

RF TEST REPORT

Product Name: alarm system

Model Name: SNT942W, SNT942W-S, SNT942Z, SN942V-RF, SN942V, 942 series

FCC ID: 2ATRQ-SNT942W

Issued For : Soan Electronic Technology Co., Ltd

501, Factory No.3, Longyingfa Industrial Park Dawo, Longtian Community, Longtian Street, Pingshan, ShenZhen, 518103 China

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.177 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan New District, Shenzhen, China

Report Number:	LGT23L064RF03
Sample Received Date:	Dec. 14, 2023
Date of Test:	Dec. 14, 2023 – Jan. 12, 2024
Date of Issue:	Jan. 15, 2024

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant	Soan Electronic Technology Co., Ltd
Address	501, Factory No.3, Longyingfa Industrial Park Dawo,Longtian Community,Longtian Street, Pingshan, ShenZhen, 518103 China
Manufacturer	Soan Electronic Technology Co., Ltd
Address	501, Factory No.3, Longyingfa Industrial Park Dawo,Longtian Community,Longtian Street, Pingshan, ShenZhen, 518103 China
Product Name	alarm system
Trademark	SOAN
Model Name	SNT942W, SNT942W-S, SNT942Z, SN942V-RF, SN942V, 942 series
Sample Status:	Normal

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
FCC Part 15.247, Subpart C ANSI C63.10-2013	PASS				

Prepared by:

Zane Shan

Zane Shan Engineer

Approved by:

Nati

Vita Li Technical Director

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 TEST PROCEDURE	14
3.3 TEST SETUP	14
3.4 EUT OPERATING CONDITIONS	14
4. RADIATED EMISSION MEASUREMENT	17
4.1 RADIATED EMISSION LIMITS	17
4.2 TEST PROCEDURE	19
4.3 TEST SETUP	20
4.4 EUT OPERATING CONDITIONS	20
4.5 FIELD STRENGTH CALCULATION	21
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	28
5.1 LIMIT	28
5.2 TEST PROCEDURE	28
5.3 TEST SETUP	28
5.4 EUT OPERATION CONDITIONS	28
5.5 TEST RESULTS	28
6. POWER SPECTRAL DENSITY TEST	29
6.1 LIMIT	29
6.2 TEST PROCEDURE	29
6.3 TEST SETUP	29
6.4 EUT OPERATION CONDITIONS	29
6.5 TEST RESULTS	29
7. BANDWIDTH TEST	30

Table of Contents

7.1 LIMIT	30
7.2 TEST PROCEDURE	30
7.3 TEST SETUP	30
7.4 EUT OPERATION CONDITIONS	30
7.5 TEST RESULTS	30
8. PEAK OUTPUT POWER TEST	31
8.1 LIMIT	31
8.2 TEST PROCEDURE	31
8.3 TEST SETUP	31
8.4 EUT OPERATION CONDITIONS	31
8.5 TEST RESULTS	31
9. ANTENNA REQUIREMENT	32
9.1 STANDARD REQUIREMENT	32
9.2 EUT ANTENNA	32
APPENDIX I:TEST RESULTS	33
DUTY CYCLE	33
MAXIMUM PEAK CONDUCTED OUTPUT POWER	35
-6DB BANDWIDTH	36
OCCUPIED CHANNEL BANDWIDTH	38
MAXIMUM POWER SPECTRAL DENSITY LEVEL	40
BAND EDGE	42
CONDUCTED RF SPURIOUS EMISSION	45
APPENDIX II: TEST PHOTO	48

Revision History

Rev.	Issue Date	Contents
00	Jan. 15, 2024	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247, Subpart C						
Standard Section	Test Item Judgment Rema					
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)(3)	Output Power	PASS				
15.209	Radiated Spurious Emission	PASS				
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.205	Restricted Band Edge Emission PASS					
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission PASS					
15.203	Antenna Requirement PASS					

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.		
Address:	Room 205, Building 13, Zone B, Chen Hsong Industrial Park, No.177 Renmin West Road, Jinsha Community, Kengzi Street, Pingshan New District, Shenzhen, China		
	FCC Registration No.: 746540		
Accreditation Certificate	A2LA Certificate No.: 6727.01		
	CAB ID: CN0136		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Parameter	Uncertainty
Occupied Channel Bandwidth	±3.2 %
RF Output Power, Conducted	±0.71dB
Power Spectral Density, Conducted	±1.57 dB
Unwanted Emission, Conducted	±0.63dB
Conducted emission	±2.80dB
All Emissions, Radiated (0.009-30MHz)	±2.16dB
All Emissions, Radiated (30MHz-1GHz)	±4.40dB
All Emissions, Radiated (1GHz-18GHz)	±5.49dB
Temperature	±0.5°C
Humidity	±2%
Duty Cycle	±2.3%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	alarm system				
Trademark	SOAN				
Model Name	SNT942W	SNT942W			
Series Model	SNT942W-S, SNT942Z, SN942V-RF, SN942V, 942 series				
Model Difference	Only Model Name is differer	nt.			
	The EUT is a alarm system				
	Operation Frequency:	2402~2480 MHz			
	Modulation Type:	GFSK			
	Radio Technology:	BLE			
Product Description	Bluetooth Configuration:	1M PHY			
	Number Of Channel:	40			
	Antenna Designation:	Please refer to the Note 3.			
	Antenna Gain (dBi)	2.21			
Channel List	Please refer to the Note 2.				
Charging	DC 5V				
Battery	3.7V/1000mA				
Hardware Version	V1.0				
Software Version	V1.0				
Connecting I/O Port(s)	Please refer to the Note 1.				

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

			Chan	nel List			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	SOAN	SNT942W	PCB	N/A	2.21	BLE ANT

Note: The antenna information provide by manufacturer, applicable only to the tested sample identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1 MHz/GFSK
Mode 2	TX CH19(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.(2) We have be tested for all avaiable U.S. voltage and frequency(For 120V,50/60Hz

and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

(3) The battery is fully-charged during the radited and RF conducted test.

For AC Conducted Emission

Test Case		
AC Conducted Emission	Mode 4: Keeping BT TX	

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version	Test program: BLE			
Benken Wi_Fi Test Tool V1.6.0	1M	Default		

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating
N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Laptop	HUAWEI	HKF-16	N/A	N/A
Adapter	Tenpao	S005CAU05001 00	N/A	Input: 100-240V ~ 50/60Hz 0.2A Output: 5V, 1A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^rLength ^l column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.5 EQUIPMENTS LIST

Г

Conducted Emission									
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until				
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12				
LISN	COM-POWER	LI-115	02032	2023.04.07	2024.04.06				
LISN	SCHWARZBECK	NNLK 8122	00160	2023.04.07	2024.04.06				
Transient Limiter	CYBERTEK	EM5010A	E2250100049	2023.04.07	2024.04.06				
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23				
Testing Software	EMC-I_V1.4.0.3_SKET								

Radiated Test equipment								
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until			
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12			
Active loop Antenna	ETS	6502	00049544	2022.06.02	2025.06.01			
Spectrum Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09			
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	2705	2022.06.05	2025.06.04			
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01			
Horn Antenna(18-40G)	A-INFO	LB-180400-KF	J211060273	2022.06.08	2025.06.07			
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2023.04.07	2024.04.06			
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2023.04.07	2024.04.06			
Pre-amplifier(18-40G)	com-mw	LNPA_18-40-01	18050003	2023.04.07	2024.04.06			
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12			
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23			
Testing Software		EMC-I_\	/1.4.0.3_SKET	•	·			

RF Connected Test equipment								
Equipment	Manufacturer	Cal. Date	Cal. Until					
Signal Generator	Keysight	N5182B	MY59100717	2023.04.10	2024.04.09			
Signal Analyzer	Keysight	N9010B	MY60242508	2023.04.13	2024.04.12			
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12			
Temperature & Humidity	KTJ	TA218B	N/A	2023.04.24	2024.04.23			
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2023.05.10	2024.05.09			
Attenuator	eastsheep	90db	N/A	2023.04.10	2024.04.09			
Testing Software		MTS 8310_2.0.0.0_MWRF-TEST						

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

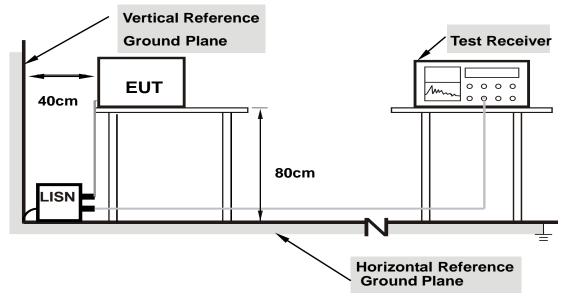
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Conducted Emission limit (dBuV)		
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

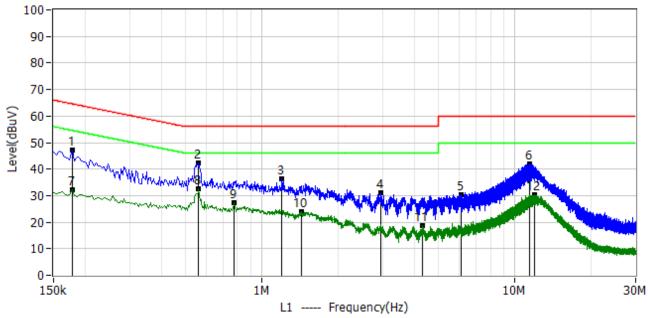
3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

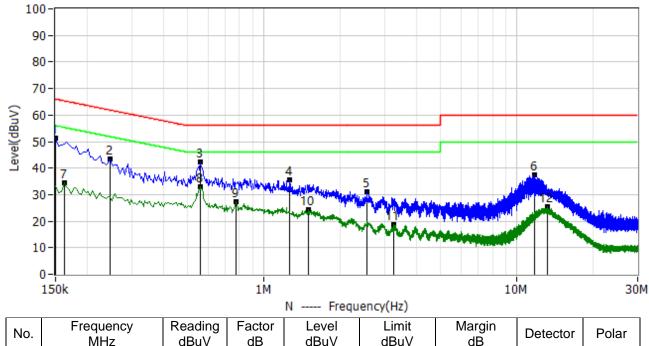
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.


3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS


Project: LGT23L064	Test Engineer: LiuH	
EUT: alarm system	Temperature: 22.1°C	
M/N: SNT942W	Humidity: 42%RH	
Test Voltage: AC 120V/60Hz	Test Data: 2023-12-16	
Test Mode: TX BLE 2402		
Note:		

No.	Frequency MHz	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	0.178	36.87	10.49	47.36	64.58	-17.22	QP	L1
2*	0.562	31.71	10.50	42.21	56.00	-13.79	QP	L1
3*	1.198	25.62	10.56	36.18	56.00	-19.82	QP	L1
4*	2.942	20.25	10.74	30.99	56.00	-25.01	QP	L1
5*	6.102	19.67	10.83	30.50	60.00	-29.50	QP	L1
6*	11.402	30.86	10.96	41.82	60.00	-18.18	QP	L1
7*	0.178	21.56	10.49	32.05	54.58	-22.52	AV	L1
8*	0.562	22.14	10.50	32.64	46.00	-13.36	AV	L1
9*	0.778	16.68	10.51	27.19	46.00	-18.81	AV	L1
10*	1.430	13.23	10.61	23.84	46.00	-22.16	AV	L1
11*	4.298	7.81	10.78	18.59	46.00	-27.41	AV	L1
12*	11.986	19.29	10.97	30.26	50.00	-19.74	AV	L1

Project: LGT23L064	Test Engineer: LiuH
EUT: alarm system	Temperature: 22.1°C
M/N: SNT942W	Humidity: 42%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-12-16
Test Mode: TX BLE 2402	
Note:	

No.	rioquonoy	rtoading	1 40101	20101		margin	Detector	Polar
INO.	MHz	dBuV	dB	dBuV	dBuV	dB	Delector	FUIdi
1*	0.150	40.67	10.49	51.16	66.00	-14.84	QP	Ν
2*	0.246	33.03	10.49	43.52	61.89	-18.37	QP	Ν
3*	0.558	31.78	10.50	42.28	56.00	-13.72	QP	Ν
4*	1.262	25.07	10.57	35.64	56.00	-20.36	QP	Ν
5*	2.546	20.51	10.73	31.24	56.00	-24.76	QP	Ν
6*	11.730	26.27	11.00	37.27	60.00	-22.73	QP	Ν
7*	0.162	24.04	10.49	34.53	55.36	-20.83	AV	Ν
8*	0.558	22.41	10.50	32.91	46.00	-13.09	AV	Ν
9*	0.774	16.65	10.51	27.16	46.00	-18.84	AV	Ν
10*	1.502	13.76	10.62	24.38	46.00	-21.62	AV	Ν
11*	3.254	7.91	10.76	18.67	46.00	-27.33	AV	Ν
12*	13.154	14.36	11.02	25.38	50.00	-24.62	AV	Ν

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMEN	NT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

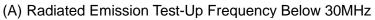
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted	120 KHz / 300 KHz
band)	120 KHZ / 300 KHZ

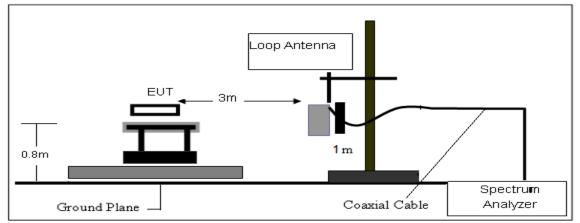
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
band)	1 MHz/1/T MHz(AVG)

For Restricted band

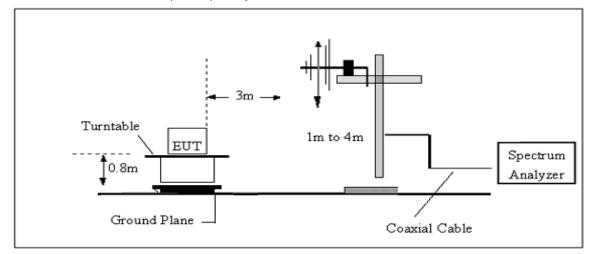
Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	Lower Band Edge: 2310 to 2410 MHz		
	Upper Band Edge: 2475 to 2500 MHz		
	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

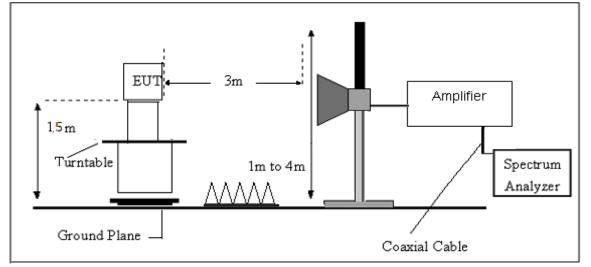

4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

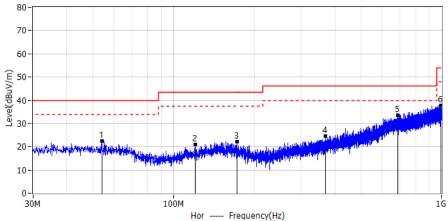
4.4 EUT OPERATING CONDITIONS

Please refer to section 3.4 of this report.

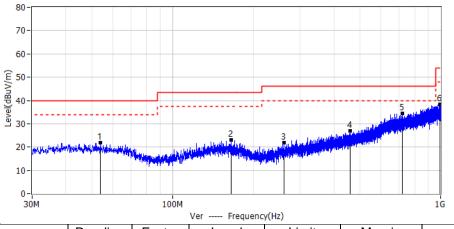
4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

For example,

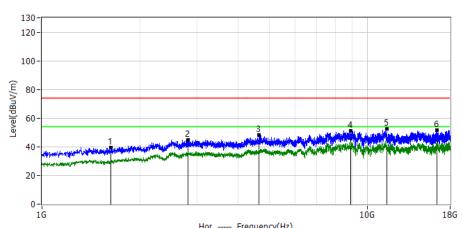

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

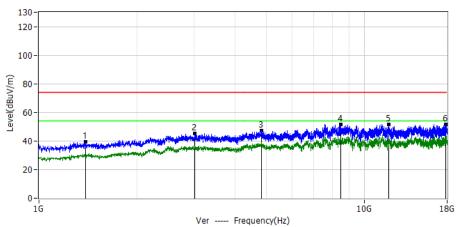
Factor=AF+CL-AG



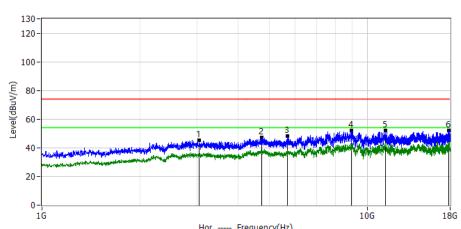
4.6 TEST RESULTS

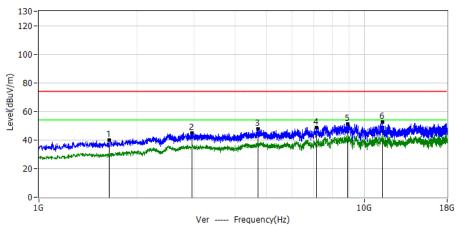
Project: LGT23L064	Test Engineer: Xiangdong Ma
EUT: alarm system	Temperature: 26.5°C
M/N: SNT942W	Humidity: 50%RH
Test Voltage: Battery	Test Data: 2023-12-16
Test Mode: TX BLE 2402	
Note:	


No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fuldi
1*	54.129	3.33	19.06	22.39	40.00	-17.61	QP	Hor
2*	120.331	3.33	17.67	21.00	43.50	-22.50	QP	Hor
3*	172.590	2.71	19.54	22.25	43.50	-21.25	QP	Hor
4*	368.651	2.62	21.85	24.47	46.00	-21.53	QP	Hor
5*	688.388	3.86	29.71	33.57	46.00	-12.43	QP	Hor
6*	994.786	3.32	34.55	37.87	54.00	-16.13	QP	Hor


No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	54.008	2.89	19.07	21.96	40.00	-18.04	QP	Ver
2*	165.558	3.17	19.81	22.98	43.50	-20.52	QP	Ver
3*	260.375	3.29	18.73	22.02	46.00	-23.98	QP	Ver
4*	459.468	2.96	24.05	27.01	46.00	-18.99	QP	Ver
5*	721.246	4.31	30.03	34.34	46.00	-11.66	QP	Ver
6*	992.968	3.94	34.54	38.48	54.00	-15.52	QP	Ver

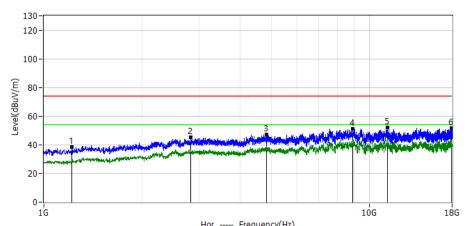
Project: LGT23L064	Test Engineer: Xiangdong Ma
EUT: alarm system	Temperature: 26.5°C
M/N: SNT942W	Humidity: 50%RH
Test Voltage: Battery	Test Data: 2023-12-16
Test Mode: BLE2402	
Note:Worst Case	


				Hor Frequence	y(Hz)			
No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1631.1000	59.59	-20.01	39.58	74.00	-34.42	PK	Hor
2*	2814.7000	54.70	-9.71	44.99	74.00	-29.01	PK	Hor
3*	4652.9000	55.02	-6.66	48.36	74.00	-25.64	PK	Hor
4*	8913.5000	54.95	-3.83	51.12	74.00	-22.88	PK	Hor
5*	11493.2000	54.29	-1.83	52.46	74.00	-21.54	PK	Hor
6*	16365.9000	50.76	0.74	51.50	74.00	-22.50	PK	Hor

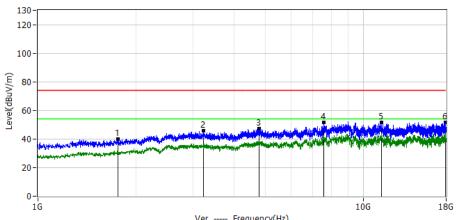

				ver Frequenc	y(HZ)			
No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1393.1000	60.73	-21.52	39.21	74.00	-34.79	PK	Ver
2*	3010.2000	54.03	-8.77	45.26	74.00	-28.74	PK	Ver
3*	4842.0000	54.15	-6.84	47.31	74.00	-26.69	PK	Ver
4*	8473.6000	56.20	-4.63	51.57	74.00	-22.43	PK	Ver
5*	11922.5000	53.35	-1.79	51.56	74.00	-22.44	PK	Ver
6*	17823.6000	49.89	1.94	51.83	74.00	-22.17	PK	Ver

Project: LGT23L064	Test Engineer: Xiangdong Ma
EUT: alarm system	Temperature: 26.5°C
M/N: SNT942W	Humidity: 50%RH
Test Voltage: Battery	Test Data: 2023-12-16
Test Mode: BLE2440	
Note:Worst Case	

				Hor Frequence	y(Hz)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
NO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fulai
1*	3048.5000	53.84	-8.79	45.05	74.00	-28.95	PK	Hor
2*	4746.4000	53.92	-6.75	47.17	74.00	-26.83	PK	Hor
3*	5689.9000	56.68	-8.67	48.01	74.00	-25.99	PK	Hor
4*	8924.1000	55.92	-3.81	52.11	74.00	-21.89	PK	Hor
5*	11384.9000	53.71	-1.84	51.87	74.00	-22.13	PK	Hor
6*	17817.2000	50.40	1.94	52.34	74.00	-21.66	PK	Hor



				ver Frequenc	y(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1*	1646.0000	59.98	-19.87	40.11	74.00	-33.89	PK	Ver
2*	2957.1000	53.67	-8.99	44.68	74.00	-29.32	PK	Ver
3*	4710.2000	54.59	-6.71	47.88	74.00	-26.12	PK	Ver
4*	7137.0000	55.51	-6.62	48.89	74.00	-25.11	PK	Ver
5*	8909.2000	54.98	-3.84	51.14	74.00	-22.86	PK	Ver
6*	11387.0000	54.34	-1.84	52.50	74.00	-21.50	PK	Ver



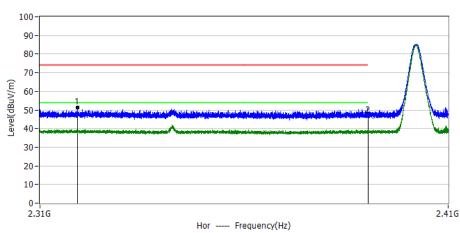
Project: LGT23L064	Test Engineer: Xiangdong Ma
EUT: alarm system	Temperature: 26.5°C
M/N: SNT942W	Humidity: 50%RH
Test Voltage: Battery	Test Data: 2023-12-16
Test Mode: BLE2480	
Nata: Marat Casa	

Note:Worst Case

				Hor Frequenc	y(nz)			
No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1218.9000	61.54	-22.86	38.68	74.00	-35.32	PK	Hor
2*	2827.5000	54.71	-9.64	45.07	74.00	-28.93	PK	Hor
3*	4835.6000	54.07	-6.84	47.23	74.00	-26.77	PK	Hor
4*	8915.6000	54.91	-3.82	51.09	74.00	-22.91	PK	Hor
5*	11384.9000	53.93	-1.84	52.09	74.00	-21.91	PK	Hor
6*	17915.0000	49.72	1.98	51.70	74.00	-22.30	PK	Hor

				ver Frequenc	y(H2)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Folal
1*	1760.7000	58.93	-18.79	40.14	74.00	-33.86	PK	Ver
2*	3220.6000	54.51	-8.89	45.62	74.00	-28.38	PK	Ver
3*	4784.6000	54.19	-6.79	47.40	74.00	-26.60	PK	Ver
4*	7576.9000	57.10	-5.66	51.44	74.00	-22.56	PK	Ver
5*	11391.2000	53.61	-1.83	51.78	74.00	-22.22	PK	Ver
6*	17917.1000	49.73	1.98	51.71	74.00	-22.29	PK	Ver

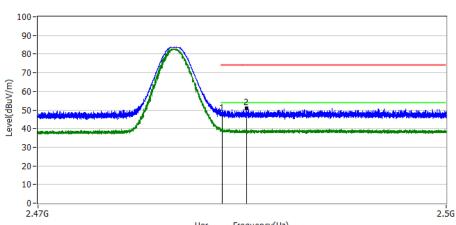
Note:

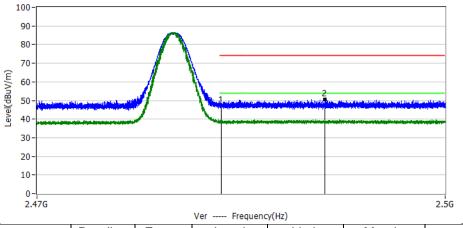

1.In frequency ranges 18~25GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.

2.Average measurement was not performed if peak level lower than average limit. No any other emissions level which are attenuated less than 20dB below the limit. The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part. Hence there no other emissions have been reported.

4.7 TEST RESULTS (RESTRICTED BANDS REQUIREMENTS)

Project: LGT23L064	Test Engineer: Xiangdong Ma
EUT: alarm system	Temperature: 26.5°C
M/N: SNT942W	Humidity: 50%RH
Test Voltage: Battery	Test Data: 2023-12-16
Test Mode: BLE2402	
Note:	


No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2319.0000	17.17	34.12	51.29	74.00	-22.71	PK	Hor
2*	2390.0000	12.75	33.95	46.70	74.00	-27.30	PK	Hor


No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2354.3000	16.28	34.04	50.32	74.00	-23.68	PK	Ver
2*	2390.0000	13.45	33.95	47.40	74.00	-26.60	PK	Ver

Project: LGT23L064	Test Engineer: Xiangdong Ma
EUT: alarm system	Temperature: 26.5°C
M/N: SNT942W	Humidity: 50%RH
Test Voltage: Battery	Test Data: 2023-12-16
Test Mode: BLE2480	
Note:	

				Hor Frequence	y(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	FUIdi
1*	2483.5000	13.97	34.13	48.10	74.00	-25.90	PK	Hor
2*	2485.3000	16.76	34.13	50.89	74.00	-23.11	PK	Hor

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2483.5000	13.17	34.13	47.30	74.00	-26.70	PK	Ver
2*	2491.1000	16.60	34.14	50.74	74.00	-23.26	PK	Ver

Note:

Average measurement was not performed if peak level lower than average limit. No any other emissions level which are attenuated less than 20dB below the limit. The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part. Hence there no other emissions have been reported.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
Start/Stap Fraguaday	Lower Band Edge: 2300 – 2407 MHz	
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	

5.3 TEST SETUP

The EUT which is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

5.5 TEST RESULTS

For the measurement records, refer to the appendix I.

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247, Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \geq RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

6.5 TEST RESULTS

For the measurement records · refer to the appendix I.

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247, Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

For the measurement records, refer to the appendix I.

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 \times RBW].

c) Set span \geq [3 \times RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 \times RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

EUT	Power
	Sensor

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

8.5 TEST RESULTS

For the measurement records, refer to the appendix I.

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

APPENDIX I: TEST RESULTS

Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	100	0	0
NVNT	BLE 1M	2440	Ant1	100	0	0
NVNT	BLE 1M	2480	Ant1	100	0	0

		Duty Cycle	Test Grap NVNT BLE 1	hs M 2402MHz Ant	1	
Spectrum Analyzer 1 Swept SA	• +					
KEYSIGHT Input: RF RL + Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 ₩₩₩₩₩₩ ₽ N N N N N	
1 Spectrum			Ref LvI Offset 2	.81 dB		Mkr1 50.00 ms
Scale/Div 10 dB			Ref Level 20.00	dBm		4.08 dBm
10.00			•			
-10.0						
-30.0						
-40.0						
-60.0 -70.0						
Center 2.402000000 GHz Res BW 1.0 MHz			#Video BW 3.0) MHz		Span 0 Hz Sweep 100 ms (10001 pts)
5 Marker Table V						
Mode Trace Scale	Х		Y	Function F	Function Width	Function Value
1 N 1 t 2 3		50.00 ms	4.077 dBm			
4						
5 6						
₹ 5 C . ?	Jan 05, 2024 1:45:27 PM					
		Duty Cycle	NVNT BLE 1	M 2440MHz Ant	1	
Spectrum Analyzer 1 Swept SA	• +					
RL +++ Coupling: DC	Input Z: 50 Ω Corr CCorr	#Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off	Avg Type: Log-Power Trig: Free Run	1 2 3 4 5 6 W ₩ ₩ ₩ ₩ ₩	
Align: Auto	Freq Ref: Int (S)		IF Gain: Low Sig Track: Off		PNNNN	
1 Spectrum			Ref LvI Offset 2			Mkr1 50.00 ms
Scale/Div 10 dB			Ref Level 20.00	dBm 1		3.80 dBm
0.00			· · · · · · · · · · · · · · · · · · ·			
-10.0 -20.0						
-30.0						
-50.0						
-70.0						
Center 2.440000000 GHz Res BW 1.0 MHz			#Video BW 3.0) MHz		Span 0 Hz Sweep 100 ms (10001 pts)
5 Marker Table v						
Mode Trace Scale	Х	50.00 ms	Y 3.804 dBm	Function F	Function Width	Function Value
2 3						
4						
6		- ^				
4 h C 1 ?	Jan 05, 2024 1:48:30 PM					
Spectrum Analyzer 1	• +	Duty Cycle	NVNT BLE 1	M 2480MHz Ant	1	
Swept SA KEYSIGHT Input: RF	Input Z: 50 Ω	#Atten: 30 dB	PNO: Fast	Avg Type: Log-Power	1 2 3 4 5 6	
RL +++ Coupling: DC Align: Auto	Corr CCorr Freq Ref: Int (S)	Preamp: Off	Gate: Off IF Gain: Low	Trig: Free Run	W $W $ $W $ $W $ W	
1 Spectrum			Sig Track: Off		PNNNNN	Mkr1 50.00 ms
Scale/Div 10 dB			Ref LvI Offset 2 Ref Level 20.00	dBm		3.47 dBm
10.0 0.00			• • • • • • • • • • • • • • • • • • •	1		
-10.0						
-20.0						
-40.0						
-60.0						
Center 2.480000000 GHz Res BW 1.0 MHz			#Video BW 3.0) MHz		Span 0 Hz Sweep 100 ms (10001 pts)
5 Marker Table v						Sweep 100 ms (10001 pts)
Mode Trace Scale	Х		Y	Function F	Function Width	Function Value
1 N 1 t 2 3		50.00 ms	3.471 dBm			
3 4 5						
5 6						
	Jan 05, 2024 1:50:44 PM					

Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	4.24	30	Pass
NVNT	BLE 1M	2440	Ant1	4.67	30	Pass
NVNT	BLE 1M	2480	Ant1	4.3	30	Pass

-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.733	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.718	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.728	0.5	Pass

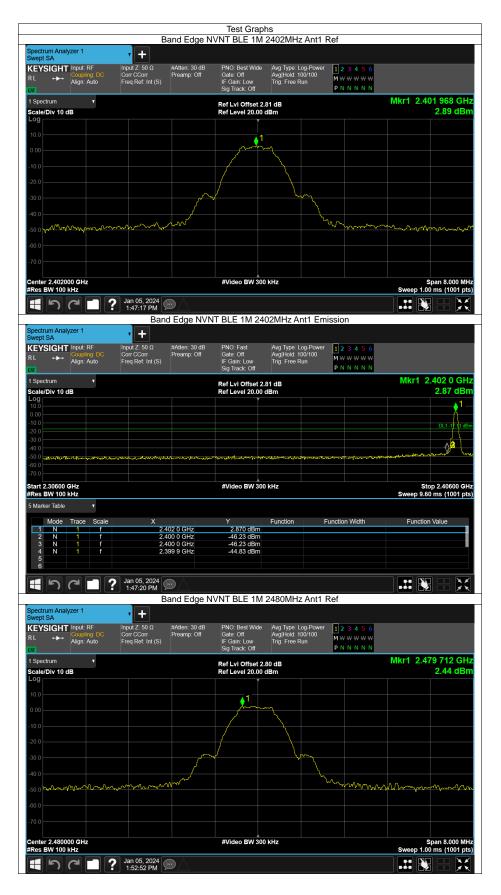
-6dB Bandwig	Test Graphs th NVNT BLE 1M 24	02MHz Apt1	
Spectrum Analyzer 1			
KEYSIGHT Input: RF Input Z: 50 Ω Atten: 30 dB RL ↔ Coupling: DC Corr CCorr Preamp: Off Align: Auto Freq Ref. Int (S) Preamp: Off Preamp: Off	Trig: Free Run Center F Gate: Off Avg Hold #IF Gain: Low Radio St	ireq: 2.402000000 GHz I: 100/100 d: None	
1 Graph Scale/Div 10.0 dB	Ref Lvi Offset 2.81 dB Ref Value 22.81 dBm		Mkr3 2.402320000 GHz -3.28 dBm
Log 12.8 2.81	×1		
-7.19 -17.2			han the second sec
-27.2 -37.2 -47.2			Margan and a start of the start
-57.2 -67.2			
Center 2.402000 GHz #Res BW 100.00 kHz	#Video BW 300.00 kHz		Span 2 MHz Sweep 1.33 ms (10001 pts)
2 Metrics v			
Occupied Bandwidth		Measure Trace Trac	
1.0454 MHz Transmit Freq Error 46.001 kHz		Total Power % of OBW Power	9.87 dBm 99.00 %
x dB Bandwidth 732.5 kHz		x dB	-6.00 dB
╡ C I:46:33 PM			
Spectrum Applyzer 1	th NVNT BLE 1M 24	40MHz Ant1	
Coccupied BW KEYSIGHT Input: RF Input Z: 50 Ω Atten: 30 dB	Trig: Free Run Center F	ireq: 2.440000000 GHz	
RL ↔ Coupling: DC Corr CCorr Align: Auto Freq Ref: Int (S)	Gate: Off Avg Hold #IF Gain: Low Radio St	1: 100/100 d: None	
1 Graph v Scale/Div 10.0 dB	Ref LvI Offset 2.83 dB Ref Value 22.83 dBm		Mkr3 2.440319000 GHz -2.92 dBm
Log 12.8 2.83			
-7.17 -17.2			www.
-27.2 -37.2 -47.2			Mary and a second second
-47.2 -57.2 -67.2			
Center 2.440000 GHz #Res BW 100.00 KHz	#Video BW 300.00 kHz		Span 2 MHz Sweep 1.33 ms (10001 pts)
2 Metrics 🔹			
Occupied Bandwidth		Measure Trace Trac	
1.0453 MHz Transmit Freq Error -39.967 kHz		Total Power % of OBW Power	10.2 dBm 99.00 %
x dB Bandwidth 718.2 kHz		x dB	-6.00 dB
■ C ■ ? Jan 05, 2024			
-6dB Bandwic	th NVNT BLE 1M 24	80MHz Ant1	
Occupied BW T KEYSIGHT Input: RF Input Z: 50 Ω Atten: 30 dB	Trig: Free Run Center F	ireq: 2.480000000 GHz	
RL + Align: Auto Corr CCorr Preamp: Off	Gate: Off Avg Hold #IF Gain: Low Radio St	j: 100/100	
1 Graph v Scale/Div 10.0 dB	Ref Lvi Offset 2.80 dB Ref Value 22.80 dBm		Mkr3 2.480323000 GHz -3.06 dBm
		013	
-7.20			~~~~
-27.2			
-47.2 -57.2 -67.2			
Center 2.480000 GHz #Res BW 100.00 kHz	#Video BW 300.00 kHz		Span 2 MHz Sweep 1.33 ms (10001 pts)
2 Metrics v			
Occupied Bandwidth		Measure Trace Trac	
1.0468 MHz Transmit Freq Error -40.659 kHz		Total Power % of OBW Power	9.90 dBm 99.00 %
x dB Bandwidth 727.5 kHz		x dB	-6.00 dB
Jan 05, 2024 💬 🛆			

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.045
NVNT	BLE 1M	2440	Ant1	1.044
NVNT	BLE 1M	2480	Ant1	1.046

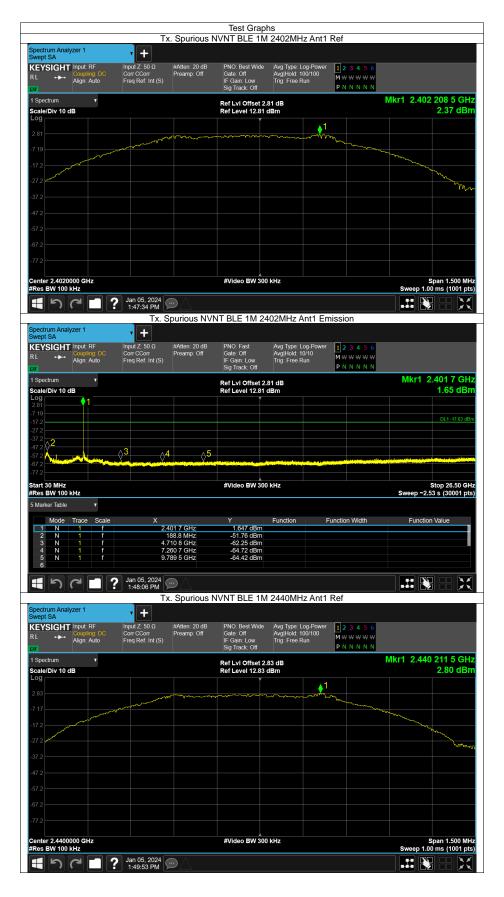
Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	Ant1	-11.18	8	Pass
NVNT	BLE 1M	2440	Ant1	-10.81	8	Pass
NVNT	BLE 1M	2480	Ant1	-11.37	8	Pass



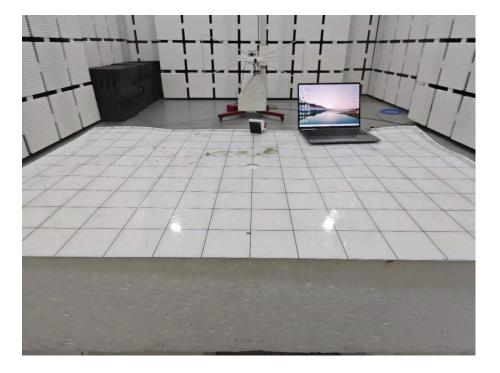
Band Edge

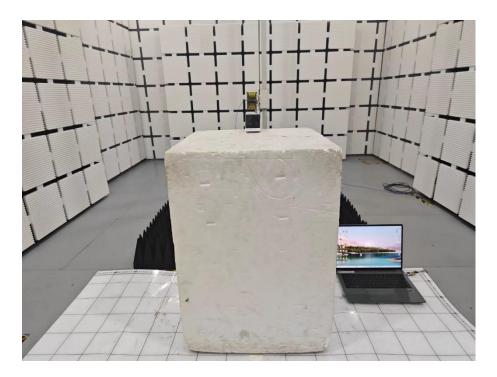
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-47.72	-20	Pass
NVNT	BLE 1M	2480	Ant1	-48.03	-20	Pass


:: RF oling: DC :: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	#Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log- Avg Hold: 100/ Trig: Free Run	100	2 3 4 5 6		
T						NNNN		
			Ref LvI Offset 2. Ref Level 20.00				Mkr1 2	.480 2 GH 3.27 dBn
								DL1 -17.56 dBr
A waling and		nterest station (MIN/Maria	the phalman stranger and	harbour? Contraction	terrestroneter Pres	randri tol stin dan	undertal consolidad	h (h - ch mhai
			#Video BW 300	kHz				op 2.57600 GH 0 ms (1001 pts
•				_				
e Scale		80 2 GHz		Function	Functi	on vviatn	Function	i value
f	2.4	83 5 GHz	-48.43 dBm					
f			-51.10 dBm					
f	2.4	87 4 GHz	-45.59 dBm					
	e Scale f f	e Scale X f 2.4 f 2.4	e Scale X f 2.480 2 GHz f 2.483 5 GHz f 2.483 6 GHz f 2.487 4 GHz	#Video BW 300 #Video BW 300 e Scale X Y f 2.480 2 GHz 3.274 dBm f 2.483 5 GHz -48.43 dBm f 2.483 5 GHz -48.43 dBm f 2.487 4 GHz -45.59 dBm	#Video BW 300 kHz #Video BW 300 kHz f 2.480 2 GHz 3.274 dBm f 2.483 5 GHz -48.43 dBm f 2.483 5 GHz -45.59 dBm f 2.487 4 GHz -45.59 dBm	Image: state of the s	#Video BW 300 kHz #Video BW 300 kHz Image: scale X Y Function Function Width f 2.480 2 GHz 3.274 dBm Function Function Width f 2.480 5 GHz -45.43 dBm Function Function f 2.480 7 GHz -45.59 dBm Function Function	#Video BW 300 kHz Sto Sweep 9.60 Sweep 9.60 r 2.480 2 GHz 3.274 dBm f 2.480 3 GHz -45.43 dBm f 2.487 4 GHz -51.10 dBm f 2.487 4 GHz -45.59 dBm

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-54.13	-20	Pass
NVNT	BLE 1M	2440	Ant1	-55.62	-20	Pass
NVNT	BLE 1M	2480	Ant1	-55.16	-20	Pass





APPENDIX II: TEST PHOTO

Set-up for Radiated Spurious Emission, Below 1GHz

Set-up for Radiated Spurious Emission, Above 1GHz

Set-up for Conducted Emission

