

FCC TEST REPORT

FCC ID: 2ATQZ-W900

On Behalf of

Shenzhen Mooer Audio Co., Ltd

Electric Guitar

Model No.: See Annex for details

Prepared for : Shenzhen Mooer Audio Co., Ltd

Address : 6F, Unit D, Jinghang Building, Liuxian 3rd Road, Baoan 71 District,

Shenzhen, China

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : A2211206-C01-R03
Date of Receipt : December 7, 2022

Date of Test : December 7, 2022-December 27, 2022

Date of Report : December 27, 2022

Version Number : V0

TABLE OF CONTENTS

<u>D</u>	escrip	otion	<u>Page</u>
1.	Sumi	mary of Standards And Results	6
•	1.1.	Description of Standards and Results	
2.	Gene	eral Information	
	2.1.	Description of Device (EUT)	7
	2.2.	Accessories of Device (EUT)	
	2.3.	Tested Supporting System Details	
	2.4.	Block Diagram of connection between EUT and simulators	
	2.5.	Test Mode Description	
	2.6.	Test Conditions	9
	2.7.	Test Facility	9
	2.8.	Measurement Uncertainty	9
	2.9.	Test Equipment List	10
3.	Powe	er Line Conducted Emission Test	12
	3.1.	Block Diagram of Test Setup	12
	3.2.	Test Limits	12
	3.3.	Configuration of EUT on Test	13
	3.4.	Operating Condition of EUT	13
	3.5.	Test Procedure	13
	3.6.	Test Results	13
4.	Radia	ated Emission Test	16
	4.1.	Block Diagram of Test Setup	16
	4.2.	Test Limit	17
	4.3.	Configuration of EUT on Test	18
	4.4.	Operating Condition of EUT	18
	4.5.	Test Procedure	18
	4.6.	Test Results	19
5.	Band	Edge Test	25
	5.1.	Block Diagram of Test Setup	25
	5.2.	Test Limit	25
	5.3.	Configuration of EUT on Test	26
	5.4.	Operating Condition of EUT	26
	5.5.	Test Procedure	26
	5.6.	Test Results	28
6.	Occu	pied bandwidth Test	29
	6.1.	Block Diagram of Test Setup	29
	6.2.	Test Limit	29
	6.3.	Test Procedure	29
	6.4.	Test Results	29
7.	Ante	nna Requirement	33
	7.1.	Standard Requirement	33
	7.2.	Antenna Connected Construction	33

		Page 3 of 37	Report No.: A2211206-C01-R03
7.3.	Results		33
Photo	ograph		34

Page 4 of 37 Report No.: A2211206-C01-R03

TEST REPORT DECLARATION

Applicant : Shenzhen Mooer Audio Co., Ltd

Address : 6F, Unit D, Jinghang Building, Liuxian 3rd Road, Baoan 71 District, Shenzhen, China

Manufacturer : Shenzhen Mooer Audio Co., Ltd

Address : 6F, Unit D, Jinghang Building, Liuxian 3rd Road, Baoan 71 District, Shenzhen, China

EUT Description : Electric Guitar

(A) Model No. : See Annex for details

(B) Trademark : Gres

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part 15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Project Engineer

Jack Xu

Project Manager

Date of issue..... December 27, 2022

Page 5 of 37 Report No.: A2211206-C01-R03

Revision History

Revision	Issue Date	Revisions	Revised By
V0	December 27, 2022	Initial released Issue	Yannis Wen

1. Summary Of Standards And Results

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION					
Description of Test Item	Description of Test Item		Results		
Power Line Conducted Emission Test	FCC Part 15	Section 15.207	Р		
Spurious Emission Test	FCC Part 15	Section 15.249&15.209	Р		
Occupied bandwidth	FCC Part 15	Section 15. 249	Р		
Band edge Requirement	FCC Part 15	Section 15.249	Р		
Antenna Requirement	FCC Part 15	Section 15.203	Р		

Page 6 of 37

Note:

- 1. P is an abbreviation for Pass.
- 2. F is an abbreviation for Fail.
- 3. N/A is an abbreviation for Not Applicable.

2. General Information

2.1. Description of Device (EUT)

EUT Name : Electric Guitar

Trademark :

Gres

Model No. : See Annex for details

DIFF. : There is no difference except the name of the model. All tests are made with the

W900 model.

Power supply : DC 3.8V by battery, DC 5V from USB

2.4G Technology

Operation frequency : 2415MHz-2455MHz

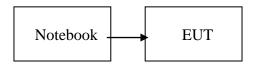
Modulation : GFSK

Antenna Type : Chip Antenna, max gain 1.5dBi.

Number of Channel : 3

Software version : V3.0.0 Hardware version : V02

- 1. The worst-case simultaneous transmission configuration was evaluated with no non-compliance found. Results in this report are only for 2.4G technology function, and there is no other transmitter involved.
- 2. EUT has two 2.4G antennas, one of them is PIFA Antenna, max. gain -0.58dBi, the other one is chip antenna, max. gain 1.5dBi, So this report evaluates the one with the largest antenna gain, that is the worst data.


2.2. Accessories of Device (EUT)

Accessories1 : /
Manufacturer : /
Model : /
Power supply : /

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC	
1.	Adapter	Adapter Huoniu HNFCQC3024U				
١.	Auaptei	Haoma	U			
2.	Speaker	Mooer				
3.	GTRS Wireless	Mooer	GWF4			
3.	Footswitch	Model	GWF4			

2.4. Block Diagram of connection between EUT and simulators

2.5. Test Mode Description

Test mode:

Mode	Channel	Frequency (MHz)
	Low :CH1	2415
GFSK	Middle: CH2	2435
	High: CH3	2455

Note:

- 1. The test was used to control EUT work in Continuous TX mode, and select test channel, wireless mode
- 2. The EUT has been tested as an independent unit. And Continual Transmitting in maximum power.
- 3. New battery is used during all tests.
- 4. For the relevant Conducted Measurement, the temporary antenna connector is used during the measurement. Antenna Connector Impedance: 50Ω , Cable Loss: 1.0 dB

Channel list:

Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2415MHz	/	/	/	/
2	2435MHz	/	/	/	/
3	2455MHz	/	/	/	/

2.6. Test Conditions

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd.
Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

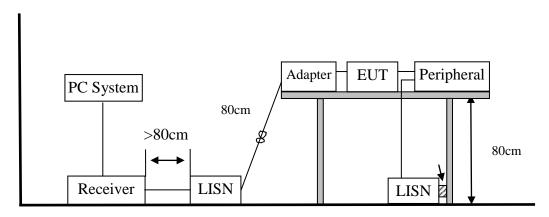
Registration Number: 293961

July 15, 2019 Certificated by IC Registration Number: CN0085

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%


2.9. Test Equipment List

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2022.08.22	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-10 2082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000 -40-880	/	100631	2022.08.22	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

	Software Information						
Test Item	Software Name	Manufacturer	Version				
RE EZ-EMC		EZ	Alpha-3A1				
CE	EZ-EMC	EZ	Alpha-3A1				
RF-CE	MTS 8310	MW	V2.0.0.0				

3. Power Line Conducted Emission Test

3.1. Block Diagram of Test Setup

3.2. Test Limits

	Maximum RF Line Voltage		
Frequency	Quasi-Peak Level	Average Level	
	dB(μV)	dB(μV)	
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*	
500kHz ~ 5MHz	56	46	
5MHz ~ 30MHz	60	50	

Notes:

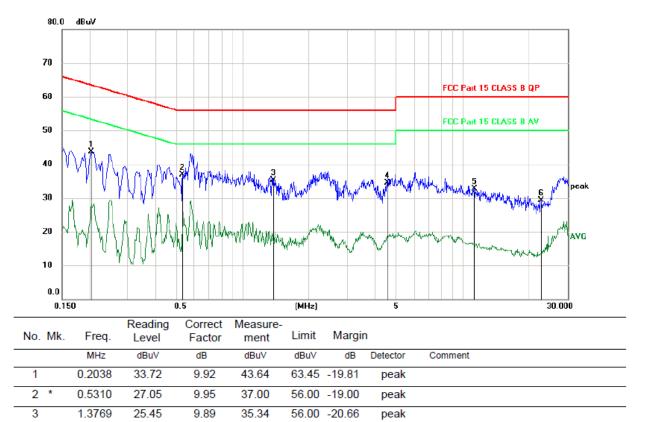
- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Test

The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.


3.5. Test Procedure

- The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on conducted Emission test.
- The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver is set at 9kHz.
- The frequency range from 30MHz to 1000MHz was pre-scanned with a Peak detector and all final readings of measurement from Test Receiver are Quasi-Peak and Average values.
- (4) The test results are reported on Section 3.6.

3.6. Test Results

EUT	:	Electric Guitar	Test Date	:	2022.12.26				
M/N	:	W900	Temperature	:	24°C				
Test Engineer	:	Yannis Wen	Humidity	:	56%				
Test Mode	:	TX 2415MHz							
Test Results	:	PASS							
Note: 1. The test results are listed in next pages.									

Polarity: L

56.00 -21.42

60.00 -27.37

60.00 -30.66

peak

peak

peak

4.5357

11.2620

22.7160

4

5

6

24.58

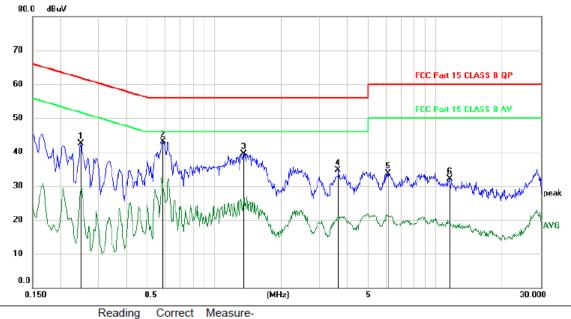
22.39

18.88

10.00

10.24

10.46


34.58

32.63

29.34

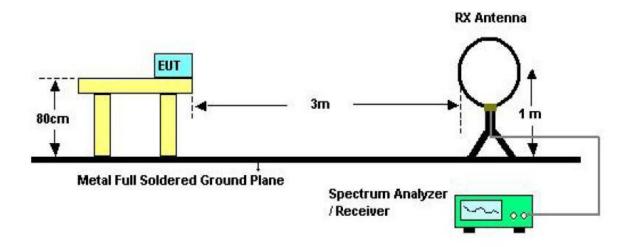
^{*:}Maximum data x:Over limit !:over margin \quad \text{Reference Only} \text{Note: Measurement=Reading Level+Correc Factor.} \quad \text{Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable}

Polarity: N

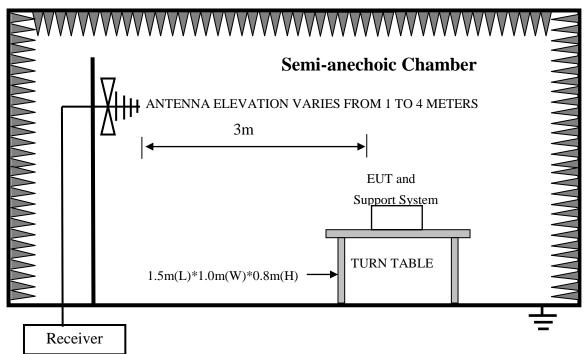
١	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.2489	32.52	9.97	42.49	61.79	-19.30	peak	
	2	*	0.5877	33.10	9.92	43.02	56.00	-12.98	peak	
	3		1.3588	29.69	9.89	39.58	56.00	-16.42	peak	
	4		3.6330	24.70	9.96	34.66	56.00	-21.34	peak	
	5		6.1108	23.65	10.08	33.73	60.00	-26.27	peak	
	6		11.5768	21.76	10.25	32.01	60.00	-27.99	peak	

(Reference Only

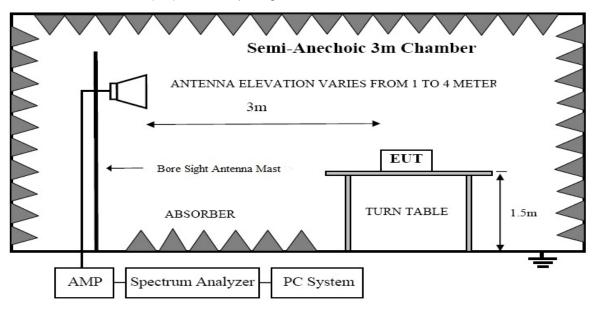
Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable


Note: This report only shall the worst case mode for TX 2415MHz.

^{*:}Maximum data x:Over limit !:over margin


4. Radiated Emission Test

4.1. Block Diagram of Test Setup


In Semi Anechoic Chamber (3m) Test Setup Diagram for 9KHz~30MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.2. Test Limit

Frequ	uency	Distance	Field Stren	gths Limits
M	Hz	(Meters)	uV/m	dB uV/m
0.009	~ 0.490	300	2400/F(kHz)	
0.490	1.705	30	24000/F(kHz)	
1.705	30	30	30	29.5
30	88	3	100(3nW)	40
88	216	3	150(6.8nW)	43.5
216	960	3	200(12nW)	46
Above	960	3	500(75nW)	54
Carrier frequency		3	50000(avg)	113.97(peak) 93.97(avg)

Notes:

- 1. Emission level = Read level + Antenna Factor Preamp Factor + Cable Loss
- 2. The smaller limit shall apply at the cross point between two frequency bands.
- 3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 4. For frequencies above 1000 MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

4.5. Test Procedure

- The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1GHz and 150 cm above the ground plane inside a semi-anechoic chamber for above 1GHz. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
 - (a) Change work frequency or channel of device if practicable.
 - (b) Change modulation type of device if practicable.
 - (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP
- (5) The frequency range from 9KHz to 150KHz is checked, the bandwidth of test receiver is set at 200Hz.
 - The frequency range from 150KHz to 30MHz is checked, the bandwidth of test receiver is set at 9KHz.

Report No.: A2211206-C01-R03

The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver is set at 120kHz.

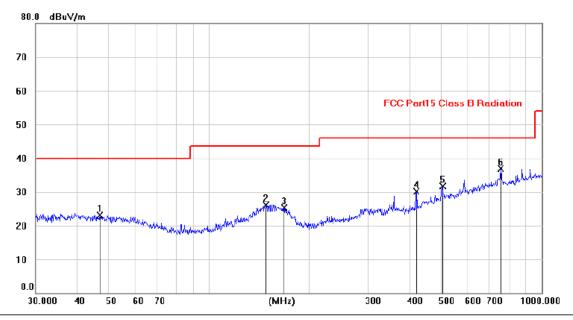
The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer is set at 1MHz.

- The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (7) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- (8) The test results are reported on Section 4.6.

4.6. Test Results

Frequency Range	:	9KHz~30MHz						
EUT	:	Electric Guitar	Test Date	:	2022.12.26			
M/N	:	W900	Temperature	:	24 °C			
Test Engineer	:	Yannis Wen	Humidity	:	56%			
Test Mode	:	TX 2415MHz						
Test Results	:	PASS						
Note: 1. Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.								

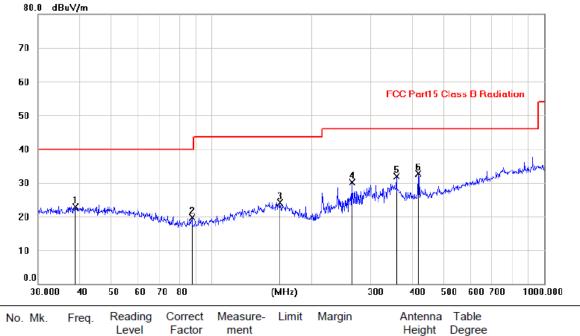
Frequency Range : 30MHz~1000MHz`


Test Mode : TX 2415MHz

Test Results : PASS

Note: 1. The test results are listed in next pages.

- 2. This mode is worst case mode, and this report only reflected the worst mode.
- 3. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.


Vertical:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		46.8631	8.95	14.08	23.03	40.00	-16.97	peak			
2		147.9214	11.27	14.90	26.17	43.50	-17.33	peak			
3		167.9812	11.13	14.27	25.40	43.50	-18.10	peak			
4		421.3183	13.39	16.77	30.16	46.00	-15.84	peak			
5		503.9986	13.42	18.28	31.70	46.00	-14.30	peak			
6	*	754.7693	14.40	22.52	36.92	46.00	-9.08	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		39.0153	8.49	14.46	22.95	40.00	-17.05	peak			
2		87.2441	9.61	10.01	19.62	40.00	-20.38	peak			
3		160.4769	9.21	14.99	24.20	43.50	-19.30	peak			
4		264.0348	16.99	13.10	30.09	46.00	-15.91	peak			
5		360.0265	16.52	15.43	31.95	46.00	-14.05	peak			
6	*	418.7162	16.03	16.70	32.73	46.00	-13.27	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note: This report only shall the worst case mode for TX 2415MHz.

Freque	requency Range : 1GHz~25GHz								
EUT		: Elec	ctric Guitar			Test Date	: 2022.1	2.25	
M/N		: W9	00			Temperature : 24°C			
Test E	ngineer	: Yar	nis Wen			Humidity	: 56%		
Test Mode : TX 2415MHz									
Test Results : PASS									
No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark	
1	2415	Н	92.66	-3.38	89.28	113.97	-24.69	Peak	
2	2415	Н	76.03	-3.38	72.65	93.97	-21.32	Avg	
3	4830	Н	42.49	3.23	45.72	74	-28.28	Peak	
4	4830	Н		3.23		54		Avg	
	•					•	•		
1	2415	V	92.74	-3.38	89.36	113.97	-24.61	Peak	
2	2415	V	75.97	-3.38	72.59	93.97	-21.38	Avg	
3	4830	V	42.03	3.23	45.26	74	-28.74	Peak	
4	4830	V		3.23		54		Avg	
	1. Magne other frequency and made comply with standard requirements and at least have 20dP								

Note:

- 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

Result=Reading + Correct Factor.

Margin= Result-Limit.

- 3. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK.
- 4. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg.
- 5. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

requency Range : 1GHz~25GHz								
	: Elec	ctric Guitar			Test Date	: 2022.1	2.25	
	: W90	00			Temperature : 24°C			
Test Engineer : Yannis Wen				Humidity : 56%				
Test Mode : TX 2435MHz								
Test Results : PASS								
Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark	
2435	Н	93.68	-3.38	90.30	113.97	-23.67	Peak	
2435	Н	75.49	-3.38	72.11	93.97	-21.86	Avg	
4870	Н	42.44	3.23	45.67	74	-28.33	Peak	
4870	Н		3.23		54		Avg	
					<u>.</u>			
2435	V	90.76	-3.38	87.38	113.97	-26.59	Peak	
2435	V	74.34	-3.38	70.96	93.97	-23.01	Avg	
4870	V	44.34	3.23	47.57	74	-26.43	Peak	
4870	V		3.23		54		Avg	
)	gineer ode esults Freq MHz 2435 2435 4870 2435 2435 4870	: Elective : W9 gineer : Yan ode : TX esults : PAS Freq MHz Polarity 2435 H 4870 H 2435 V 2435 V 4870 V	: Electric Guitar : W900 gineer : Yannis Wen ode : TX 2435MHz esults : PASS Freq MHz Polarity Reading (dBuV/m) 2435 H 93.68 2435 H 75.49 4870 H 42.44 4870 H 2435 V 90.76 2435 V 90.76 2435 V 44.34	: Electric Guitar : W900 gineer : Yannis Wen ode : TX 2435MHz sults : PASS Freq MHz Polarity Reading (dBuV/m) Factor 2435 H 93.68 -3.38 2435 H 75.49 -3.38 4870 H 42.44 3.23 4870 H 3.23 2435 V 90.76 -3.38 2435 V 74.34 -3.38 4870 V 44.34 3.23	: Electric Guitar : W900 gineer : Yannis Wen ode : TX 2435MHz sults : PASS Freq MHz Polarity Reading (dBuV/m) Factor (dBuV/m) 2435 H 93.68 -3.38 90.30 2435 H 75.49 -3.38 72.11 4870 H 42.44 3.23 45.67 4870 H 3.23 2435 V 90.76 -3.38 87.38 2435 V 74.34 -3.38 70.96 4870 V 44.34 3.23 47.57	: Electric Guitar Test Date : W900 Temperature gineer : Yannis Wen Humidity ode : TX 2435MHz sults : PASS Freq MHz Reading (dBuV/m) Correct Factor (dBuV/m) Limit (dBuV/m) 2435 H 93.68 -3.38 90.30 113.97 2435 H 75.49 -3.38 72.11 93.97 4870 H 42.44 3.23 45.67 74 4870 H 3.23 54 2435 V 90.76 -3.38 87.38 113.97 2435 V 74.34 -3.38 70.96 93.97 4870 V 44.34 3.23 47.57 74	: Electric Guitar Test Date : 2022.1 : W900 Temperature : 24°C gineer : Yannis Wen Humidity : 56% dee : TX 2435MHz ssults : PASS Freq MHz Reading (dBuV/m) Correct Result (dBuV/m) Limit (dBuV/m) Margin 2435 H 93.68 -3.38 72.11 93.97 -21.86 4870 H -24.44 3.23 45.67 74 -28.33 4870 V 90.76 -3.38 87.38 113.97 -26.59 2435 V 90.76 -3.38 70.96 93.97 -26.59 2435 V 90.76 -3.38 70.96 93.97	

Note:

- 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

Result=Reading + Correct Factor.

Margin= Result-Limit.

- 3. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK.
- 4. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg.
- 5. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

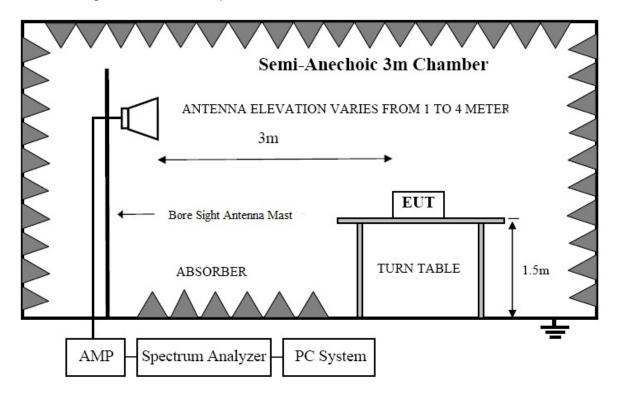
Report No.: A2211206-C01-R03

Test Results : PASS

No.	Freq MHz	Polarity	Reading (dBuV/m)	Correct Factor	Result (dBuV/m)	Limit (dBuV/m)	Margin	Remark
1	2455	Н	93.94	-3.38	90.56	113.97	-23.41	Peak
2	2455	Н	73.01	-3.38	69.63	93.97	-24.34	Avg
3	4910	Н	44.13	3.23	47.36	74	-26.64	Peak
4	4910	Н	-	3.23		54		Avg
1	2455	V	94.20	-3.38	90.82	113.97	-23.15	Peak
2	2455	V	76.39	-3.38	73.01	93.97	-20.96	Avg
3	4910	V	46.20	3.23	49.43	74	-24.57	Peak
4	4910	V		3.23		54		Avg

Note:

- 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.


Result=Reading + Correct Factor.

Margin= Result-Limit.

- 3. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK.
- 4. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg.
- 5. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

5. Band Edge Test

5.1. Block Diagram of Test Setup

5.2. Test Limit

Please refer section 15.249 and section 15.205.

249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in section 15.209, whichever is the lesser attenuation.

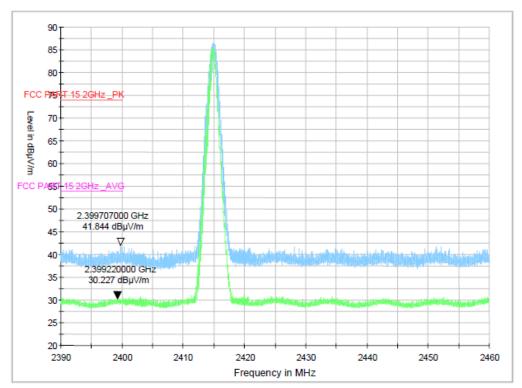
249(e) As show in section 15.35(b), for frequencies above 1000MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak filed strength shall not exceed 2500 millivolts/meter at 3meters along the antenna azimuth.

5.3. Configuration of EUT on Test

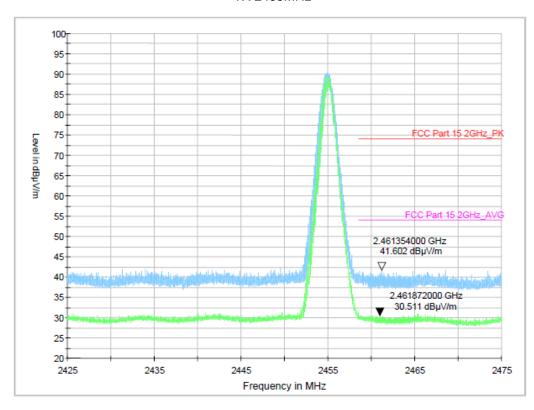
The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 5.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

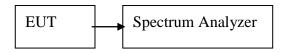

5.5. Test Procedure

- The EUT was placed on a non-metallic table, 150 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
 - (a) Change work frequency or channel of device if practicable.
 - (b) Change modulation type of device if practicable.
 - (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions


- The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer is set at 1MHz.
- The frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (7) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- (8) The test results are reported on Section 5.6.

5.6. Test Results

TX 2415MHz



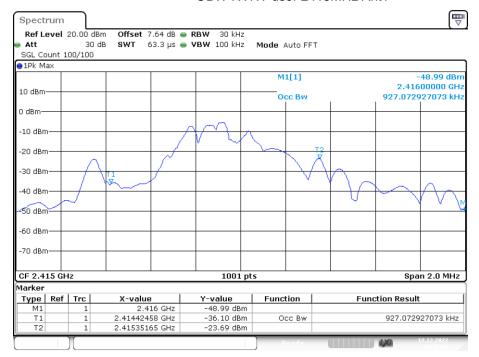
TX 2455MHz

6. Occupied Bandwidth Test

6.1. Block Diagram of Test Setup

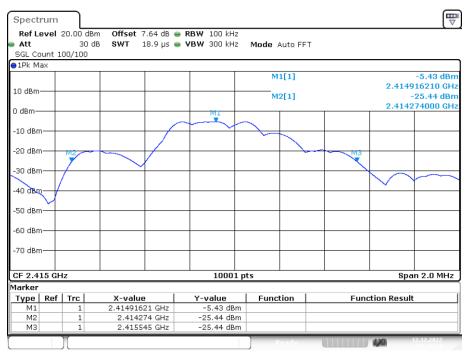
6.2. Test Limit

Please refer section 15.249 and section 15.205.

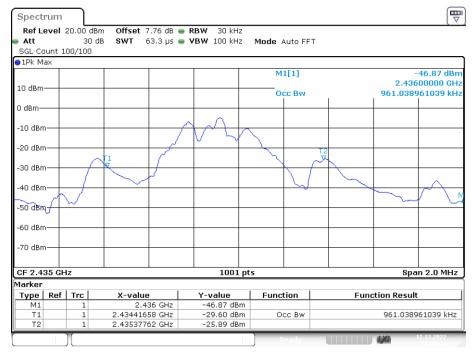

6.3. Test Procedure

- **(1)** The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- (2) The test receiver RBW set 30KHz, VBW set 100KHz, Sweep time set auto.

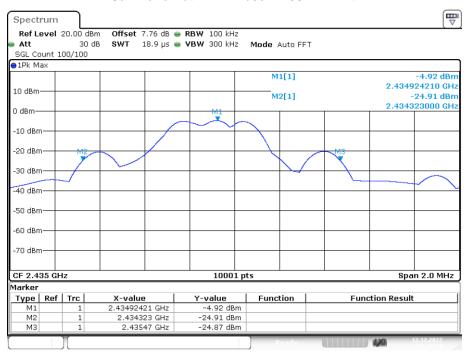
6.4. Test Results


Mode		Frequency	20dB Bandwidth	99% Bandwidth	Limit						
		MHz (MHz) (KHz)		(KHz)	(kHz)						
		2415	1.271	0.927	/						
GFSK	ANT1	2435	1.147	0.961	/						
		2455	0.613	0.629	/						
Note: 1	Note: 1 The test results are listed in next pages										

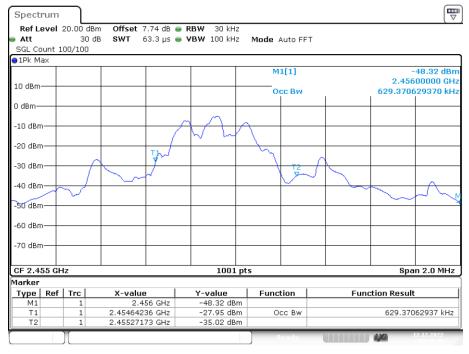
OBW NVNT user 2415MHz Ant1


Date: 12.DEC.2022 08:38:18

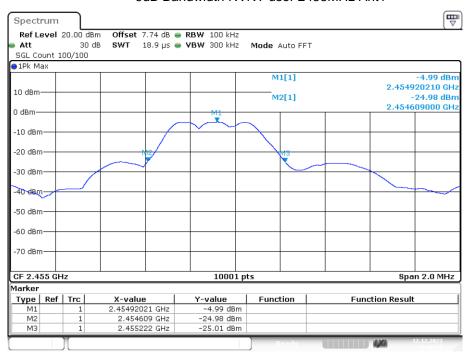
-6dB Bandwidth NVNT user 2415MHz Ant1


Date: 12.DEC.2022 08:38:27

OBW NVNT user 2435MHz Ant1


Date: 12.DEC.2022 08:43:50

-6dB Bandwidth NVNT user 2435MHz Ant1


Date: 12.DEC.2022 08:44:00

OBW NVNT user 2455MHz Ant1

Date: 12.DEC.2022 08:48:45

-6dB Bandwidth NVNT user 2455MHz Ant1

Date: 12.DEC.2022 08:48:55

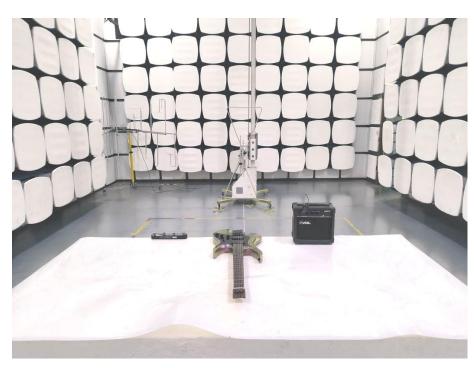
Report No.: A2211206-C01-R03

7. Antenna Requirement

7.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2. Antenna Connected Construction


The directional gains of antenna used for transmitting is 0dBi, and the antenna is fixed antenna no consideration of replacement. Please see EUT photo for details.

7.3. Results

The EUT antenna is PCB Antenna. It complies with the standard requirement.

8. Photograph

8.1. Photos of Radiated Emission Test

8.2. Power Line Conducted Emission Test

9. Photos Of The EUT

Please refer to the report A2211206-C01-R01.

10. Annex

	Model list										
S900	S901	S910	S911	P900	P901						
P910	P911	P920	P921	T900	T901						
T910	T911	T920	T921	W900	W901						
W902	W903	W904	W905	W910	W911						
W912	W913	W914	W915	M900	M901						
M902	M903	M904	M905	M910	M911						
M912	M913	M914	M915	B900	B901						
B910	B911	B920	B921	G150-915							

-----THE END OF REPORT------