

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Dongguan Luxun Electronic Technology Co., Ltd

Bluetooth earphone Model No.: X3

FCC ID: 2ATRA-X3

Prepared for Address	:	Dongguan Luxun Electronic Technology Co., Ltd No.8, Yongxing Road, Miaobianwang, Shipai Town, Dongguan, China
Prepared by Address	:	Shenzhen Accurate Technology Co., Ltd. 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report No.	:	ATE20191641
Date of Test	:	November 11, 2019
Date of Report	:	November 18, 2019

TABLE OF CONTENTS

Description

Page

Т	est Re	eport Certification	
1.	GE	NERAL INFORMATION	5
	1.1.	Description of Device (EUT)	
	1.2.	Carrier Frequency of Channels	
	1.3.	Special Accessory and Auxiliary Equipment	
	1.4.	Description of Test Facility	
	1.5.	Measurement Uncertainty	
2.	MI	EASURING DEVICE AND TEST EQUIPMENT	
3.	OP	ERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	8
	3.2.	Configuration and peripherals	8
4.	TE	ST PROCEDURES AND RESULTS	9
5.	6D	B BANDWIDTH TEST	
	5.1.	Block Diagram of Test Setup	
	5.2.	The Requirement For Section 15.247(a)(2)	
	5.3.	EUT Configuration on Test	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Test Result	11
6.	MA	XIMUM PEAK OUTPUT POWER TEST	
	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(b)(3)	
	6.3.	EUT Configuration on Test	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	14
7.	PO	WER SPECTRAL DENSITY TEST	16
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(e)	
	7.3.	EUT Configuration on Test	
	7.4.	Operating Condition of EUT	16
	7.5.	Test Procedure	
	7.6.	Test Result	
8.	BA	ND EDGE COMPLIANCE TEST	
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(d)	
	8.3.	EUT Configuration on Test	
	8.4.	Operating Condition of EUT	20
	8.5.	Test Procedure	21
	8.6.	Test Result	21
9.	RA	DIATED SPURIOUS EMISSION TEST	27
	9.1.	Block Diagram of Test Setup	27
	9.2.	The Limit For Section 15.247(d)	
	9.3.	Restricted bands of operation	
	9.4.	Configuration of EUT on Test	

Report No.: ATE20191641 Page 3 of 49

9.5.	Operating Condition of EUT	
9.6.	Test Procedure	
9.7.	Data Sample	
9.8.	Test Result	
10. PO	WER LINE CONDUCTED EMISSION TEST	
10.1.	Block Diagram of Test Setup	
10.2.	Test System Setup	44
10.3.	Test Limits	
10.4.	Configuration of EUT on Test	
10.5.	Operating Condition of EUT	45
10.6.	Test Procedure	
10.7.	Data Sample	46
10.8.	Test Result	46
11. AN	TENNA REQUIREMENT	
11.1.	The Requirement	49
11.2.	Antenna Construction	

Test Report Certification

Applicant	:	Dongguan Luxun Electronic Technology Co., Ltd
Manufacturer	:	Dongguan Luxun Electronic Technology Co., Ltd
EUT Description	:	Bluetooth earphone
Model No.	:	X3

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of August 24, 2018 KDB558074 D01 DTS Meas Guidance v05 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	November 11, 2019
Date of Report :	November 18, 2019
	BobWarg
Prepared by :	
	(BC VANG I NEIWORT)
Approved & Authorized Signer :	(emm)
	(Sean Liu, Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Model Number Bluetooth version Frequency Range Number of Channels Antenna Gain(Max) Antenna type Modulation mode Power supply	::	X3 V5.0 2402MHz-2480MHz 40 1.0dBi Integral Antenna GFSK DC 3.7V (Powered by Lithium battery) or
Trade Mark Applicant Address Manufacturer Address	:	DC 5.0V (Powered by USB port) n.a. Dongguan Luxun Electronic Technology Co., Ltd No.8, Yongxing Road, Miaobianwang, Shipai Town, Dongguan, China Dongguan Luxun Electronic Technology Co., Ltd No.8, Yongxing Road, Miaobianwang, Shipai Town, Dongguan, China

1.2.Carrier Frequency of Channels

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channe 1	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

1.3. Special Accessory and Auxiliary Equipment

AC/DC Power Adapter	:	Model:BEK-QC-001
(provided by laboratory)		INPUT: 120V~60Hz
		OUTPUT:5V/1A

1.4.Description of Test Facility

1	5
EMC Lab	 Recognition of accreditation by Federal Communications Commission (FCC) The Designation Number is CN1189 The Registration Number is 708358
	Listed by Innovation, Science and Economic Development Canada (ISEDC) The Registration Number is 5077A-2
	Accredited by China National Accreditation Service for Conformity Assessment (CNAS) The Registration Number is CNAS L3193
	Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01
Name of Firm	Shenzhen Accurate Technology Co., Ltd.
Site Location	 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

1.5.Measurement Uncertainty

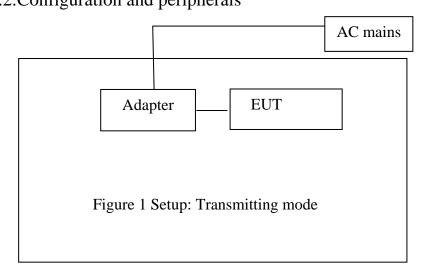
Radiated emission expanded uncertainty (9kHz-30MHz)	: U=2.66dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	: U=4.28dB, k=2
Radiated emission expanded uncertainty (1G-18GHz)	: U=4.98dB, k=2
Radiated emission expanded uncertainty (18G-26.5GHz)	: U=5.06dB, k=2
Conduction Emission Expanded Uncertainty (Mains ports, 9kHz-30MHz)	: U=2.72dB, k=2
Conduction Emission Expanded Uncertainty (Telecommunication ports, 150kHz-30MHz)	: U=2.94dB, k=2
Power disturbance Expanded Uncertainty Harmonic current expanded uncertainty	: U=2.92dB, k=2 : U=0.512%, k=2

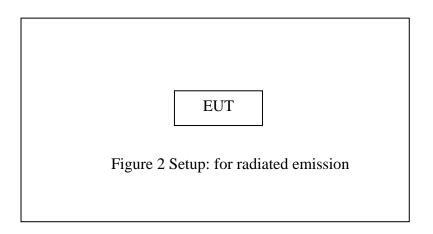
2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	One Year
EMI Test Receiver	Rohde&Schwarz	ESR	101817	Jan. 05, 2019	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 05, 2019	One Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 05, 2019	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 05, 2019	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 05, 2019	One Year
RF Coaxial Cable (Conducted Emission)	SUHNER	N-2m	No.2	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-12m	No.11	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-0.5m	No.12	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-2m	No.13	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-0.5m	No.15	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-2m	No.16	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-6m	No.17	Jan. 05, 2019	One Year
Conducted Emission M	easurement Software	: ES-K1 V1.71			
Radiated Emission Mea	surement Software:	EZ_EMC V1.1.4	.2		

Table 1: List of Test and Measurement Equipment

3. OPERATION OF EUT DURING TESTING


3.1.Operating Mode


The mode is used: **Transmitting mode** Low Channel: 2402MHz

Middle Channel: 2440MHz

High Channel: 2480MHz Note: The equipment under test (EUT) was tested under new battery. The Bluetooth has been tested under continuous transmission mode. Its duty cycle setting is greater than 98%.

3.2.Configuration and peripherals

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 6DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

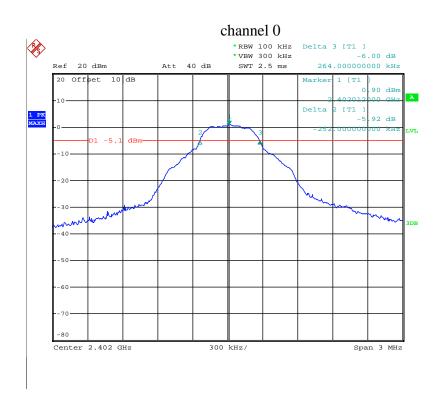
5.3.EUT Configuration on Test

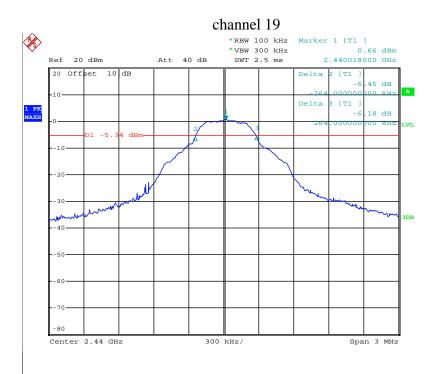
The equipment is installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

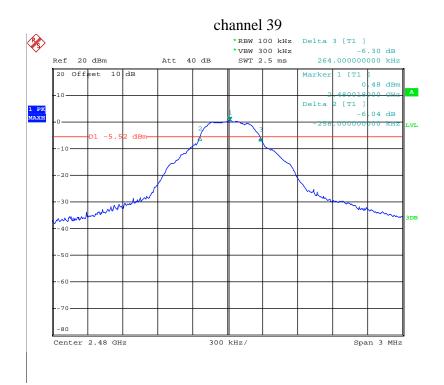
5.4. Operating Condition of EUT

- 5.4.1.Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2.Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure


- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 5.5.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.


5.6.Test Result


Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit(MHz)	Result
0	2402	0.516	0.5	Pass
19	2440	0.528	0.5	Pass
39	2480	0.522	0.5	Pass

The spectrum analyzer plots are attached as below.

6. MAXIMUM PEAK OUTPUT POWER TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

6.3.EUT Configuration on Test

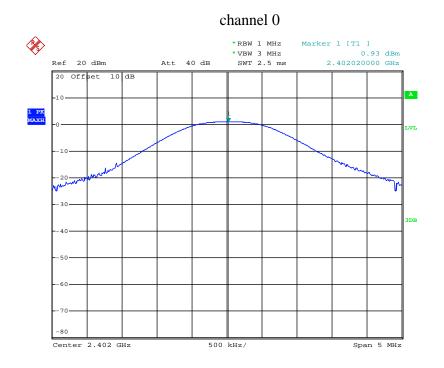
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 6.1.

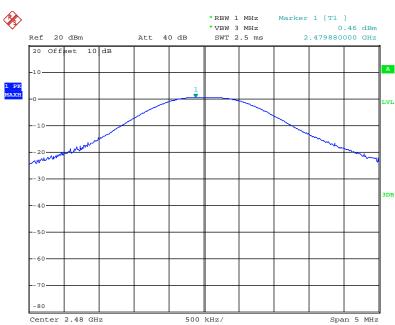
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

6.5.Test Procedure


- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 1 MHz and VBW to 3MHz.
- 6.5.3.Measurement the maximum peak output power.

6.6.Test Result

Channel	Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Result
0	2402	0.93	30	Pass
19	2440	0.62	30	Pass
39	2480	0.46	30	Pass


The spectrum analyzer plots are attached as below.

channel 19

channel 39

7. POWER SPECTRAL DENSITY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.3.EUT Configuration on Test

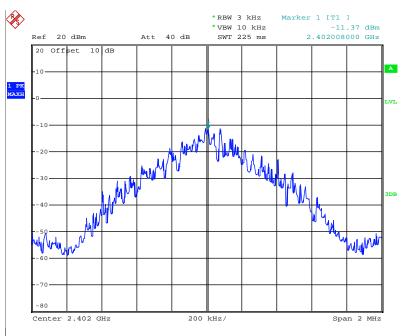
The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

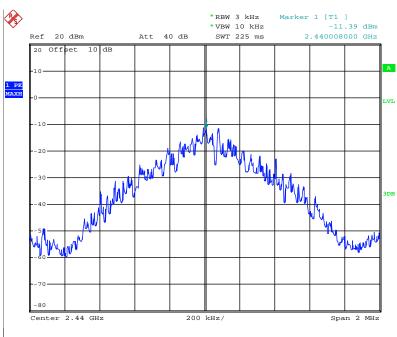
- 7.4.1.Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2.Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

7.5.Test Procedure

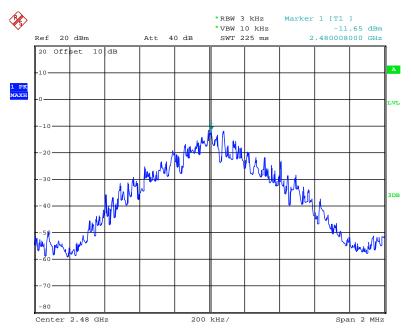
- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Measurement Procedure PKPSD:
- 7.5.3. This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.
 - 1. Set analyzer center frequency to DTS channel center frequency.
 - 2. Set the span to 1.5 times the DTS channel bandwidth.
 - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum amplitude level.
 - 10. If measured value exceeds limit, reduce RBW (no less than 3kHz) and repeat.
- 7.5.4.Measurement the maximum power spectral density.


7.6.Test Result

Channel	Frequency (MHz)	PSD Limit (dBm/3KHz) (dBm/3KHz)		Result
0	2402	-11.37	8	Pass
19	2440	-11.39	8	Pass
39	2480	-11.65	8	Pass


The spectrum analyzer plots are attached as below.

channel 0




channel 39

8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

8.3.EUT Configuration on Test

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

8.4.1.Setup the EUT and simulator as shown as Section 8.1.

- 8.4.2.Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

8.5.Test Procedure

Conducted Band Edge:

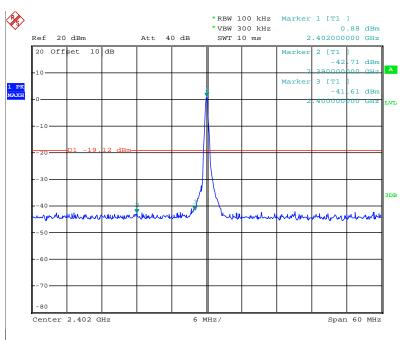
- 8.5.1.The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 8.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.

Radiate Band Edge:

- 8.5.3.The EUT is placed on a turntable, which is 0.1m above the ground plane and worked at highest radiated power.
- 8.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

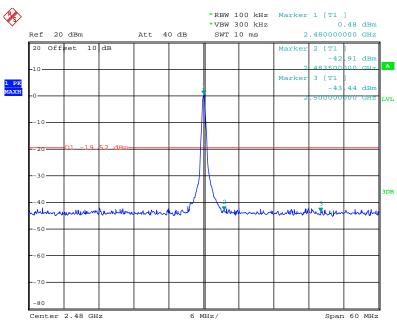
8.5.7.RBW=1MHz, VBW=1MHz

8.5.8.The band edges was measured and recorded.


8.6.Test Result

Conducted Band Edge Result

Channel	Frequency	Delta peak to band emission	Limit(dBc)	Result
0	2.402GHz	40.73	> 20	Pass
39	2.480GHz	42.43	>20	Pass


The spectrum analyzer plots are attached as below.

channel 0

-

Radiated Band Edge Result

A	TC	F1	,Bldg,A,Ch	TE TECH nangyuan Ne dustry Park,N	ew Material	Port Ke	yuan Rd	,	Tel:		Chamber 5-26503290 5-2650339
Job No	b.: FRANK20	19-W #483				F	Polarizati	on: \	/ertical		
Standa	ard: FCC PK Power Source:					DC3.7\	/				
Test ite	em: Radiatio	n Test				C	Date: 19/	11/11/			
Гетр.	(C)/Hum.(%)) 25 C/5	5 %			Т	ime: 14/	10/14			
EUT:	Bluetooth	n earphone				E	Engineer	Signat	ure:		
Mode:	TX2402MH	Ηz				C	Distance:	3m			
Model:	: X3										
√anuf a	acturer: Dong	guan Luxun	Electronic	Technology	Co., Ltd.						
Note:	Report NO.:	ATE201916	641								
110).0 dBuV/m								limit1:		
									limit2:		
100	,										
90								70101100			
							n				
80											
70											
70											
60											
60 50											
60						1					
60 50				nullitsertensedet (****et					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
60 50 40 30				nullitsenstonesbolderrisch				angenetivetarist	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
60 50 40 30 20.0		11.74 (b.479)-74 (b.477-74)		nullitsurtenselut (***ut		1			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2440.0	MHz
60 50 40 30 20.0	0	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	2440.0 Remark	MHz
60 50 40 30 20.0 2	0 2300.000 Freq.	Reading					Detector				MHz
60 50 40 30 20.0	0 2300.000 Freq. (MHz)	Reading (dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg.)		MHz

4

2400.000

33.15

-6.27

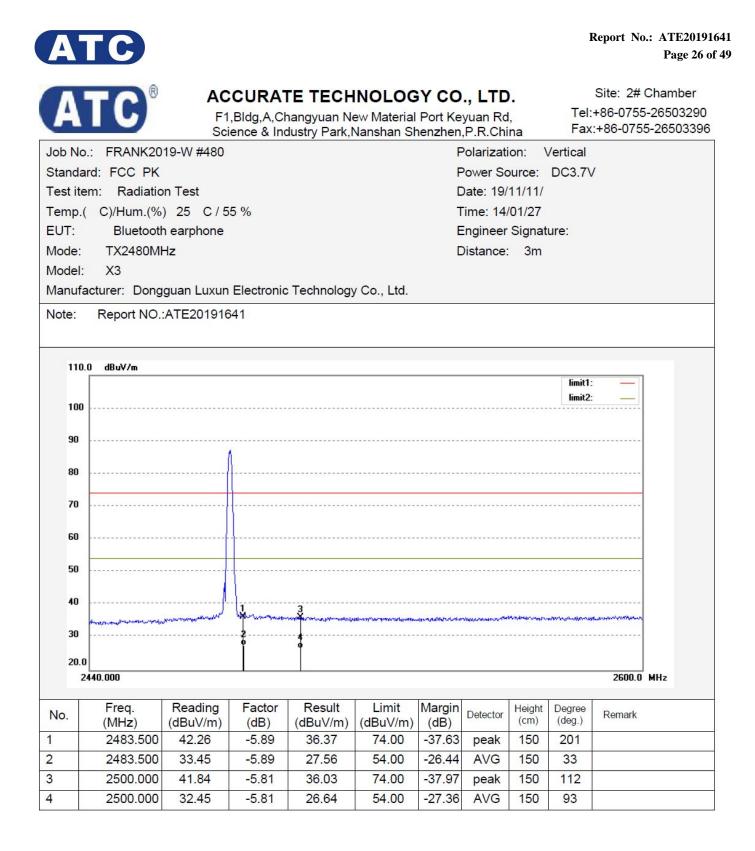
26.88

54.00

-27.12

AVG

150


103

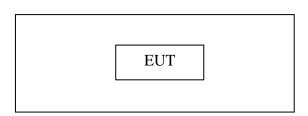
Site: 2# Chamber Tel:+86-0755-26503290 Eav:+86-0755-26503396

		Sci	ence & Ind	dustry Park,	Vanshan Sh	nenzhen	,P.R.Chi	na	Fax	:+86-0755-2650339
Job No	: FRANK20	19-W #482				F	Polarizati	ion: H	Horizonta	al
Standa	ard: FCC PK					F	ower Sc	ource:	DC3.7V	/
Test ite	em: Radiatio	n Test				0				
Temp.((C)/Hum.(%) 25 C/5	5 %			Time: 14/07/28				
EUT:	Bluetooth	n earphone				Engineer Signature:				
Mode:	TX2402M	Ηz				0	Distance:	3m		
Model:	X3									
Manufa	acturer: Dong	guan Luxun	Electronic	Technology	/ Co., Ltd.					
Note:	Report NO.	ATE201916	41							
110	.0 dBuV/m								limit1:	_
100									limit2:	
100										
90										
							n			
80							·····			
70										
							- 11			
60										
							\rightarrow			
50										
40							3			
	1 mary mary mary	West - Haller Haller and she have a start	war and the stand and the	www.wightantow.gov		monteston	umme la	What the second	-	the star and the star
30										
20.0						5				
2	2300.000									2440.0 MHz
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	2390.000	40.80	-6.32	34.48	74.00	-39.52	peak	200	211	
	and a second second second second		-6.32	23.84	54.00	-30.16		200	246	
	2390.000	30.16	-0.32	23.04	54.00	00.10				
1 2 3	2390.000 2400.000	30.16 46.03	-6.32	39.76	74.00	-34.24	A CONTRACTOR	200	321	

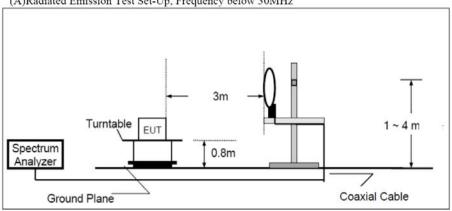
Report No.: ATE20191641 Page 25 of 49 Site: 2# Chamber ACCURATE TECHNOLOGY CO., LTD. Tel:+86-0755-26503290 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China Job No.: FRANK2019-W #481 Polarization: Horizontal Standard: FCC PK Power Source: DC3.7V Test item: Radiation Test Date: 19/11/11/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 14/04/27 EUT: Bluetooth earphone Engineer Signature: Mode: TX2480MHz Distance: 3m Model: X3 Manufacturer: Dongguan Luxun Electronic Technology Co., Ltd. Report NO .: ATE20191641 Note: 110.0 dBuV/m limit1: limit2: 100 90 80 70 60 50 40 30 20.0 2440.000 2600.0 MHz Reading Factor Result Limit Margin Freq. Height Degree Detector No. Remark (dBuV/m) (dB) (dBuV/m) (dB) (cm) (deg.) (MHz) (dBuV/m) 1 2483.500 42.14 -5.89 36.25 74.00 -37.75 200 193 peak 2 2483,500 31.15 -5.89 25.26 54.00 -28.74 AVG 200 116 2500.000 74.00 200 63 3 41.68 -5.81 35.87 -38.13 peak 4 2500.000 30.48 -5.81 24.67 54.00 -29.33 AVG 200 110

Note:

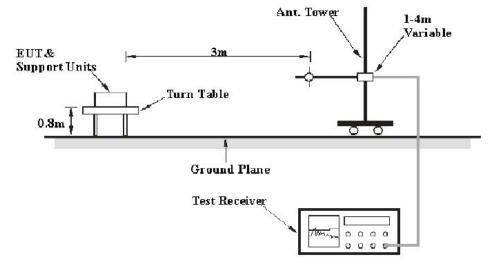
- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:


Result = Reading + Corrected Factor

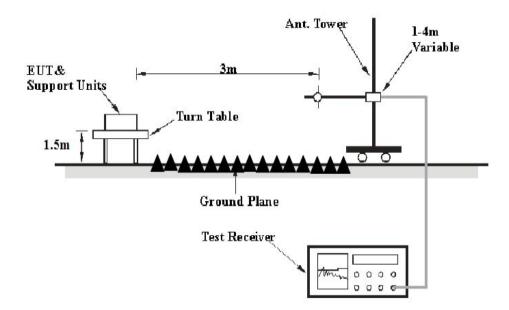
9. RADIATED SPURIOUS EMISSION TEST


9.1.Block Diagram of Test Setup

9.1.1.Block diagram of connection between the EUT and peripherals


Setup: Transmitting mode

9.1.2.Semi-Anechoic Chamber Test Setup Diagram


(A)Radiated Emission Test Set-Up, Frequency below 30MHz

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

9.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3. Restricted bands of operation

9.3.1.FCC Part 15.205 Restricted bands of operation

perm	permitted in any of the frequency bands listed below:								
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
6.31175-6.31225	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	$(^{2})$						
13.36-13.41									

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

9.4.Configuration of EUT on Test

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.5. Operating Condition of EUT

9.5.1.Setup the EUT and simulator as shown as Section 9.1.

- 9.5.2.Turn on the power of all equipment.
- 9.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2440MHz, and 2480MHz TX frequency to transmit.

9.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector. The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading.

9.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	43.85	-22.22	21.63	43.5	-21.87	QP

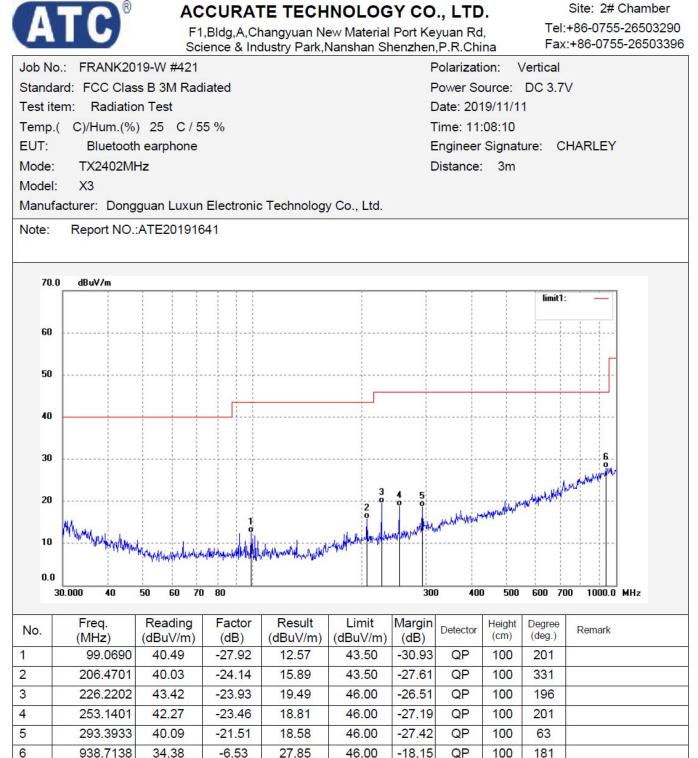
$$\label{eq:requency} \begin{split} & Frequency(MHz) = Emission frequency in MHz \\ & Reading(dB\mu\nu) = Uncorrected Analyzer/Receiver reading \\ & Factor (dB/m) = Antenna factor + Cable Loss - Amplifier gain \\ & Result(dB\mu\nu/m) = Reading(dB\mu\nu) + Factor(dB/m) \\ & Limit (dB\mu\nu/m) = Limit stated in standard \\ & Margin (dB) = Result(dB\mu\nu/m) - Limit (dB\mu\nu/m) \\ & QP = Quasi-peak Reading \end{split}$$

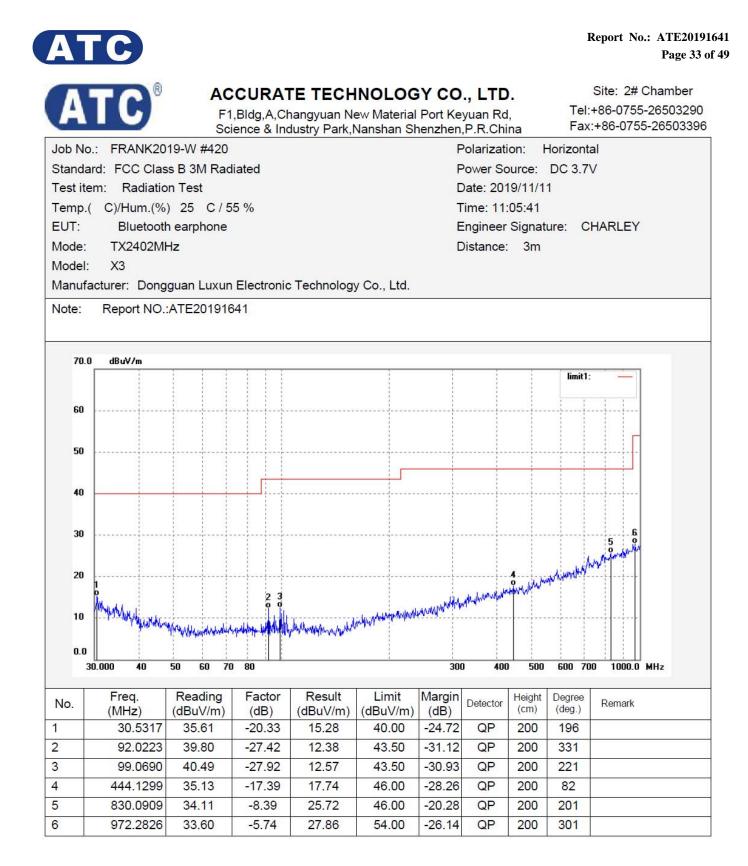
Calculation Formula: Margin(dB) = Result (dB μ V/m)–Limit(dB μ V/m) Result(dB μ V/m)= Reading(dB μ V)+ Factor(dB/m)

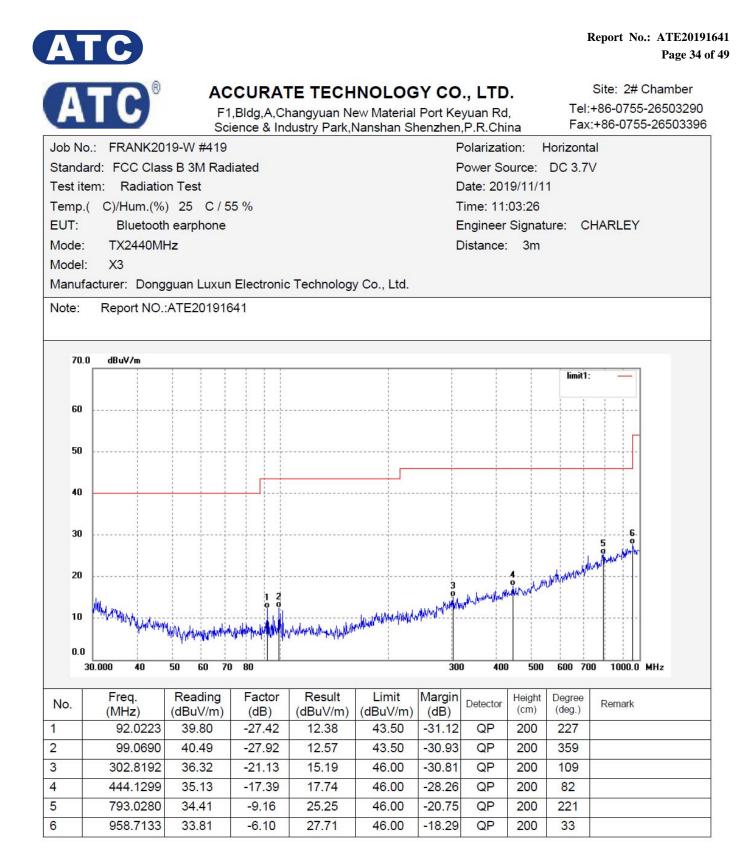
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

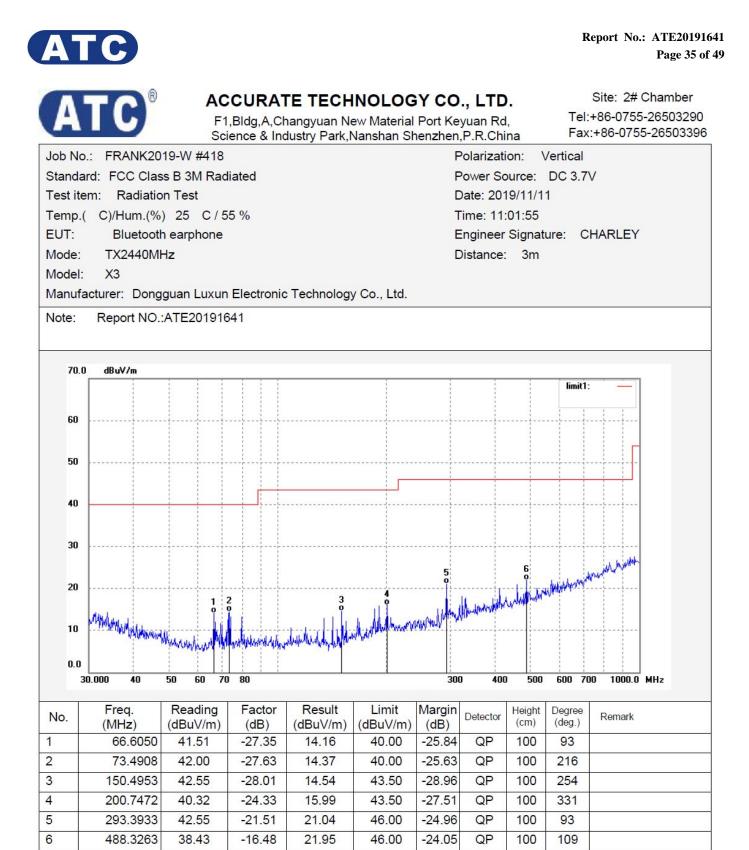
9.8.Test Result

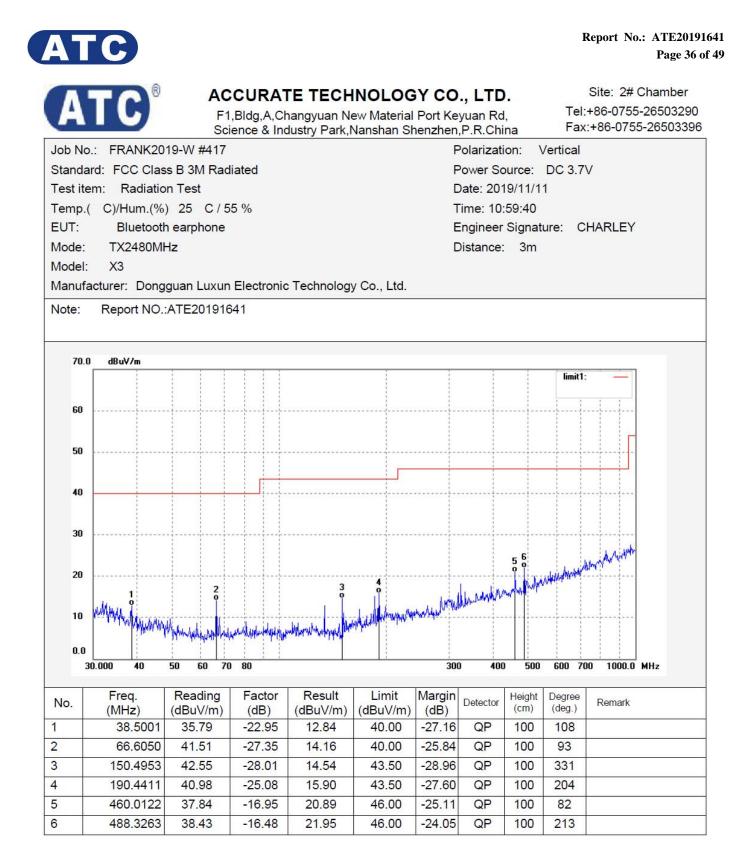
Pass.

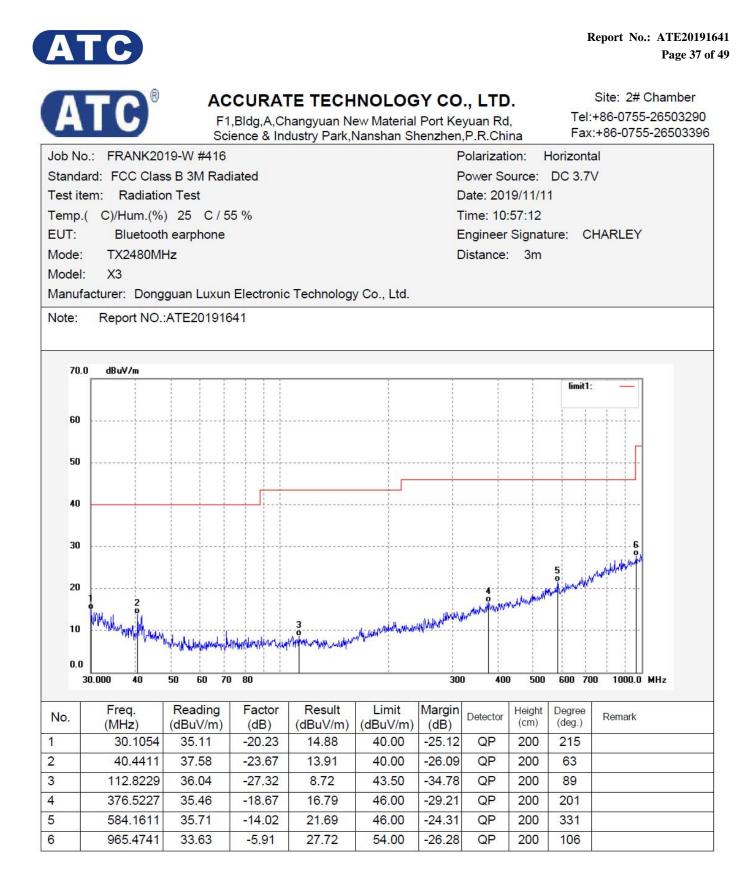

Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

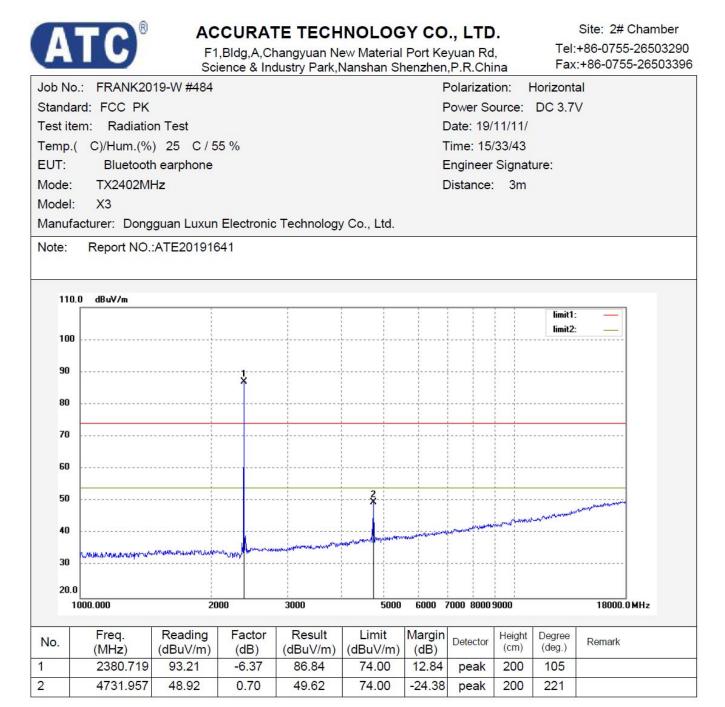

The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.


The spectrum analyzer plots are attached as below.




Below 1GHz

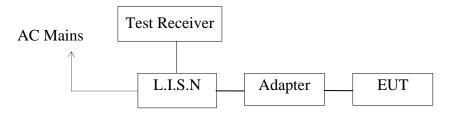


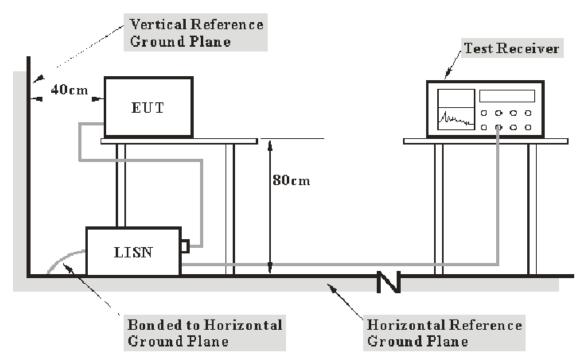




Above 1GHz

	ТС]	Report No.	: ATE201 Page 41
A	TC®	F1	,Bldg,A,C	TE TECH hangyuan N dustry Park,	ew Material	Port Ke	yuan Ro	١,		Site: 2# 0 +86-0755- ::+86-0755	26503290
b No	o.: FRANK20	19-W #487		192 0 117 (20 0 7) 117 (2017) 117 (2017)		F	Polarizat	ion: I	Horizont	al	
tanda	ard: FCC PK					F	Power So	ource:	DC 3.7	V	
est it	em: Radiatio	on Test				[Date: 19/	' <mark>11/11</mark> /			
emp.	.(C)/Hum.(%) 25 C/5	5 %				Fime: 15	/42/04			
UT:	Bluetoot	h earphone				E	Engineer	Signat	ure:		
lode:		Hz				[Distance	: 3m			
lodel											
anuf	acturer: Dong	iguan Luxun	Electroni	c Technolog	y Co., Ltd.						
110).0 dBuV/m								limit1:	_	
100)								limit2:		
				1							
90			l					+			
80			·····								
70											
60											
50				1	2				en el secto de la color de la		
50									and the second	mander man ment	
40					Midness	n	por monterio	in the second second			
30	Man and Manual	with the second second	and a subscription of the	mention descent	And the second second second						
20.	0	20	100	3000	5000	6000	7000 8000	9000		18000.0	MH-2
	1000.000	20		5000	5000	0000		5000		10000.0	P112
lo.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	2440.000	91.02	-6.20	84.82			peak	200	331		
	4880.000	50.20	1.07	51.27	74.00	-22.73	peak	200	186		


	8	AC	CURA			Y CO				Site: 2# (Chamber
A	TC	F1	,Bldg,A,Cl	hangyuan N dustry Park,I	ew Material	Port Ke	eyuan Rd	,			-2650329 5-2650339
b No	.: FRANK201			,,			Polarizati		Horizonta	al	
anda	rd: FCC PK					I	Power Sc	ource:	DC 3.7	V	
	em: Radiatio						Date: 19/				
	C)/Hum.(%)		5 %				Time: 15/45/25				
							Engineer		ure:		
ode: odel:	TX2480MH X3	12					Distance:	3m			
(B. (B. 7. 19)	A3 acturer: Dong	auan Luvun	Electronic	Technology	Co Itd						
ote:	Report NO .:	ATE201916	41								
100 90 80			ł								
				1							
	0,000,000,000,000,000,000										
70											
70 60											
					2				a all the state of the state of the	and any mark	
60					2	marination		and a start	Kooler There and a second	an water and	
60 50		when mouth by "shim	www.hum	Marine and the area	nor and press	man		ana	later and a second	and another	
60 50 40		water rest of a state	www.Anuer	genineen streeren	****	-			hope the second second	er and an and a second	
60 50 40 30		(vafissoriji),44(b/~adim 20		3000	\$		7000 8000 9	9000	lastre and a second second	44-00-94449-94-94 18000.0	MHz
60 50 40 30	000.000 Freq.	20 Reading	00 Factor	3000 Result	5000	6000 Margin	7000 8000 9	9000 Height (cm)	Degree (deg.)	18000.0	MHz
60 50 40 30 20.0 1	000.000	20	00	3000	5000	6000	7000 8000 9	Height			MHz



10.POWER LINE CONDUCTED EMISSION TEST

10.1.Block Diagram of Test Setup

10.2.Test System Setup

- Note: 1. Support units were connected to second LISN.
 - 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

10.3.Test Limits

Frequency	Limit d	B(µV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 - 56.0 *	56.0 - 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0
NOTE1: The lower limit shall	l apply at the transition freque	ncies.
NOTE2: The limit decreases	linearly with the logarithm of	the frequency in the range
0.15MHz to 0.50M	Hz.	

10.4. Configuration of EUT on Test

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

10.5.Operating Condition of EUT

10.5.1.Setup the EUT and simulator as shown as Section 10.1.

10.5.2.Turn on the power of all equipment.

10.5.3.Let the EUT work in test mode and measure it.

10.6.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

10.7.Data Sample

Frequency(MHz) = Emission frequency in MHz

 $\begin{array}{l} Transducer\ value(dB) = Insertion\ loss\ of\ LISN + Cable\ Loss\\ Level(dB\mu V) = Quasi-peak\ Reading/Average\ Reading + Transducer\ value\ Limit\ (dB\mu V) = Limit\ stated\ in\ standard \end{array}$

Calculation Formula: Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

10.8.Test Result

Pass.

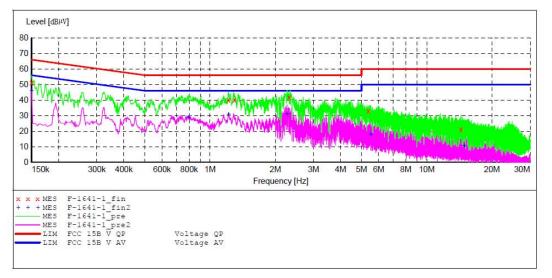
The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Bluetooth earphone M/N:X3						
Manufacturer:	Dongguan Luxun Electronic Technology Co., Ltd						
Operating Condition:	BT Communication						
Test Site:	2#Shielding Room						
Operator:	Frank						
Test Specification:	N 120V/60Hz						
Comment:	Report NO.:ATE20191641						
Start of Test:	2019-11-11 / 9:42:01						

SCAN TABLE: "V 150K-30MHz fin"

Short Desc	ription:	and other states and the second states of the	SUB STD VTE			
	Stop Frequency	Step Width	Detector	Meas. Time	IF Bandw.	Transducer
150.0 kHź	30.0 MHz	4.5 kHz	QuasiPeak Average	1.0 s	9 kHz	NSLK8126 2008

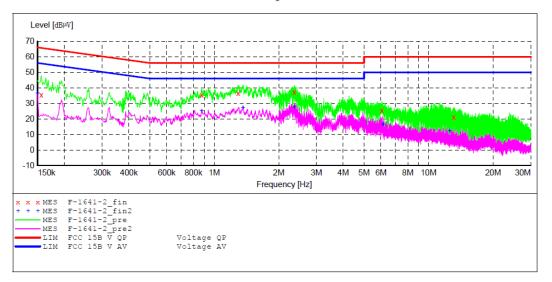
MEASUREMENT RESULT: "F-1641-1 fin"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	51.40	10.8	66	14.6	QP	N	GND
1.214000	40.10	11.2	56	15.9	QP	N	GND
1.229000	40.10	11.2	56	15.9	QP	N	GND
2.265000	41.80	11.3	56	14.2	QP	N	GND
5.380000	33.00	11.5	60	27.0	QP	N	GND
14.400000	21.40	11.6	60	38.6	QP	N	GND

MEASUREMENT RESULT: "F-1641-1_fin2"

2019-11-11 9:43

Level dBµV	Fransd dB	Limit dBµV	Margin dB	Detector	Line	PE
46.20	10.8	56	9.8	AV	N	GND
28.60	11.1	46	17.4	AV	N	GND
30.70	11.2	46	15.3	AV	N	GND
31.30	11.3	46	14.7	AV	N	GND
18.10	11.5	50	31.9	AV	N	GND
10.50	11.6	50	39.5	AV	N	GND
	dBµV 46.20 28.60 30.70 31.30 18.10	dBµV dB 46.20 10.8 28.60 11.1 30.70 11.2 31.30 11.3 18.10 11.5	dBµV dB dBµV 46.20 10.8 56 28.60 11.1 46 30.70 11.2 46 31.30 11.3 46 18.10 11.5 50	dBµV dB dBµV dB 46.20 10.8 56 9.8 28.60 11.1 46 17.4 30.70 11.2 46 15.3 31.30 11.3 46 14.7 18.10 11.5 50 31.9	dBμV dB dBμV dB 46.20 10.8 56 9.8 AV 28.60 11.1 46 17.4 AV 30.70 11.2 46 15.3 AV 31.30 11.3 46 14.7 AV 18.10 11.5 50 31.9 AV	dBμV dB dBμV dB 46.20 10.8 56 9.8 AV N 28.60 11.1 46 17.4 AV N 30.70 11.2 46 15.3 AV N 31.30 11.3 46 14.7 AV N 18.10 11.5 50 31.9 AV N


ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT:	Bluetooth earphone M/N:X3						
	Dongguan Luxun Electronic Technology Co.,Ltd						
Operating Condition:							
Test Site:	2#Shielding Room						
Operator:	Frank						
Test Specification:	L 120V/60Hz						
Comment:	Report NO.:ATE20191641						
Start of Test:	2019-11-11 / 9:46:23						

SCAN TABLE: "V 150K-30MHz fin"

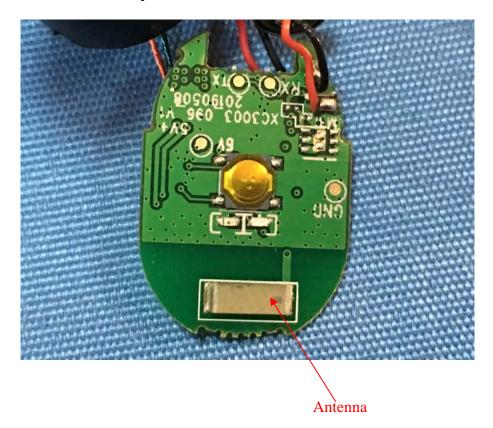
Short Desc			_SUB_STD_VTERM2 1.70						
Start	Stop	Step	Detector	Meas.	IF	Transducer			
Frequency	Frequency	Width		Time	Bandw.				
150.0 kHz	30.0 MHz	4.5 kHz	QuasiPeak	1.0 s	9 kHz	NSLK8126 2008			
			Average						

MEASUREMENT RESULT: "F-1641-2_fin"

2019-11-11 9:	48						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.156000	35.50	10.8	66	30.2	QP	L1	GND
0.874000	35.60	11.1	56	20.4	QP	L1	GND
1.292000	36.70	11.2	56	19.3	QP	L1	GND
2.365000	37.50	11.3	56	18.5	QP	L1	GND
6.060000	25.60	11.5	60	34.4	Q̈́Ρ	L1	GND
13.125000	21.30	11.6	60	38.7	ΏΡ	L1	GND

MEASUREMENT RESULT: "F-1641-2_fin2"

				_								
2019-11-11 9:48												
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE				
	0.150000	36.50	10.8	56	19.5	AV	L1	GND				
	0.874000	25.00	11.1	46	21.0	AV	L1	GND				
	1.362000	27.40	11.2	46	18.6	AV	L1	GND				
	2.365000	27.80	11.3	46	18.2	AV	L1	GND				
	6.115000	16.60	11.5	50	33.4	AV	L1	GND				
	12.535000	12.20	11.6	50	37.8	AV	L1	GND				


11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 1.0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****