) }} \\ \hline \end{array}$ |  |  |
|  |  |  |  |  | Network |  |  |  |
| Origin iffget IfQ imbalance |  | $\begin{aligned} & -41.3 \mathrm{~dB} \\ & -52.1 \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & -43.6 \mathrm{~dB} \\ & -48.4 \mathrm{~dB} \end{aligned}$ | $\begin{aligned} & -36.6 \mathrm{~dB} \\ & -40.9 \mathrm{~dB} \end{aligned}$ | 100 Eusts |  |  |
|  |  |  |  |  | tic Count |  |  |
| IfQ imbalance <br> Frequency Error |  |  | 20 Hz | 23 Hz | 28 Hz | $\begin{array}{r} 100.00 \% \\ \text { Bursts out of Tolerance } \end{array}$ |  | Marker |
|  |  |  |  |  |  |  |  |  |
| Overview | Power | Modulation | Spectrum | ReceiwerQuality |  |  | Menus |



| CSM 1900 Modulation |  |  |  |  |  |  | Connect Control |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{ll} \text { Low Noise } \\ \mathbb{1} \end{array}$ |  |  |  |  | $\begin{aligned} & \text { HExt.Phase } \\ & \text { Err.GMSK } \end{aligned}$ |
|  |  |  |  |  |  |  |  |
| ＋10 |  |  |  |  |  |  | Appli－ |
|  |  |  |  |  |  |  | cation |
|  |  |  |  |  |  |  | Analyzer |
|  |  |  |  |  |  |  | Level Trg |
| －15 |  |  |  |  |  |  |  |
| 20 |  | 40.60 | 80 |  |  |  | MS Signal |
|  |  |  |  |  |  |  |  |
| GSMO TSC（correation ok． |  |  |  |  | $-0.24 \text { sym. }$Timing Advance Error |  | BS Signal |
| Phase Error |  | Current | Average | Max／Min |  |  |  |
|  | $L_{\text {RMS }}^{\text {Peak }}$ | $\begin{array}{r} -36.4^{\circ} \\ 2.8^{\circ} \end{array}$ | $\begin{gathered} 36.4^{\circ} \\ 2.8^{\circ} \end{gathered}$ | $\begin{array}{r} -37.6^{\circ} \\ 2.9^{\circ} \end{array}$ | $\begin{array}{r} 30.3 \mathrm{dBm} \\ \text { Avg Bust Power (Cur) } \end{array}$ |  | Network |
|  |  |  |  |  |  |  |  |
|  |  | －48．3 di | － 44.1 d8 | $\begin{aligned} & -34.8 \mathrm{~dB} \\ & -42.1 \mathrm{~dB} \end{aligned}$ | 100 Eursts |  |  |
|  |  | $-53.7 \mathrm{~dB}$ | －49．5dB |  |  | stic Count |  |
| IfQ imbalance Frequency Eror |  | 9 Hz | 16 Hz | 21 Hz | $\begin{array}{\|c} 100.00 \% \\ \text { Bursts out of Tolerance } \end{array}$ |  | Marker |
|  |  |  |  |  |  |  |  |
| Overview | Power | Modulation | Spectrum | ReceiurerQuality |  |  | Menus |









HCH










## Appendix G) Effective Radiated Power of Transmitter (ERP/EIRP)

| Receiver Setup: | - |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Frequency |  | Detector | RBW | VBW | Remark |
|  | $30 \mathrm{MHz}-1 \mathrm{GHz}$ |  | peak | 120kHz | 300kHz | Peak |
|  | Above 1GHz |  | Peak | 1 MHz | 3 MHz | Peak |
| Measurement Procedure: | Below 1GHz test procedure as below: <br> 1). The EUT was powered ON and placed on a 0.8 m high table in the chamber., mount the equipment with the manufacturer specified antenna in a vertical orientation on a manufacturer. The antenna of the transmitter was extended to its maximum length. <br> 2). The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1 m to 4 m the receive antenna and by rotating through $360^{\circ}$ the turntable. After the fundamental emission was maximized, a field strength measurement was made. <br> 3). Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization. <br> 4). The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter. <br> 5). A signal at the disturbance was fed to the substitution antenna by means of a nonradiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions. <br> 6 ). The output power into the substitution antenna was then measured. <br> 7). Steps 5) and 6) were repeated with both antennas polarization. <br> 8). Calculate power in dBm by the following formula: <br> $\operatorname{ERP}(\mathrm{dBm})=\mathrm{Pg}(\mathrm{dBm})-$ cable loss $(\mathrm{dB})+$ antenna gain $(\mathrm{dBd})$ <br> where: <br> Pg is the generator output power into the substitution antenna. <br> Above 1 GHz test procedure as below: <br> 1). Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber ; up to 18 GHz a measurement distance of 3 meters is used, Above 18 GHz the distance is 1 meter. <br> 2). Calculate power in dBm by the following formula: <br> $\operatorname{EIRP}(d B m)=P g(d B m)-$ cable loss $(d B)+$ antenna gain $(d B i)$ $E I R P=E R P+2.15 d B$ <br> where: <br> Pg is the generator output power into the substitution antenna. <br> 3). Test the EUT in the lowest channel, the middle channel the Highest channel The radiation measurements are performed in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis positioning for EUT operation mode,And found the X axis positioning which it is worse case. <br> Repeat above procedures until all frequencies measured was complete. |  |  |  |  |  |
| Limit: |  |  |  | 1 |  |  |
|  | Mode | GSM 850 |  | GSM 1900 |  |  |
|  | Frequency | $824-849 \mathrm{MHz}$ |  | $1850-1910 \mathrm{MHz}$ |  |  |
|  | Limit | 38.45 dBm (7W) |  | 33.01 dBm (2W) |  |  |

Measurement Data

| GPRS 850 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Channel／fc <br> $(\mathrm{MHz})$ | Azimuth <br> $(\mathrm{deg})$ | ERP <br> $(\mathrm{dBm})$ | Limit <br> $(\mathrm{dBm})$ | Over Limit <br> $(\mathrm{dB})$ | Result | Antenna Polaxis． |  |
| $128 / 824.2$ | 61 | 18.37 | 38.45 | -20.08 | Pass | H |  |
|  | 360 | 23.76 | 38.45 | -14.69 | Pass | V |  |
| $190 / 836.6$ | 312 | 17.22 | 38.45 | -21.23 | Pass | H |  |
|  | 38 | 23.91 | 38.45 | -14.54 | Pass | V |  |
| $251 / 848.8$ | 305 | 17.22 | 38.45 | -21.23 | Pass | H |  |
|  | 20 | 23.12 | 38.45 | -15.33 | Pass | V |  |


| GPRS 1900 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Channel／fc <br> $(\mathrm{MHz})$ | Azimuth <br> $(\mathrm{deg})$ | EIRP <br> $(\mathrm{dBm})$ | Limit <br> $(\mathrm{dBm})$ | Over Limit <br> $(\mathrm{dB})$ | Result | Antenna Polaxis． |  |
| $512 / 1850.2$ | 307 | 16.06 | 33.01 | -16.95 | Pass | H |  |
|  | 204 | 16.47 | 33.01 | -16.54 | Pass | V |  |
| $661 / 1880.0$ | 297 | 15.85 | 33.01 | -17.16 | Pass | H |  |
|  | 344 | 16.62 | 33.01 | -16.39 | Pass | V |  |
| $810 / 1909.8$ | 308 | 16.06 | 33.01 | -16.95 | Pass | H |  |
|  | 334 | 16.91 | 33.01 | -16.1 | Pass | V |  |



Report No．：EED32L00192302

## Appendix H）Field strength of spurious radiation




## Test data：

| Mode： |  | GPRS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Band |  | 850 |  | Channel： |  | 190 |  |  |
| Remark： |  |  |  |  |  |  |  |  |
| NO． | Freq． ［MHz］ | Height ［cm］ | Azimuth ［deg］ | Level ［dBm］ | Limit ［dBm］ | Margin ［dB］ | Result | Polarity |
| 1 | 44.5529 | 150 | 209 | －73．98 | －13．00 | 60.98 | Pass | Horizontal |
| 2 | 89.1818 | 150 | 359 | －66．93 | －13．00 | 53.93 | Pass | Horizontal |
| 3 | 168.7377 | 150 | 359 | －68．79 | －13．00 | 55.79 | Pass | Horizontal |
| 4 | 324.9390 | 150 | 359 | －71．25 | －13．00 | 58.25 | Pass | Horizontal |
| 5 | 411.8684 | 150 | 327 | －72．52 | －13．00 | 59.52 | Pass | Horizontal |
| 6 | 876.0092 | 150 | 359 | －56．02 | －13．00 | 43.02 | Pass | Horizontal |
| 7 | 1319.0319 | 150 | 1 | －53．31 | －13．00 | 40.31 | Pass | Horizontal |
| 8 | 3347.2674 | 150 | 228 | －46．81 | －13．00 | 33.81 | Pass | Horizontal |
| 9 | 5045.3523 | 150 | 36 | －51．14 | －13．00 | 38.14 | Pass | Horizontal |
| 10 | 8151.2576 | 150 | 344 | －45．94 | －13．00 | 32.94 | Pass | Horizontal |
| 11 | 13012.2506 | 150 | 267 | －43．93 | －13．00 | 30.93 | Pass | Horizontal |
| 12 | 14472.5736 | 150 | 57 | －42．91 | －13．00 | 29.91 | Pass | Horizontal |


| Mode |  | GPRS |  |  |  |  | － |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Band |  | 850 |  | Channel： |  | 190 |  |  |
| Remark： |  |  |  |  |  |  |  |  |
| NO． | Freq． ［MHz］ | Height ［cm］ | Azimuth ［deg］ | Level ［dBm］ | Limit ［dBm］ | Margin ［dB］ | Result | Polarity |
| 1 | 53.6727 | 150 | 313 | －63．42 | －13．00 | 50.42 | Pass | Vertical |
| 2 | 87.0474 | 150 | 266 | －73．95 | －13．00 | 60.95 | Pass | Vertical |
| 3 | 120.0340 | 150 | 266 | －72．33 | －13．00 | 59.33 | Pass | Vertical |
| 4 | 208.9038 | 150 | 266 | －67．90 | －13．00 | 54.90 | Pass | Vertical |
| 5 | 440.0040 | 150 | 173 | －69．64 | －13．00 | 56.64 | Pass | Vertical |
| 6 | 876.0092 | 150 | 1 | －44．47 | －13．00 | 31.47 | Pass | Vertical |
| 7 | 1673.6674 | 150 | 301 | －49．80 | －13．00 | 36.80 | Pass | Vertical |
| 8 | 2504.7505 | 150 | 46 | －50．52 | －13．00 | 37.52 | Pass | Vertical |
| 9 | 3507.0254 | 150 | 74 | －40．24 | －13．00 | 27.24 | Pass | Vertical |
| 10 | 4951.5976 | 150 | 228 | －51．06 | －13．00 | 38.06 | Pass | Vertical |
| 11 | 8242.7621 | 150 | 134 | －46．34 | －13．00 | 33.34 | Pass | Vertical |
| 12 | 14448.5724 | 150 | 36 | －42．45 | －13．00 | 29.45 | Pass | Vertical |

Page 129 of 133

| Mode： |  | GPRS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Band： |  | 1900 |  | Channel： | 661 |  |  |  |
| Remark： |  | － |  |  |  |  |  |  |
| NO． | Freq． ［MHz］ | Height ［cm］ | Azimuth ［deg］ | Level ［dBm］ | Limit ［dBm］ | Margin ［dB］ | Result | Polarity |
| 1 | 44.7469 | 150 | 255 | －74．49 | －13．00 | 61.49 | Pass | Horizontal |
| 2 | 91.8984 | 150 | 359 | －66．89 | －13．00 | 53.89 | Pass | Horizontal |
| 3 | 170.4841 | 150 | 336 | －69．37 | －13．00 | 56.37 | Pass | Horizontal |
| 4 | 296.9974 | 150 | 80 | －73．37 | －13．00 | 60.37 | Pass | Horizontal |
| 5 | 413.8088 | 150 | 325 | －72．74 | －13．00 | 59.74 | Pass | Horizontal |
| 6 | 687.5975 | 150 | 325 | －69．23 | －13．00 | 56.23 | Pass | Horizontal |
| 7 | 1377.0377 | 150 | 172 | －52．37 | －13．00 | 39.37 | Pass | Horizontal |
| 8 | 1947.4947 | 150 | 242 | －40．91 | －13．00 | 27.91 | Pass | Horizontal |
| 9 | 2408.5409 | 150 | 1 | －45．36 | －13．00 | 32.36 | Pass | Horizontal |
| 10 | 3897.0449 | 150 | 36 | －42．10 | －13．00 | 29.10 | Pass | Horizontal |
| 11 | 8155.7578 | 150 | 172 | －46．40 | －13．00 | 33.40 | Pass | Horizontal |
| 12 | 14324.0662 | 150 | 95 | －42．56 | －13．00 | 29.56 | Pass | Horizontal |


| Mode： |  | GPRS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Band |  | 1900 | － | Channel： | － | 661 | $\square$ |  |
| Remark： |  | $\square$ |  |  |  |  |  |  |
| NO． | Freq． ［MHz］ | Height ［cm］ | Azimuth ［deg］ | Level ［dBm］ | Limit ［dBm］ | Margin ［dB］ | Result | Polarity |
| 1 | 53.4787 | 150 | 10 | －62．27 | －13．00 | 49.27 | Pass | Vertical |
| 2 | 86.8534 | 150 | 231 | －74．80 | －13．00 | 61.80 | Pass | Vertical |
| 3 | 208.9038 | 150 | 126 | －67．83 | －13．00 | 54.83 | Pass | Vertical |
| 4 | 413.0326 | 150 | 196 | －69．82 | －13．00 | 56.82 | Pass | Vertical |
| 5 | 625.1170 | 150 | 21 | －68．81 | －13．00 | 55.81 | Pass | Vertical |
| 6 | 875.0390 | 150 | 45 | －65．97 | －13．00 | 52.97 | Pass | Vertical |
| 7 | 1298.2298 | 150 | 150 | －50．89 | －13．00 | 37.89 | Pass | Vertical |
| 8 | 1947.8948 | 150 | 348 | －40．69 | －13．00 | 27.69 | Pass | Vertical |
| 9 | 2424.7425 | 150 | 290 | －21．10 | －13．00 | 8.10 | Pass | Vertical |
| 10 | 3894.7947 | 150 | 360 | －48．42 | －13．00 | 35.42 | Pass | Vertical |
| 11 | 8157.2579 | 150 | 360 | －45．95 | －13．00 | 32.95 | Pass | Vertical |
| 12 | 14184.5592 | 150 | 151 | －42．70 | －13．00 | 29.70 | Pass | Vertical |

Note：
1）Scan from 9 kHz to 25 GHz ，the disturbance above 15 GHz and below 30 MHz was very low，and the above harmonics were the highest point could be found when testing，so only the above harmonics had been displayed．The amplitude of spurious emissions from the radiator which are attenuated more than 20 dB below the limit need not be reported．

