

FCC TEST REPORT

Test report On Behalf of Dongguan Fulun Electronics Co.,Limited For Wireless Charger Model No.: W01, PP6966HP, PP6965FR, PP6965FRTX

FCC ID: 2ATOY-W01

Prepared for : Dongguan Fulun Electronics Co.,Limited 4-8/F, Building B, Xinbosheng Industrial Park, No.5 Xinyuan S Rd, Tangxia, Dongguan.CN

Prepared By : Shenzhen Tongzhou Testing Co.,Ltd 1th Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang Street, Longhua, Shenzhen, China

 Date of Test:
 Jun. 2, 2020 ~ Jun. 11, 2020

 Date of Report:
 Jun. 12, 2020

 Report Number:
 TZ200601394-E1

The test report apply only to the specific sample(s) tested under stated test conditions It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TEST RESULT CERTIFICATION

Applicant's name	Dongguan Fulun Electronics Co.,Limited
Address:	4-8/F, Building B, Xinbosheng Industrial Park, No.5 Xinyuan S Rd, Tangxia, Dongguan.CN
Manufacture's Name:	Dongguan Fulun Electronics Co.,Limited
Address	4-8/F, Building B, Xinbosheng Industrial Park, No.5 Xinyuan S Rd, Tangxia, Dongguan.CN
Product description	
Trade Mark:	BarbetSound
Product name:	Wireless Charger
Model and/or type reference :	W01, PP6966HP, PP6965FR, PP6965FRTX
Standards	FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Tongzhou Testing Co.,Ltd is acknowledged as copyright owner and source of the material. Shenzhen Tongzhou Testing Co.,Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	Jun. 2, 2020 ~ Jun. 11, 2020
Date of Issue	Jun. 12, 2020
Test Result	Pass

2

1

Testing Engineer

Nanci _1

(Nancy Li)

Technical Manager

ugo len

(Hugo Chen)

Authorized Signatory :

Andy Zhan

(Andy Zhang)

Table of Contents

Page

1 TEST SUMMARY	
1.1	TEST PROCEDURES AND RESULTS 4
1.2	TEST FACILITY 4
1.3 2 GENERAL INFORMA	MEASUREMENT UNCERTAINTY
2.1	General Description of EUT 5
2.2	Operation of EUT during testing6
2.3	Description of Test Setup6
2.4 3 CONDUCTED EMISS	Measurement Instruments List
3.1	Block Diagram of Test Setup8
3.2	Conducted Power Line Emission Limit8
3.3	Test Procedure 8
3.4	Test Result8
4 Occupied Bandwidth	
4.1	Block Diagram of Test Setup 11
4.2	Rules and specifications 11
4.3	Test Procedure 11
4.4 5 RADIA TED EMISSIC	Test Result 11 DNS 13
5.1	Block Diagram of Test Setup 13
5.2	Rules and specifications14
5.3	Test Procedure
5.4 6 ANTENNA REQUIRE 7 PHOTOGRAPH OF T	Test Result
7.1	Radiated Emission 19
7.2 8 PHOTOGRAPH OF E	Conducted Emission

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen Tongzhou Testing Co.,Ltd

Address 1th Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang Street, Longhua, Shenzhen, China

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2 GENERAL INFORMATION

21	General	Descri	otion	of	F١	ΙТ
∠ . I	General	Descrip	puon	UI.	LC	1

Equipment	Wireless Charger
Model Name	W01, PP6966HP, PP6965FR, PP6965FRTX
Serial No.	N/A
Model Difference	All the same except for the model name and colour
Trade Mark	BarbetSound
FCC ID	2ATOY-W01
Antenna Type	Coil Antenna
Antenna Gain	0dBi
Operation frequency	110 – 205 KHz
Modulation Type	ASK
Power Pating	Input: 5V===2A
rower rauny	Output: 5V===1A
Test Sample ID	TZ200601394-1#

2.2 Operation of EUT during testing

Test Mo	Test Modes:						
Mode 1	AC/DC Adapter (5V/2A) + EUT + MobilePhone (Battery Status: <1%)	Record					
Mode 2	AC/DC Adapter (5V/2A) + EUT + MobilePhone (Battery Status: <50%)	Pre-tested					
Mode 3	AC/DC Adapter (5V/2A) + EUT + MobilePhone (Battery Status: 100%)	Pre-tested					
Note: All test modes were pre-tested, but we only recorded the worst case in this report.							

2.3 Description of Test Setup

Operation of EUT during testing

Setup: Transmission mode

- Mobile phone information Model: iPhone XR Manufacturer: iPhone
- Wireless loading information Model: Q7-T

Report No.: TZ200601394-E1

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
1	Wideband Antenna	schwarzbeck	VULB 9163	958	2019/11/16	2022/11/15
2	EMI Test Receiver	R&S	ESCI	100849/003	2020/1/2	2021/1/1
3	Controller	MF	MF7802	N/A	N/A	N/A
4	RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	N/A	2020/1/2	2021/1/1
5	RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	N/A	2020/1/2	2021/1/1
6	RE test software	Tonscend	JS32-RE	V2.0.2.0	N/A	N/A
7	Loop Antenna	schwarzbeck	FMZB 1519 B	23	2019/11/16	2022/11/15
8	Artificial Mains	ROHDE & SCHWARZ	ENV 216	101333-IP	2020/1/2	2021/1/1
9	EMI Test Software	ROHDE & SCHWARZ	ESK1	V1.71	N/A	N/A
10	MXA Signal Analyzer	Keysight	N9020A	MY52091623	2020/1/2	2021/1/1

2.4 Measurement Instruments List

3 CONDUCTED EMISSION TEST

3.1 Block Diagram of Test Setup

3.2 Conducted Power Line Emission Limit

According to FCC Part 15.207(a)

Frequency	Maximum RF Line Voltage (dBµV)			
	CLAS	SS A	CLASS B	
(11112)	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207Line Conducted Emission Limit is same as above table.

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes
- 3.4 Test Result PASS

Temperature	22.8°C	Humidity	55%
Test Engineer	Tony Luo	Configurations	Mode 1

Please refer to following diagram for individual

Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit - Level

Test Specification: Neutral

Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit - Level

4 OCCUPIED BANDWIDTH

4.1 Block Diagram of Test Setup

4.2 Rules and specifications CFR 47 Part 15.215(c)

ANSI C63.10-2013

4.3 Test Procedure

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

4.4 Test Result PASS

Temperature 22.8°C		Humidity	dity 55%		
Test Engineer Tony		Tony Luo	Configurations	Mode 1	
Mode	Freq (KHz)	20dB Bandwidth (Hz)	Limit (kHz)	Conclusion	
Tx Mode	145	167.75	/	PASS	

5 RADIA TED EMISSIONS

5.1 Block Diagram of Test Setup

5.2 Rules and specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Limit	Distance
(MHz)	(dBuV/m)	(m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz								
9-150KHz 150-490KHz 490KHz-30MH								
Resolution Bandwidth	200Hz	9KHz	9KHz					
Video Bandwidth	2KHz	100KHz	100KHz					
Detector	Peak	Peak	Peak					
Trace Mode	Max Hold	Max Hold	Max Hold					
Sweep Time	Auto	Auto	Auto					

5.3 Test Procedure

Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31(f)(2), per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4 Test Result

PASS

Temperature	22.8°C	Humidity	55%
Test Engineer	Tony Luo	Configurations	Mode 1

For 9KHz-30MHz

Note: Measured at both 0 degree and 90 degree, recorded worst case at 90 degree.

Freq. (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.107	Peak	11.54	20.8	32.34	107.02	74.68
0.145	Peak	55.36	20.8	76.16	105.67	29.51
0.435	Peak	33.01	20.41	53.42	96.12	42.70
12.782	Peak	12.60	20.41	33.01	69.50	36.49

Remark : Actual FS = Reading + Factor; Margin = Limits - Actual FS

For 30MHz-1GHz

Antenna polarity: V

	—— PK Limi	t — QP Limit	AV Limit	— РК					
Suspected List									
NO.	Freq. [MHz]	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	49.400	27.35	-14.15	40.00	12.65	100	112	Vertical	
2	72.195	29.31	-18.62	40.00	10.69	100	84	Vertical	
3	119.725	31.19	-17.59	43.50	12.31	100	227	Vertical	
4	147.855	33.6	-19.18	43.50	9.90	100	333	Vertical	
5	192.475	31.36	-16.20	43.50	12.14	100	338	Vertical	
6	385.505	25.95	-10.44	46.50	20.55	100	33	Vertical	

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

Antenna polarity: H

	r re ciria	c cinic							
Suspected List									
NO.	Freq. [MHz]	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	49.885	18.94	-14.18	40.00	21.06	300	27	Horizontal	
2	72.195	19.27	-18.62	40.00	20.73	300	356	Horizontal	
3	120.695	23.3	-17.74	43.50	20.20	300	281	Horizontal	
4	192.475	25.93	-16.20	43.50	17.57	100	53	Horizontal	
5	253.100	24.22	-13.80	46.50	22.28	100	228	Horizontal	
6	385.505	25.46	-10.44	46.50	21.04	300	286	Horizontal	

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

6 ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA

7 PHOTOGRAPH OF TEST

7.1 Radiated Emission

7.2 Conducted Emission

8 PHOTOGRAPH OF EUT

Report No.: TZ200601394-E1

Internal Photos

******THE END*****