

Report No.: EED32N80049701 Page 1 of 45

TEST REPORT

Product robosen Mega Optimus Prime

Trade mark robosen

Model/Type reference QTZ-40-T-01

Serial Number N/A

Report Number EED32N80049701

FCC ID : 2ATNWOP40 Date of Issue : Mar. 01, 2021

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Robosen Robotics (ShenZhen) Co., Ltd. A2306, Bldg 11, Shenzhen Bay ECO-Tech Park, No.16, Gaoxin South Science and Tech Rd., Nanshan Dist., Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Mare Xm Ware Xin

Reviewed by:

Aaron Ma

Lavon Ma

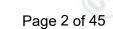
David Wang

Date:

Mar. 01, 2021

David Wang

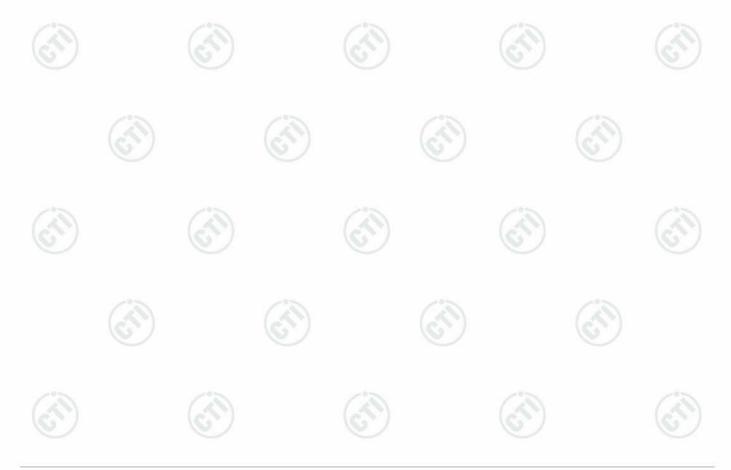
Check No.:4124270121



2 Version

Version No.	Date	(c	Description	Y)
00	Mar. 01, 2021		Original	
		(25)		

Report No. : EED32N80049701 Page 3 of 45


3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

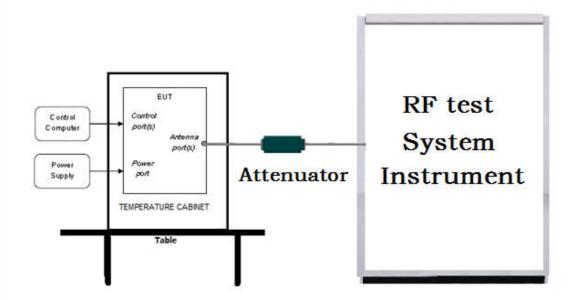
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Page 4 of 45 Report No.: EED32N80049701

+ Content					
COVER PAGE			•••••	•••••	1
VERSION			•••••		2
TEST SUMMARY		•••••	•••••	•••••	3
CONTENT				•••••	4
TEST REQUIREMENT.			•••••	•••••	5
5.1.2 For Radiated E	test setup Emissions test setup Emissions test setup				5
GENERAL INFORMAT	ON		•••••		7
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPT 6.3 PRODUCT SPECIFICA 6.4 DESCRIPTION OF SU 6.5 TEST LOCATION 6.6 DEVIATION FROM ST 6.7 ABNORMALITIES FRO 6.8 OTHER INFORMATION 6.9 MEASUREMENT UNC	ON OF EUT TION SUBJECTIVE TO THE PPORT UNITS ANDARDS M STANDARD CONDITION REQUESTED BY THE CU	IS STANDARD			
ZEQUIPMENT LIST				•••••	10
RADIO TECHNICAL RI					
Appendix B): AC Po Appendix C): Restrict	na Requirement wer Line Conducted En sted bands around fund ed Spurious Emissions.	nission amental frequency (R	adiated)		15
PHOTOGRAPHS OF TES	ST SETUP		,	•••••	30
PHOTOGRAPHS OF EU	CONSTRUCTIONAL	DETAILS			33



Report No.: EED32N80049701 Page 5 of 45

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

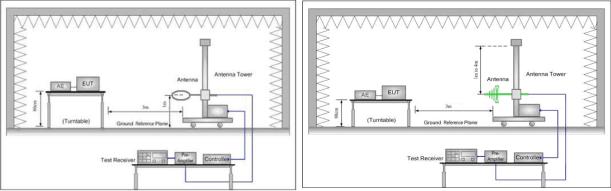


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

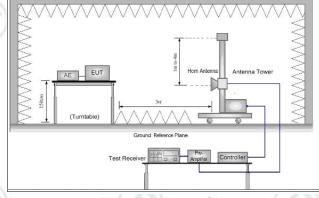
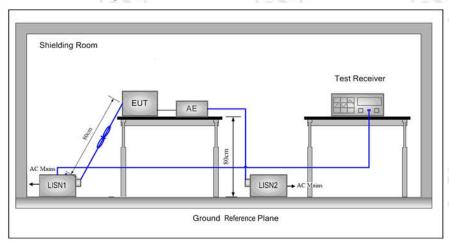
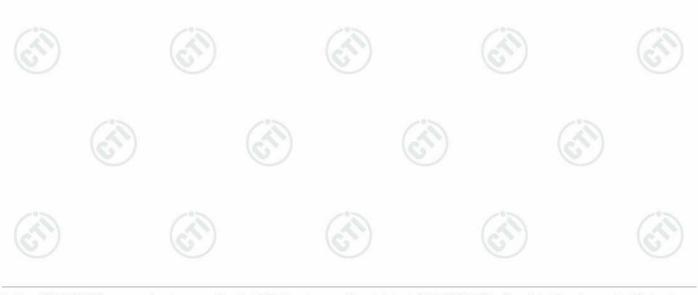



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(6)
Temperature:	24.0 °C		
Humidity:	53 % RH	DEC 160	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	TX/KX	Low(L)	Middle(M)	High(H)	
05014	0.4001411 0.400.1411	Channel 0	Channel 19	Channel 39	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Report No. : EED32N80049701 Page 7 of 45

6 General Information

6.1 Client Information

Applicant:	Robosen Robotics (ShenZhen) Co., Ltd.		
Address of Applicant:	A2306,Bldg 11, Shenzhen Bay ECO-Tech Park, No.16,Gaoxin South Science and Tech Rd., Nanshan Dist., Shenzhen,Guangdong,China		
Manufacturer:	Robosen Robotics (ShenZhen) Co., Ltd.		
Address of Manufacturer:	A2306,Bldg 11, Shenzhen Bay ECO-Tech Park, No.16,Gaoxin South Science and Tech Rd., Nanshan Dist., Shenzhen,Guangdong,China		
Factory:	Dongguan Viya Electronics Co., Ltd.		
Address of Factory: 7, Yihong Road, Yan Tian, Fengguang Dongguan City, Guangdong, G			

6.2 General Description of EUT

Product Name:	robosen	robosen Mega Optimus Prime				
Model No.(EUT):	QTZ-40-	QTZ-40-T-01				
Trade mark:	robosen	robosen				
EUT Supports Radios application:	4.2 BT S	4.2 BT Single mode, 2402MHz to 2480MHz				
~_~	D-#	KPL523653-35 12000mAh 11.1V 13.32Wh	1600			
Power Supply:	Battery	KPL723046-3S 12000mAh 11.1V 13.32Wh	(4)			
-0-	Adapter	GFD24-1262000U INPUT:100-240V 50/60Hz 1.0A OUTPUT:12.6V 2A				
Sample Received Date:	Jan. 15, 2021					
Sample tested Date:	Jan. 15,	Jan. 15, 2021 to Mar. 01, 2021				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(2)		(2)	
Bluetooth Version:	4.2	(0,)		(0,2)	
Modulation Technique:	DSSS				
Modulation Type:	GFSK				
Number of Channel:	40		(3)		60
Test Power Grade:	Default		(35)		(3)
Test Software of EUT:	BeeMPTool				
Antenna Type and Gain:	Type:PCB Antenna Gain: 3dBi				
Test Voltage:	DC 5V			(2)	

Page	О	٦f	15
Paue	О	OL	40

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Report No. : EED32N80049701 Page 9 of 45

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated oment name	Manufacturer	Model	S/N serial number	Certification	Supplied by
AE1	Notebook	DELL	DELL 3490	D245DX2	CE & FCC	DELL
		(8)				(28)

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE power conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32N80049701 Page 10 of 45

7 Equipment List

		RF test s	system			
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021	
High-pass filter	High-pass filter Sinoscite		(0.)		ـــ ک	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4				
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
PC-1	Lenovo	R4960d		0 7	(6)	
BT&WI-FI Automatic control	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(0)	(5)	

	Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100435	04-28-2020	04-27-2021						
Temperature/ Humidity Indicator	Defu	TH128		((I)						
LISN	R&S	ENV216	100098	03-05-2020	03-04-2021						
Barometer	changchun	DYM3	1188								

Page	1	1	of	15
Page	- 1	- 1	OI 4	40

	3M	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	10-17-2020	10-16-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/107 11112			(c/1)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		
Cable line	Fulai(3M)	SF106	5216/6A	/ -)
Cable line	Fulai(3M)	SF106	5217/6A	((((((((((((((((((((/

Page 12 of 45

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018 01-07-2021	01-16-2021 01-06-2024
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		(C)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(4)	
Cable line	Times	EMC104-NMNM- 1000	SN160710	(3)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		/30
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		(C)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32N80049701 Page 13 of 45

8 Radio Technical Requirements Specification

Reference documents for testing:

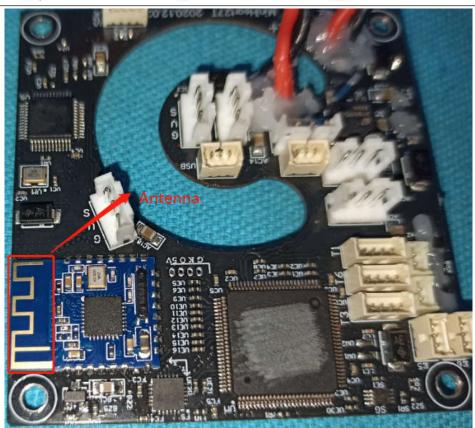
Г		(0)	
	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement Test method		Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Note 1
Part15C Section 15.247 (b)(3)	Part15C Section ANSI C63.10 Con		PASS	Note 1
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Note 1
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Note 1
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Note 1
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix A)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix B)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix C)
Part15C Section 15.205/15.209	ANSI C63 10 Radiated Spurious Emissions			

Note 1: The test data please refer to Appendix: Bluetooth LE of EED32N80049701

Appendix A): Antenna Requirement

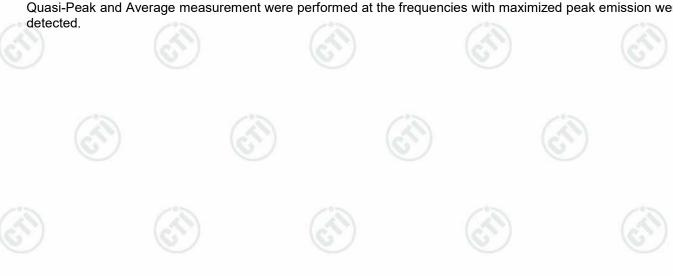

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

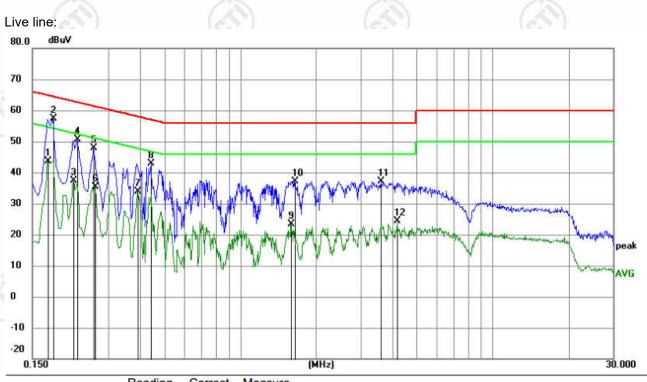
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3 dBi.

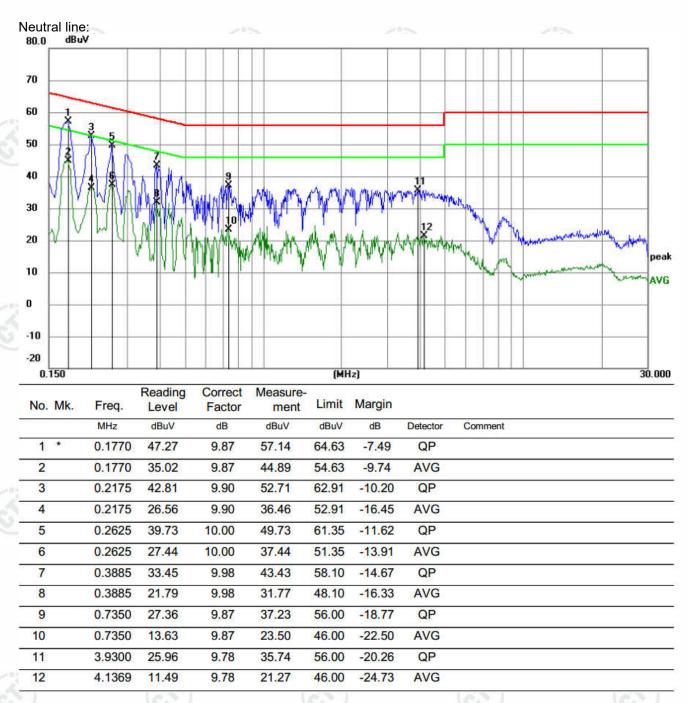


Report No.: EED32N80049701 Page 15 of 45

Appendix B): AC Power Line Conducted Emission


Test Procedure:	Test frequency range :150KHz-	30MHz		
	1)The mains terminal disturbance	ce voltage test was c	onducted in a shie	lded room.
	2) The EUT was connected to			
	Stabilization Network) which			
	power cables of all other un			
	which was bonded to the greater for the unit being measured			
	multiple power cables to a si exceeded.	-	•	
	3)The tabletop EUT was place reference plane. And for floo horizontal ground reference	or-standing arrangem		
	4) The test was performed with		eference plane. T	he rear of the
	EUT shall be 0.4 m from the	vertical ground refer	ence plane. The v	ertical ground
	reference plane was bonded			
	1 was placed 0.8 m from the	-		
	ground reference plane for plane. This distance was be			
	·	-		
	All other units of the EUT at	na associated equipm	ieni was ai ieasi t).8 m irom me
	All other units of the EUT ar LISN 2.	nd associated equipm	ient was at least t).8 m from the
	LISN 2. 5) In order to find the maximum	emission, the relativ	e positions of equ	ipment and all
	LISN 2. 5) In order to find the maximum of the interface cables m	emission, the relativ	e positions of equ	ipment and all
(A)	LISN 2. 5) In order to find the maximum	emission, the relativ	e positions of equ	ipment and all
Limit:	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement.	emission, the relativ	e positions of equi ccording to ANS	ipment and all
Limit:	LISN 2. 5) In order to find the maximum of the interface cables m	emission, the relativ	e positions of equi ccording to ANS	ipment and all
Limit:	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement.	emission, the relativ nust be changed a Limit (c	e positions of equiccording to ANS	ipment and all
Limit:	LISN 2. 5) In order to find the maximum of the interface cables m conducted measurement. Frequency range (MHz)	emission, the relativ nust be changed a Limit (c	e positions of equiccording to ANS	ipment and all
Limit:	LISN 2. 5) In order to find the maximum of the interface cables m conducted measurement. Frequency range (MHz) 0.15-0.5	Limit (c	e positions of equiccording to ANS IBµV) Average 56 to 46*	ipment and all
Limit:	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz.	Limit (concept) Quasi-peak 66 to 56* 56 60 with the logarithm of	e positions of equicoording to ANS BµV) Average 56 to 46* 46 50 the frequency in the	ipment and all
Limit:	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was a simulation of the maximum of the interface cables or conducted measurement.	Limit (concept) Quasi-peak 66 to 56* 56 60 with the logarithm of	e positions of equicoording to ANS BµV) Average 56 to 46* 46 50 the frequency in the	ipment and all
Limit: Measurement Data	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly with MHz to 0.50 MHz.	Limit (concept) Quasi-peak 66 to 56* 56 60 with the logarithm of	e positions of equicoording to ANS BµV) Average 56 to 46* 46 50 the frequency in the	ipment and all
Measurement Data An initial pre-scan wa	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was MHz to 0.50 MHz. NOTE: The lower limit is applicate specification.	Limit (concentration) Quasi-peak 66 to 56* 56 60 with the logarithm of able at the transition nes with peak detectors	e positions of equicording to ANS (BµV) Average 56 to 46* 46 50 the frequency in the frequency or.	ipment and all IC63.10 on he range 0.15
Measurement Data An initial pre-scan wa Quasi-Peak and Aver	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was MHz to 0.50 MHz. NOTE: The lower limit is application.	Limit (concentration) Quasi-peak 66 to 56* 56 60 with the logarithm of able at the transition nes with peak detectors	e positions of equicording to ANS (BµV) Average 56 to 46* 46 50 the frequency in the frequency or.	ipment and all IC63.10 on he range 0.15
Measurement Data An initial pre-scan wa Quasi-Peak and Aver	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was MHz to 0.50 MHz. NOTE: The lower limit is applicate specification.	Limit (concentration) Quasi-peak 66 to 56* 56 60 with the logarithm of able at the transition nes with peak detectors	e positions of equicording to ANS (BµV) Average 56 to 46* 46 50 the frequency in the frequency or.	ipment and all IC63.10 on he range 0.15
Measurement Data An initial pre-scan wa	LISN 2. 5) In order to find the maximum of the interface cables maximum conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was MHz to 0.50 MHz. NOTE: The lower limit is applicate specification.	Limit (concentration) Quasi-peak 66 to 56* 56 60 with the logarithm of able at the transition nes with peak detectors	e positions of equicording to ANS (BµV) Average 56 to 46* 46 50 the frequency in the frequency or.	ipment and all IC63.10 on he range 0.15

		Factor	ment	Limit	Margin		
MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
0.1725	33.76	9.87	43.63	54.84	-11.21	AVG	
0.1815	47.55	9.87	57.42	64.42	-7.00	QP	
0.2175	27.57	9.90	37.47	52.91	-15.44	AVG	
0.2265	40.65	9.92	50.57	62.58	-12.01	QP	
0.2625	37.80	10.00	47.80	61.35	-13.55	QP	
0.2670	25.27	10.00	35.27	51.21	-15.94	AVG	
0.3930	23.93	9.98	33.91	48.00	-14.09	AVG	
0.4425	32.87	9.96	42.83	57.01	-14.18	QP	
1.5900	13.53	9.81	23.34	46.00	-22.66	AVG	
1.6395	27.34	9.80	37.14	56.00	-18.86	QP	
3.6150	27.34	9.78	37.12	56.00	-18.88	QP	
4.2000	14.65	9.78	24.43	46.00	-21.57	AVG	
X	0.1815 0.2175 0.2265 0.2625 0.2670 0.3930 0.4425 1.5900 1.6395 3.6150	0.1815 47.55 0.2175 27.57 0.2265 40.65 0.2625 37.80 0.2670 25.27 0.3930 23.93 0.4425 32.87 1.5900 13.53 1.6395 27.34 3.6150 27.34	0.1815 47.55 9.87 0.2175 27.57 9.90 0.2265 40.65 9.92 0.2625 37.80 10.00 0.2670 25.27 10.00 0.3930 23.93 9.98 0.4425 32.87 9.96 1.5900 13.53 9.81 1.6395 27.34 9.80 3.6150 27.34 9.78	0.1815 47.55 9.87 57.42 0.2175 27.57 9.90 37.47 0.2265 40.65 9.92 50.57 0.2625 37.80 10.00 47.80 0.2670 25.27 10.00 35.27 0.3930 23.93 9.98 33.91 0.4425 32.87 9.96 42.83 1.5900 13.53 9.81 23.34 1.6395 27.34 9.80 37.14 3.6150 27.34 9.78 37.12	0.1815 47.55 9.87 57.42 64.42 0.2175 27.57 9.90 37.47 52.91 0.2265 40.65 9.92 50.57 62.58 0.2625 37.80 10.00 47.80 61.35 0.2670 25.27 10.00 35.27 51.21 0.3930 23.93 9.98 33.91 48.00 0.4425 32.87 9.96 42.83 57.01 1.5900 13.53 9.81 23.34 46.00 1.6395 27.34 9.80 37.14 56.00 3.6150 27.34 9.78 37.12 56.00	0.1815 47.55 9.87 57.42 64.42 -7.00 0.2175 27.57 9.90 37.47 52.91 -15.44 0.2265 40.65 9.92 50.57 62.58 -12.01 0.2625 37.80 10.00 47.80 61.35 -13.55 0.2670 25.27 10.00 35.27 51.21 -15.94 0.3930 23.93 9.98 33.91 48.00 -14.09 0.4425 32.87 9.96 42.83 57.01 -14.18 1.5900 13.53 9.81 23.34 46.00 -22.66 1.6395 27.34 9.80 37.14 56.00 -18.86 3.6150 27.34 9.78 37.12 56.00 -18.88	0.1815 47.55 9.87 57.42 64.42 -7.00 QP 0.2175 27.57 9.90 37.47 52.91 -15.44 AVG 0.2265 40.65 9.92 50.57 62.58 -12.01 QP 0.2625 37.80 10.00 47.80 61.35 -13.55 QP 0.2670 25.27 10.00 35.27 51.21 -15.94 AVG 0.3930 23.93 9.98 33.91 48.00 -14.09 AVG 0.4425 32.87 9.96 42.83 57.01 -14.18 QP 1.5900 13.53 9.81 23.34 46.00 -22.66 AVG 1.6395 27.34 9.80 37.14 56.00 -18.86 QP 3.6150 27.34 9.78 37.12 56.00 -18.88 QP



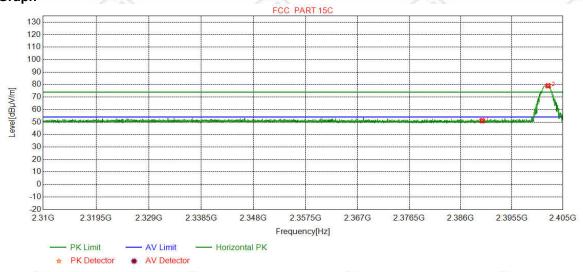
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

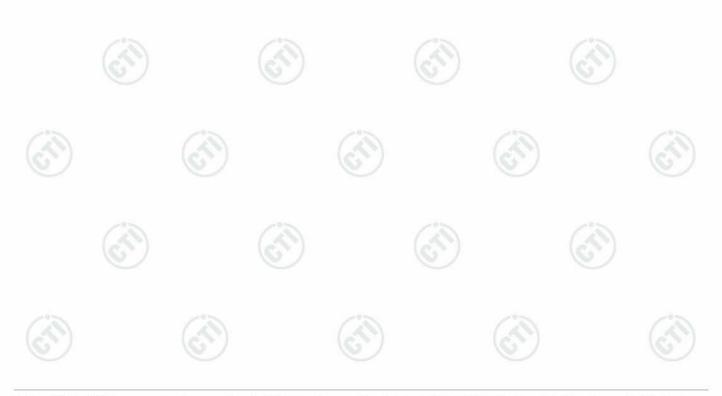
Report No. : EED32N80049701 Page 18 of 45

Appendix C): Restricted bands around fundamental frequency (Radiated)

(Itaaiatea)	1,000,000	100				
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A1 4011	Peak	1MHz	3MHz	Peak	- 10 to
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Test method Refer as KDB a. The EUT was placed o at a 3 meter semi-aneo	558074 D01 , S n the top of a rot hoic camber. Th	ating table e table wa	e 0.8 meter		
	determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is a determine the maximur polarizations of the ante d. For each suspected en the antenna was tuned was turned from 0 degre e. The test-receiver syste Bandwidth with Maximus f. Place a marker at the ef frequency to show com bands. Save the spectr for lowest and highest of	ters away from to post of a variable-horaried from one rome value of the field and are set to romission, the EUT to heights from the ees to 360 degreem was set to Perum Hold Mode. The pliance of the restrict pliance. Also merum analyzer ploof the post of the test of the restrict of the	he interfer eight anter meter to food strength nake the mas arrand meter to bees to find ak Detect ted band of easure any	nna tower. bur meters n. Both hor neasurement ged to its notes a the maxim Function a closest to the remissions	above the gro rizontal and vent. worst case ar and the rotata num reading. nd Specified ne transmit s in the restric	ound t ertical nd the able cted
	g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the loi. The radiation measured Transmitting mode, and	e is the test site, ber change form 1 meter and table west channel, the ments are perford found the X axi	table 0.8 is 1.5 med he Highest med in X, is positioni	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Abo positioning for t is worse cas	ove -
(6,	j. Repeat above procedu	rae until all fragu	anaiaa ma	easured wa		
imit:						
imit:	Frequency	Limit (dBµV/ı	m @3m)	Rer	mark	
imit:	30MHz-88MHz	Limit (dBµV/ı	m @3m)	Rer Quasi-pe	mark eak Value	
imit:	30MHz-88MHz 88MHz-216MHz	Limit (dBµV/ii 40.0 43.5	m @3m)	Rer Quasi-pe Quasi-pe	mark eak Value eak Value	
imit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	Limit (dBµV/ii 40.0 43.5 46.0	n @3m)	Rer Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value eak Value	Ci.
imit:	30MHz-88MHz 88MHz-216MHz	Limit (dBµV/ii 40.0 43.5	n @3m)	Rer Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value	
.imit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	Limit (dBµV/ii 40.0 43.5 46.0	m @3m)	Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	mark eak Value eak Value eak Value	ci ^{ri}
Limit:	30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	Limit (dBµV/ii 40.0 43.5 46.0 54.0	m @3m)	Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	mark eak Value eak Value eak Value eak Value	



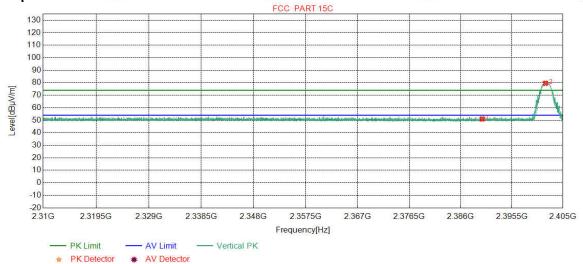
Report No.: EED32N80049701 Page 19 of 45

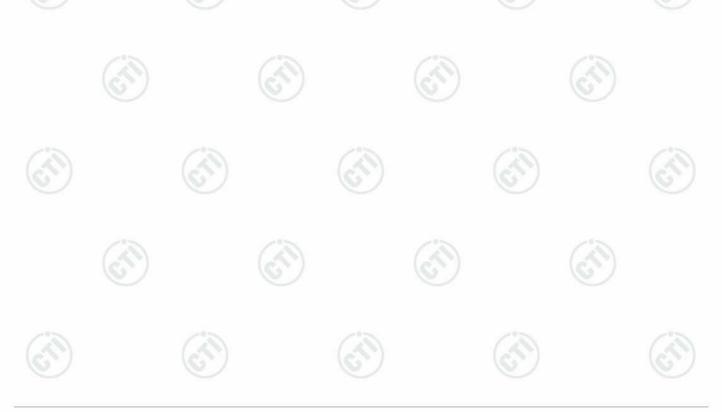

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.55	51.05	74.00	22.95	Pass	Horizontal
2	2402.2512	32.26	13.31	-43.12	76.55	79.00	74.00	-5.00	Pass	Horizontal

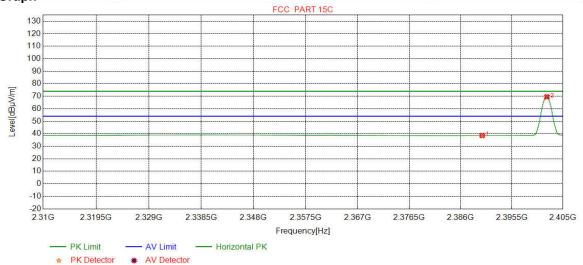


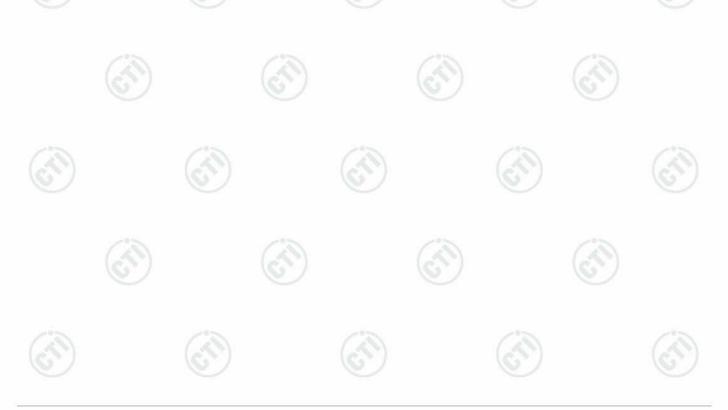

Page	20	of	45
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.51	51.01	74.00	22.99	Pass	Vertical
2	2401.7571	32.26	13.31	-43.12	77.10	79.55	74.00	-5.55	Pass	Vertical

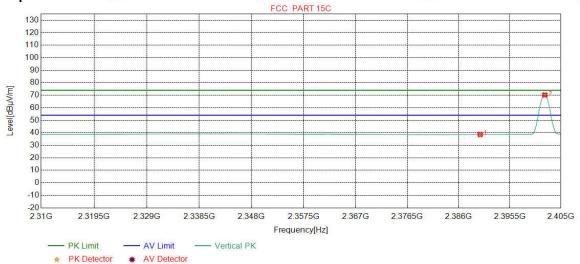


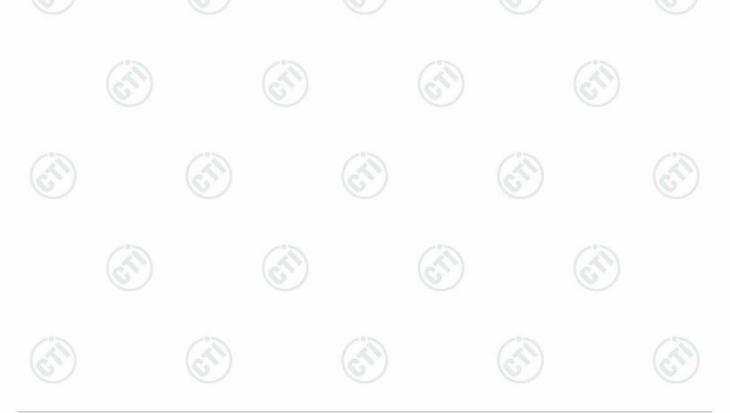

Page	21	of 45
------	----	-------

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.08	38.58	54.00	15.42	Pass	Horizontal
2	2402.0168	32.26	13.31	-43.12	67.06	69.51	54.00	-15.51	Pass	Horizontal

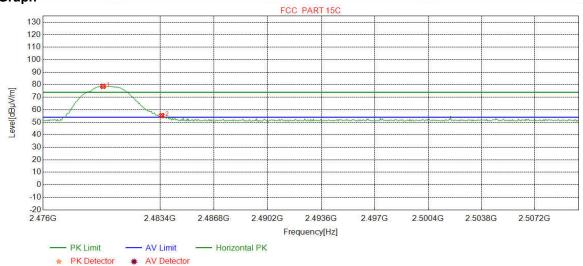


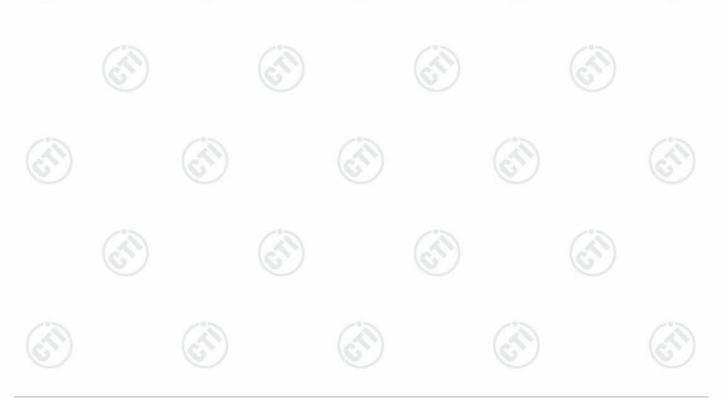

Page	22	of	45
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.11	38.61	54.00	15.39	Pass	Vertical
2	2402.0041	32.26	13.31	-43.12	67.81	70.26	54.00	-16.26	Pass	Vertical

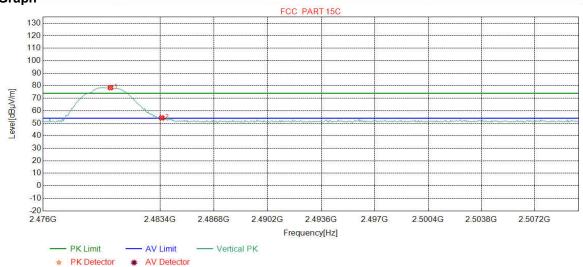


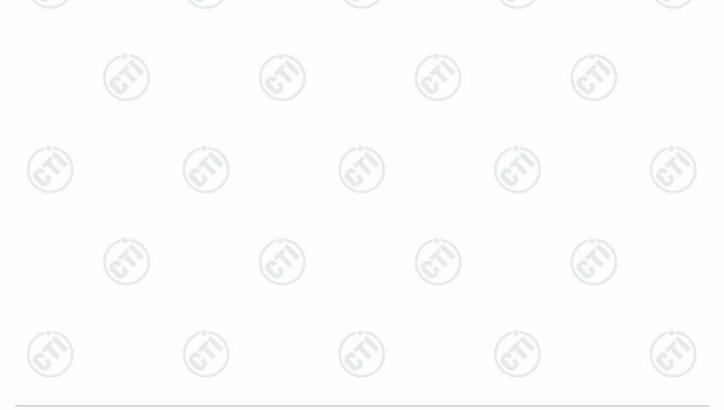

Page	23	of	45
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7872	32.37	13.39	-43.10	76.06	78.72	74.00	-4.72	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	52.66	55.31	74.00	18.69	Pass	Horizontal

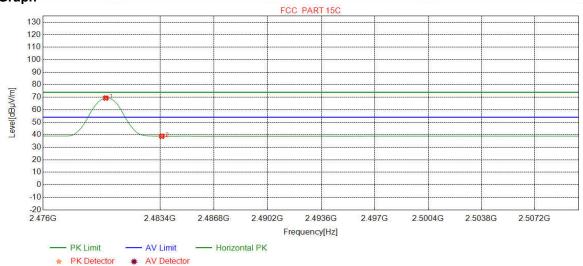


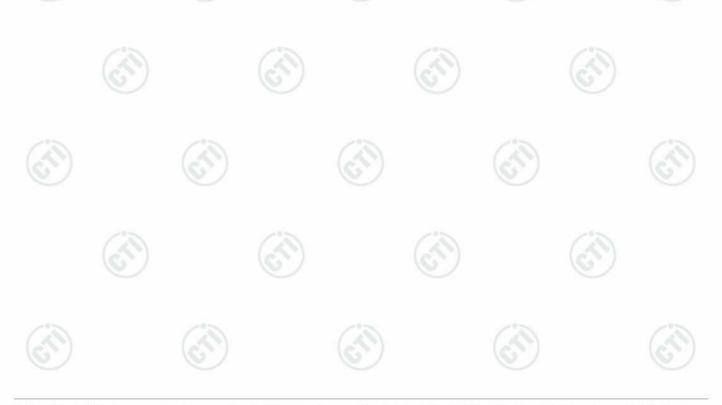

Page 2	24 of	45
--------	-------	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.2553	32.37	13.39	-43.10	75.78	78.44	74.00	-4.44	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	51.60	54.25	74.00	19.75	Pass	Vertical

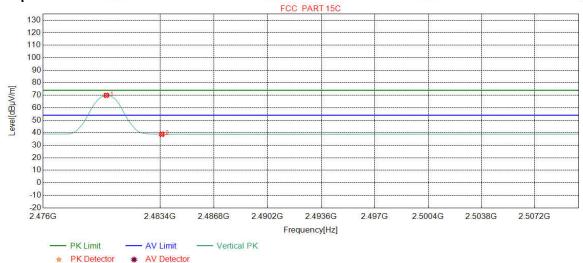



Page	25	of	45
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

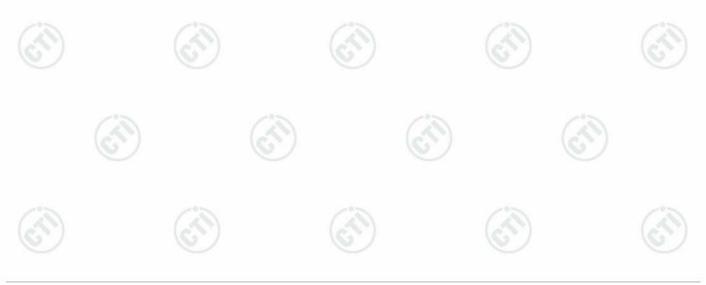
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9574	32.37	13.39	-43.10	66.69	69.35	54.00	-15.35	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.17	38.82	54.00	15.18	Pass	Horizontal



Report No. : EED32N80049701 Page 26 of 45

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0000	32.37	13.39	-43.10	67.27	69.93	54.00	-15.93	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.19	38.84	54.00	15.16	Pass	Vertical

Note

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32N80049701 Page 27 of 45

Appendix D) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	130
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(6)
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

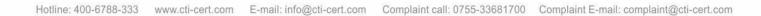
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

					٠	٠		
	ı	r	Υ	٦	ı	t	•	
Ц	ı	ı		ı	ı	ι		

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Report No. : EED32N80049701 Page 28 of 45

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode	e:		BLE G	SK Trans	smitting			Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	36.5967	11.21	0.67	-31.38	52.44	32.94	40.00	7.06	Pass	Н	PK
2	45.7156	13.20	0.76	-31.77	51.66	33.85	40.00	6.15	Pass	Н	PK
3	197.7298	10.68	1.66	-31.92	56.36	36.78	43.50	6.72	Pass	Н	PK
4	479.9310	16.68	2.61	-31.90	43.00	30.39	46.00	15.61	Pass	Н	PK
5	600.0290	19.00	2.96	-31.50	41.63	32.09	46.00	13.91	Pass	Н	PK
6	844.9785	21.44	3.50	-31.82	36.85	29.97	46.00	16.03	Pass	Н	PK
7	35.5296	10.87	0.66	-31.41	52.42	32.54	40.00	7.46	Pass	V	PK
8	45.5216	13.20	0.76	-31.76	50.40	32.60	40.00	7.40	Pass	V	PK
9	130.0170	7.70	1.33	-32.02	53.59	30.60	43.50	12.90	Pass	V	PK
10	240.0260	11.94	1.84	-31.90	52.45	34.33	46.00	11.67	Pass	V	PK
11	487.9828	16.81	2.64	-31.89	42.08	29.64	46.00	16.36	Pass	V	PK
12	838.3818	21.36	3.50	-31.91	46.56	39.51	46.00	6.49	Pass	V	PK

Transmitter Emission above 1GHz

Transmitter Emission above Total											
Mode:			BLE GFSK Transmitting					Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1327.8328	28.23	2.79	-42.76	54.79	43.05	74.00	30.95	Pass	Н	PK
2	1814.6815	30.48	3.34	-42.75	50.67	41.74	74.00	32.26	Pass	Н	PK
3	3069.0046	33.23	4.79	-43.10	50.11	45.03	74.00	28.97	Pass	Н	PK
4	5024.1349	34.52	4.85	-42.79	50.26	46.84	74.00	27.16	Pass	Н	PK
5	7206.2804	36.31	5.81	-42.16	52.02	51.98	74.00	22.02	Pass	Н	PK
6	10596.506	38.52	6.92	-42.00	49.42	52.86	74.00	21.14	Pass	Н	PK
7	1328.2328	28.23	2.79	-42.76	59.43	47.69	74.00	26.31	Pass	V	PK
8	1937.8938	31.29	3.42	-43.05	55.32	46.98	74.00	27.02	Pass	V	PK
9	3006.0004	33.20	4.92	-43.10	50.05	45.07	74.00	28.93	Pass	V	PK
10	5004.1336	34.50	4.82	-42.79	50.01	46.54	74.00	27.46	Pass	V	PK
11	7205.2804	36.31	5.82	-42.17	53.79	53.75	74.00	20.25	Pass	V	PK
12	10628.508	38.53	6.97	-42.00	48.88	52.38	74.00	21.62	Pass	V	PK

Report No.: EED32N80049701 Page 29 of 45

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1331.6332	28.23	2.79	-42.75	52.28	40.55	74.00	33.45	Pass	Н	PK
2	1996.4997	31.68	3.47	-43.20	53.89	45.84	74.00	28.16	Pass	Н	PK
3	5061.1374	34.56	4.86	-42.78	50.71	47.35	74.00	26.65	Pass	Н	PK
4	7320.2880	36.42	5.85	-42.14	52.29	52.42	74.00	21.58	Pass	Н	PK
5	8396.3598	36.56	6.32	-42.04	50.28	51.12	74.00	22.88	Pass	Н	PK
6	10413.494	38.38	7.15	-42.02	49.11	52.62	74.00	21.38	Pass	Н	PK
7	1331.6332	28.23	2.79	-42.75	58.28	46.55	74.00	27.45	Pass	V	PK
8	1914.4914	31.14	3.42	-42.99	54.96	46.53	74.00	27.47	Pass	V	PK
9	3986.0657	33.79	4.33	-43.00	49.62	44.74	74.00	29.26	Pass	V	PK
10	5007.1338	34.51	4.83	-42.80	51.70	48.24	74.00	25.76	Pass	V	PK
11	7321.2881	36.42	5.85	-42.13	53.30	53.44	74.00	20.56	Pass	V	PK
12	10422.494	38.39	7.12	-42.01	48.60	52.10	74.00	21.90	Pass	V	PK

Mode:			BLE GF	SK Transn	nitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1333.0333	28.23	2.80	-42.75	52.36	40.64	74.00	33.36	Pass	Н	PK
2	1681.8682	29.60	3.18	-42.70	50.92	41.00	74.00	33.00	Pass	Н	PK
3	2176.7177	31.95	3.65	-43.17	51.21	43.64	74.00	30.36	Pass	Н	PK
4	3911.0607	33.73	4.34	-43.02	49.54	44.59	74.00	29.41	Pass	Н	PK
5	7439.2960	36.54	5.85	-42.11	51.54	51.82	74.00	22.18	Pass	Н	PK
6	9601.4401	37.64	6.61	-42.10	49.96	52.11	74.00	21.89	Pass	Н	PK
7	1331.6332	28.23	2.79	-42.75	59.82	48.09	74.00	25.91	Pass	V	PK
8	1975.8976	31.54	3.45	-43.14	55.80	47.65	74.00	26.35	Pass	V	PK
9	3202.0135	33.28	4.64	-43.10	49.58	44.40	74.00	29.60	Pass	V	PK
10	5013.1342	34.51	4.84	-42.80	50.53	47.08	74.00	26.92	Pass	V	PK
11	7441.2961	36.54	5.85	-42.11	53.25	53.53	74.00	20.47	Pass	V	PK
12	9785.4524	37.71	6.61	-42.10	49.28	51.50	74.00	22.50	Pass	V	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.