

Product

TEST REPORT

Trade mark
Model/Type reference
Serial Number
Report Number
FCC ID
Date of Issue
Test Standards
Test result

- : Robosen Elite Optimus Prime Roller
- : robosen
- : GZ30, GZ40
- : N/A
- : EED32O80874101
- : 2ATNWGZ3040
- : Jul. 26, 2022
- : 47 CFR Part 15 Subpart C
- : PASS

Prepared for:

Robosen Robotics (ShenZhen) Co., Ltd A3703, Bldg 11, Shenzhen Bay ECO-Tech Park, No.16,Gaoxin South Science and Tech Rd., Nanshan Dist. Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

	Compiled by:	Jerazer. Li	Reviewed by:	Tom chen	
ESTING	Approved by: G	Frazer Li Lavon Ma	Date:	Tom Chen Jul. 26, 2022	
ENTRE TE	Report Seal	Aaron Ma		Check No.: 3233	170622

Page 2 of 51

1 COVER PAGE 2 CONTENT					 	
3 VERSION						
4 TEST SUMMARY						
5 GENERAL INFOR	MATION				 	
5.1 CLIENT INFORM 5.2 GENERAL DESC 5.3 TEST CONFIGUE 5.4 TEST ENVIRONE 5.5 DESCRIPTION O 5.6 TEST LOCATION	CRIPTION OF EL RATION MENT NF SUPPORT UN	JT		٢	 ٢	
5.7 MEASUREMENT 6 EQUIPMENT LIST		`		, ,		
7 TEST RESULTS A 7.1 ANTENNA REQU 7.2 CONDUCTED EN 7.3 MAXIMUM CONI 7.4 DTS BANDWIDT 7.5 MAXIMUM POW	JIREMENT MISSIONS DUCTED OUTPU TH	JT POWER				
7.1 ANTENNA REQU 7.2 CONDUCTED EN 7.3 MAXIMUM CONI 7.4 DTS BANDWIDT 7.5 MAXIMUM POW 7.6 BAND EDGE ME 7.7 RADIATED SPUR 8 APPENDIX A	JIREMENT MISSIONS DUCTED OUTPL TH ER SPECTRAL I EASUREMENTS / RIOUS EMISSIO	JT POWER Density and Condu n & Restri	CTED SPURIC CTED BANDS.	US EMISSION.	 ٢	
 7.1 ANTENNA REQUING 7.2 CONDUCTED EN 7.3 MAXIMUM CONTINUM 7.4 DTS BANDWIDTING 7.5 MAXIMUM POW 7.6 BAND EDGE ME 7.7 RADIATED SPUE 8 APPENDIX A 9 PHOTOGRAPHS (JIREMENT MISSIONS DUCTED OUTPU TH ER SPECTRAL I EASUREMENTS / RIOUS EMISSIO	JT POWER DENSITY AND CONDU N & RESTRI UP	CTED SPURIC CTED BANDS.	US EMISSION.	٢	
 7.1 ANTENNA REQUING 7.2 CONDUCTED EN 7.3 MAXIMUM CONTINUM 7.4 DTS BANDWIDTING 7.5 MAXIMUM POW 7.6 BAND EDGE ME 7.7 RADIATED SPUE 8 APPENDIX A 9 PHOTOGRAPHS (JIREMENT MISSIONS DUCTED OUTPU TH ER SPECTRAL I EASUREMENTS / RIOUS EMISSIO OF TEST SET OF EUT CON	JT POWER DENSITY AND CONDU N & RESTRI UP	CTED SPURIC CTED BANDS.	US EMISSION.	٢	
7.2 CONDUCTED EN 7.3 MAXIMUM CONE 7.4 DTS BANDWIDT 7.5 MAXIMUM POW 7.6 BAND EDGE ME 7.7 RADIATED SPUE 8 APPENDIX A 9 PHOTOGRAPHS (10 PHOTOGRAPHS	JIREMENT MISSIONS DUCTED OUTPU TH ER SPECTRAL I EASUREMENTS / RIOUS EMISSIO OF TEST SET OF EUT CON	JT POWER DENSITY AND CONDU N & RESTRI UP ISTRUCTIO	CTED SPURIC CTED BANDS.	US EMISSION.		

Vorsion

	Version No.	Date	6	Description	9
	00	Jul. 26, 2022		Original	
ŝ	2	1	10	(°)	100
	(6	59)	$\left(c^{(S)} \right)$	(25)	(6)

4 Test Summary

Page 4 of 51

r rest Summary		
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS
(65) (6		(6))

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

model No.:GZ30,GZ40

Only the model of GZ30 was tested. And only the model name is different among all models, representing different shell colors and customers. The circuit principle, safety structure and key components are the same, and the differences do not affect product safety and electromagnetic compatibility performance.

5 General Information

5.1 Client Information

Applicant:	Robosen Robotics (ShenZhen) Co., Ltd
Address of Applicant:	A3703, Bldg 11, Shenzhen Bay ECO-Tech Park, No.16,Gaoxin South Science and Tech Rd., Nanshan Dist. Shenzhen, Guangdong, China
Manufacturer:	Robosen Robotics (ShenZhen) Co., Ltd
Address of Manufacturer:	A3703, Bldg 11, Shenzhen Bay ECO-Tech Park, No.16,Gaoxin South Science and Tech Rd., Nanshan Dist. Shenzhen, Guangdong, China
Factory:	Dongguan Wirear Electronics Limited.
Address of Factory:	No. 7, Yihong Road, Changtang Industrial Zone, Yantian Village, Fenggang Town, Dongguan City, Guangdong Province, China

5.2 General Description of EUT

Product Name:	Robosen Eli	ite Optimus Prime Roller	
Model No.:	GZ30, GZ40)	
Test Model No.:	GZ30		
Trade mark:	robosen		e
Product Type:	Portable		
Operation Frequency:	2402MHz~2	2480MHz	
Modulation Type:	GFSK		12
Transfer Rate:	⊠1Mbps [⊠ 2Mbps	
Number of Channel:	40		
Antenna Type:	Internal Ante	enna	
Antenna Gain:	-0.8dBi		
Power Supply:	Adapter 1:	MODEL:ZL-030CL1262000US01 INPUT:100-240V~50/60Hz,1.2A Max OUTPUT:12.6V,2000mA	(C)
(A)	Adapter 2:	MODEL:GFD24-1262000U INPUT:100-240V~50/60Hz,1.0A Max OUTPUT:12.6V,2A	
	Battery:	DC 11.1V,850mAh,9.435Wh	
Test Voltage:	DC 11.1V		(°2)
Sample Received Date:	Jun. 25, 202	22	
Sample tested Date:	Jun. 25, 202	22 to Jul. 08, 2022	U

Page 5 of 51

Chan	nel Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

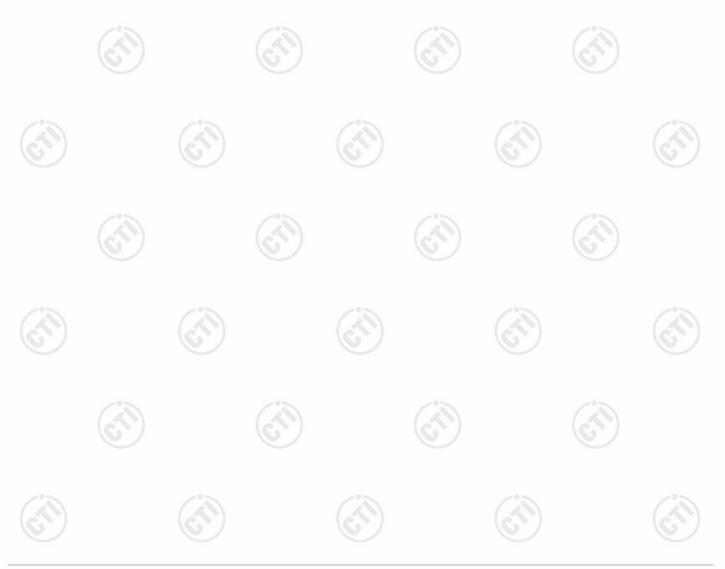
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Chai	nnel	Frequency	
The lowest ch	nannel (CH0)	2402MHz	
The middle ch	iannel (CH19)	2440MHz	
The highest ch	nannel (CH39)	2480MHz	

5.3 Test Configuration

EUT Test Software	e Settings:						
Software:	runui (m	runui (manufacturer declare)					
EUT Power Grade:	default (selected		set parameters and c	annot be changed and			
Use test software to transmitting of the E		ncy, the middle freque	ncy and the highest f	frequency keep			
Test Mode	Modulation	Rate	Channel	Frequency(MHz)			
Mode a	GFSK	1Mbps	СН0	2402			
Mode b	GFSK	1Mbps	CH19	2440			
Mode c	GFSK	1Mbps	СН39	2480			
Mode d	GFSK	2Mbps	СН0	2402			
Mode e	GFSK	2Mbps	CH19	2440			
Mode f	GFSK	2Mbps	CH39	2480			



5.4 Test Environment

	Operating Environment	::				
200	Radiated Spurious Emi	ssions:				
AN.	Temperature:	22~25.0 °C	(2)			(2)
2	Humidity:	50~55 % RH		C		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C			(a)	
	Humidity:	50~55 % RH	6)		$\langle \mathcal{O} \rangle$	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
	Temperature:	22~25.0 °C	2	(3)		13
(T)	Humidity:	50~55 % RH	S*)	(c^{γ})		(c^{γ})
State of the second sec	Atmospheric Pressure:	1010mbar		J		U

Page 8 of 51

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	ASUSTek		FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

7 Measurement Uncertainty (95% confidence levels, k=2)

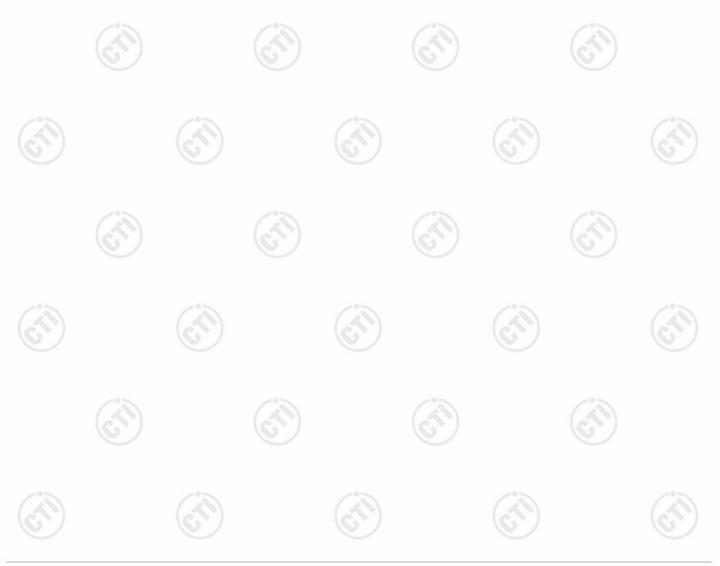
No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
	RF power, conducted	0.55dB (1GHz-40GHz)
2		3.3dB (9kHz-30MHz)
2	Dedicted Source emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

Page 9 of 51

16.21	10.2	1	10.21	10	28.1	
	r	RF test	system		1	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022	
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022	
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022	
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022	
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022	
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022	
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(6	- (1)	

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-06-2022	05-05-2023		
Temperature/ Humidity Indicator	Defu	TH128	/				
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023		
Barometer	changchun	DYM3	1188	/			



Page 10 of 51

	3M S	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	ток	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
Multi device Controller	maturo	NCD/070/107 11112			(24)
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/15/2021	04/14/2024
Spectrum Analyzer	R&S	FSP40	100416	04/01/2022	03/31/2023
Microwave Preamplifier	Agilent	8449B	3008A024 25	06/20/2022	06/19/2023
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-15-2021	04-14-2024

Page 11 of 51

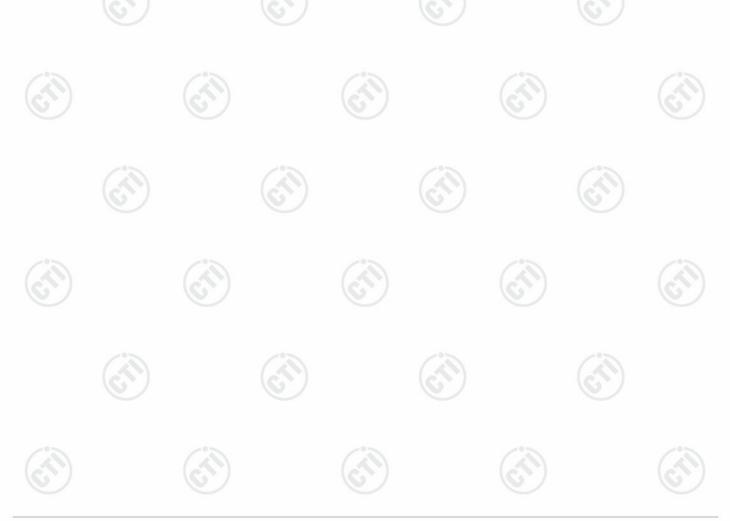
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set R&S		CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	трк	FAC-3	$(\underline{\circ})$	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	- 6	-
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	9	6
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		/
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u> </u>	-(2
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u> </u>	0

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

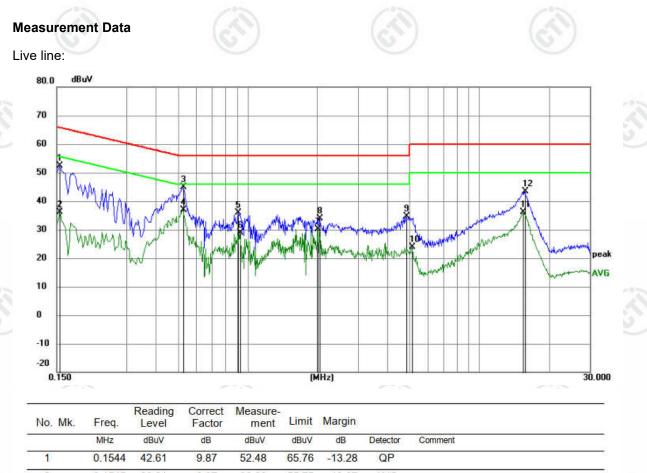

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos

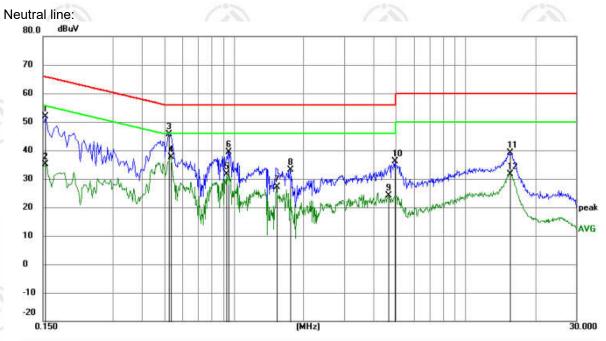
The antenna is Internal antenna. The best case gain of the antenna is -0.8dBi.


Page 13 of 51

Test Requirement:	47 CFR Part 15C Section 15.2	07	(G)	
Test Method:	ANSI C63.10: 2013		\sim	
Test Frequency Range				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv			
Limit:	Frequency range (MHz)	Limit (d		12
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	2
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test Setup:				
	AC Mains	AE	Test Receiver	
Test Procedure:	 The mains terminal disturbation. The EUT was connected Impedance Stabilization Netimpedance. The power of connected to a second LISI plane in the same way as multiple socket outlet stription single LISN provided the rational structure of the second reference plane. An placed on the horizontal ground reference plane. The LISN unit under test and bond mounted on top of the grout the closest points of the LISN points. 	to AC power source etwork) which provides cables of all other of N 2, which was bonder is the LISN 1 for the was used to connect n ting of the LISN was n ced upon a non-metal of for floor-standing ar bund reference plane. In a vertical ground refer rom the vertical ground plane was bonded to 1 was placed 0.8 m ded to a ground refer nd reference plane. The ISN 1 and the EUT. A	through a LISN 1 a $50\Omega/50\mu$ H + 5Ω units of the EUT d to the ground refe unit being measur nultiple power cable ot exceeded. llic table 0.8m above rangement, the EU erence plane. The n nd reference plane to the horizontal g from the boundary erence plane for his distance was be all other units of the	(Lir line: we rerend red. es to ve th T wa rear e. Th grour of th LISN
Test Mode:	 and associated equipment v 5) In order to find the maximu and all of the interface cab ANSI C63.10: 2013 on cond All modes were tested, only the 	was at least 0.8 m fron m emission, the relativ les must be changed a ducted measurement.	n the LISN 2. ve positions of equi according to	pme

Page 14 of 51

	AVG	-19.67	55.75	36.08	9.87	26.21	0.1545	2
	QP	-11.24	56.00	44.76	9.98	34.78	0.5279	3
	AVG	-9.14	46.00	36.86	9.98	26.88	0.5279	4 *
742	QP	-20.13	56.00	35.87	9.85	26.02	0.9104	5
-	AVG	-17.07	46.00	28.93	9.85	19.08	0.9239	6
	AVG	-15.88	46.00	30.12	9.79	20.33	2.0084	7
	QP	-22.20	56.00	33.80	9.79	24.01	2.0444	8
35 35	QP	-21.37	56.00	34.63	9.78	24.85	4.8300	9
	AVG	-26.13	50.00	23.87	9.78	14.09	5.1225	10
	AVG	-13.93	50.00	36.07	9.93	26.14	15.4455	11
	QP	-16.73	60.00	43.27	9.94	33.33	15,7380	12

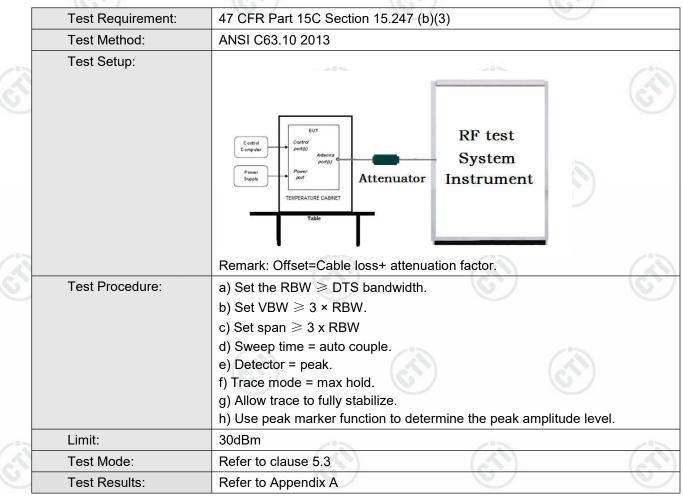

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 51

No. N	٨k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1539	41.89	9.87	51.76	65.79	-14.03	QP		
2		0.1539	25.26	9.87	35.13	55.79	-20.66	AVG		
3		0.5235	35.56	9.98	45.54	56.00	-10.46	QP		
4 *	*	0.5322	27.53	9.99	37.52	46.00	-8.48	AVG		
5		0.9282	21.85	9.84	31.69	46.00	-14.31	AVG		
6		0.9481	29.51	9.84	39.35	56.00	-16.65	QP		
7		1.5274	17.41	9.81	27.22	46.00	-18.78	AVG		
8		1.7437	23.42	9.80	33.22	56.00	-22.78	QP		
9		4.6469	14.38	9.78	24.16	46.00	-21.84	AVG		
10		4.9519	26.34	9.78	36.12	56.00	-19.88	QP		
11	ŝ	15.5523	29.28	9.93	39.21	60.00	-20.79	QP		
12	2	15.5523	21.82	9.93	31.75	50.00	-18.25	AVG		

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 51

7.3 Maximum Conducted Output Power

7.4 DTS Bandwidth

Te	est Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Τe	est Method:	ANSI C63.10 2013
Te	est Setup:	
		Control Control Control Control Power portp Tel/PERATURE CABRET Table
3		Remark: Offset=Cable loss+ attenuation factor.
Τe	est Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Li	mit:	≥ 500 kHz
Te	est Mode:	Refer to clause 5.3
Τe	est Results:	Refer to Appendix A

Page 18 of 51

7.5 Maximum Power Spectral Density

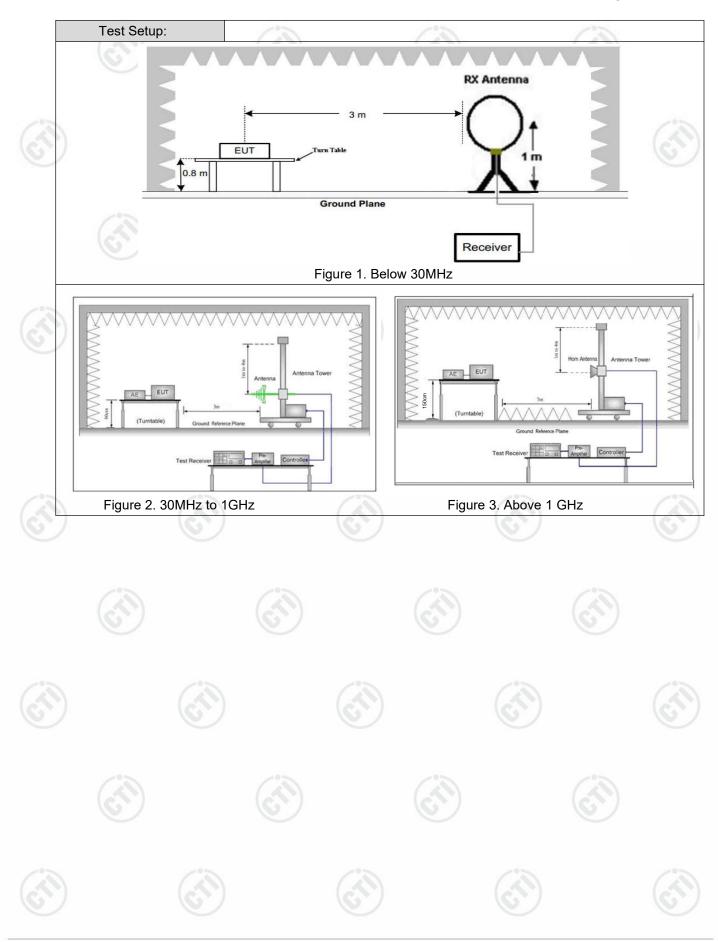
	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
3	Test Setup:	
		Control Computer Computer Suppr Power Suppr TemPerature cabnet Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
	Limit:	≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A



Page 19 of 51

7.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 51


7.7 Radiated Spurious Emission & Restricted bands

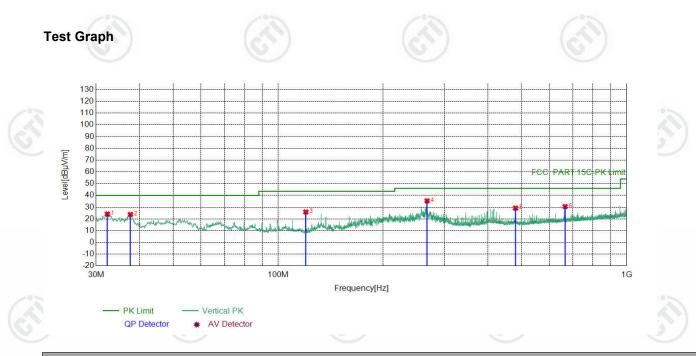
	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C	/
	Test Method:	ANSI C63.10 2013						
	Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)		
	Receiver Setup:	Frequency	2	Detector	RBW)	VBW	Remark
6		0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz		Peak
		0.009MHz-0.090MH	z	Average	10kHz	<u>z</u> ;	30kHz	Average
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	<u>z</u> ;	30kHz	Quasi-peak
		0.110MHz-0.490MH	z	Peak	10kHz	<u>z</u> ;	30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kHz	<u>z</u> ;	30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kHz	<u>z</u> ;	30kHz	Quasi-peak
		30MHz-1GHz		Quasi-peak	100 kH	Iz 3	300kHz	Quasi-peak
13			2	Peak	1MHz		3MHz	Peak
S I		Above 1GHz	2)	Peak	1MHz)	10kHz	Average
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	R	emark	Measuremer distance (m
		0.009MHz-0.490MHz	24	400/F(kHz)	-		- /2	300
		0.490MHz-1.705MHz	24	000/F(kHz)	-		$-(\mathcal{S})$	30
		1.705MHz-30MHz		30	-		<u>v</u>	30
		30MHz-88MHz		100	40.0	Qua	asi-peak	3
		88MHz-216MHz		150	43.5	Qua	asi-peak	3
		216MHz-960MHz	9	200	46.0	Qua	asi-peak	3
\odot		960MHz-1GHz)	500	54.0	Qua	asi-peak	3
		Above 1GHz		500	54.0	A١	/erage	3
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d equip	IB above the oment under t	maximum est. This p	perm	nitted av	erage emission

Page 22 of 51

Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a remeters above the ground at a 3 meter semi-anecho was rotated 360 degrees to determine the position or radiation. 	ic camber. The table
	2) Above 1G: The EUT was placed on the top of a r meters above the ground at a 3 meter semi-anecho was rotated 360 degrees to determine the position of radiation.	ic camber. The table
	Note: For the radiated emission test above 1GHz:	
	Place the measurement antenna away from each at determined to be a source of emissions at the speci distance, while keeping the measurement antenna a of emissions at each frequency of significant emissi oriented for maximum response. The measurement to be higher or lower than the EUT, depending on th the emission and staying aimed at the emission sou maximum signal. The final measurement antenna e which maximizes the emissions. The measurement for maximum emissions shall be restricted to a rang 1 m to 4 m above the ground or reference ground p	fied measurement aimed at the source ons, with polarizatio antenna may have he radiation pattern of tree for receiving the levation shall be tha antenna elevation e of heights of from
	b. The EUT was set 3 meters away from the interferen	
	antenna, which was mounted on the top of a variabl tower.	
	c. The antenna height is varied from one meter to four ground to determine the maximum value of the field horizontal and vertical polarizations of the antenna a measurement.	strength. Both
	 d. For each suspected emission, the EUT was arrange and then the antenna was tuned to heights from 1 n the test frequency of below 30MHz, the antenna wa meter) and the rotatable table was turned from 0 de degrees to find the maximum reading. 	neter to 4 meters (fo s tuned to heights 1
	e. The test-receiver system was set to Peak Detect Fu Bandwidth with Maximum Hold Mode.	nction and Specifie
	f. If the emission level of the EUT in peak mode was a limit specified, then testing could be stopped and the EUT would be reported. Otherwise the emissions the margin would be re-tested one by one using peak, or average method as specified and then reported in a specified and then reported and t	e peak values of the at did not have 10d quasi-peak or
	g. Test the EUT in the lowest channel (2402MHz),the (2440MHz),the Highest channel (2480MHz)	middle channel
	h. The radiation measurements are performed in X, Y, for Transmitting mode, and found the X axis position worst case.	
	i. Repeat above procedures until all frequencies meas	sured was complete.
Test Mode:	Refer to clause 5.3	
Test Results:	Pass	

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.


•	ed List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Remark
1	32.5223	-19.69	44.59	24.90	40.00	15.10	PASS	Horizonta	PK
2	68.6099	-20.48	40.21	19.73	40.00	20.27	PASS	Horizonta	PK
3	132.733	-21.70	46.82	25.12	43.50	18.38	PASS	Horizonta	PK
4	265.442	-16.24	50.95	34.71	46.00	11.29	PASS	Horizonta	PK
5	480.028	-11.20	41.23	30.03	46.00	15.97	PASS	Horizonta	PK
6	665.122	-8.09	36.11	28.02	46.00	17.98	PASS	Horizonta	PK

Page 24 of 51

	Suspecte	d List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polanty	Remark
ĺ	1	32.3282	-19.70	43.91	24.21	40.00	15.79	PASS	Vertical	PK
Ī	2	37.6638	-18.77	42.57	23.80	40.00	16.20	PASS	Vertical	PK
-	3	120.025	-20.08	45.95	25.87	43.50	17.63	PASS	Vertical	PK
	4	267.479	-16.20	51.54	35.34	46.00	10.66	PASS	Vertical	PK
	5	480.028	-11.20	40.37	29.17	46.00	16.83	PASS	Vertical	PK
	6	665.995	-8.08	38.58	30.50	46.00	15.50	PASS	Vertical	PK

1M:

Report No. : EED32O80874101

Radiated Spurious Emission above 1GHz:

Page 25 of 51

Mode	:		BLE GFSK Trai	nsmitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1238.0238	0.90	41.52	42.42	74.00	31.58	Pass	н	PK
2	1867.2867	3.78	40.28	44.06	74.00	29.94	Pass	Н	PK
3	4804.1203	-16.23	3 59.91	43.68	74.00	30.32	Pass	Н	PK
4	7193.2796	-11.82	2 52.63	40.81	74.00	33.19	Pass	Н	PK
5	9609.4406	-7.37	53.71	46.34	74.00	27.66	Pass	Н	PK
6	14412.7609	1.04	51.78	52.82	74.00	21.18	Pass	Н	PK
7	1200.8201	0.80	43.95	44.75	74.00	29.25	Pass	V	PK
8	1838.0838	3.57	40.45	44.02	74.00	29.98	Pass	V	PK
9	4804.1203	-16.23	3 59.97	43.74	74.00	30.26	Pass	V	PK
10	6717.2478	-12.47	7 52.62	40.15	74.00	33.85	Pass	V	PK
11	9607.4405	-7.37	54.58	47.21	74.00	26.79	Pass	V	PK
12	14413.7609	1.02	51.11	52.13	74.00	21.87	Pass	V	PK

	Mode	:		BLE GFSK Tra	ansmitting		Channel:		2440 MHz	Z
-	NO	Freq. [MHz]	Facto [dB]	Deedine	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	1118.0118	0.84	4 41.73	42.57	74.00	31.43	Pass	н	PK
	2	1665.2665	2.71	1 39.71	42.42	74.00	31.58	Pass	Н	PK
-	3	4880.1253	-16.2	60.44	44.23	74.00	29.77	Pass	Н	PK
	4	7675.3117	-11.0	08 52.67	41.59	74.00	32.41	Pass	Н	PK
	5	9759.4506	-7.5	1 53.08	45.57	74.00	28.43	Pass	Н	PK
	6	14641.7761	0.26	50.35	50.61	74.00	23.39	Pass	Н	PK
	7	1199.0199	0.80	46.89	47.69	74.00	26.31	Pass	V	PK
	8	1691.2691	2.88	3 41.02	43.90	74.00	30.10	Pass	V	PK
ĺ	9	4879.1253	-16.2	61.26	45.05	74.00	28.95	Pass	V	PK
0.7	10	6821.2548	-12.2	9 53.23	40.94	74.00	33.06	Pass	V	PK
	11	9761.4508	-7.5	1 53.81	46.30	74.00	27.70	Pass	V	PK
2	12	12201.6134	-5.13	3 52.74	47.61	74.00	26.39	Pass	V	PK

Page 26 of 51

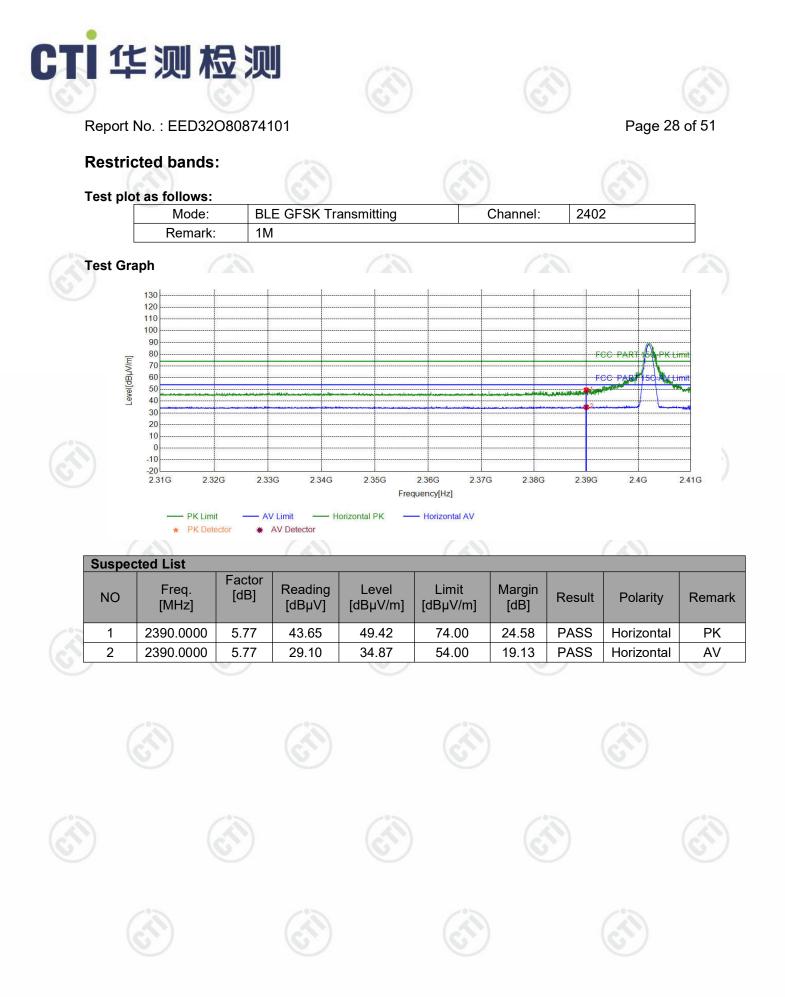
	10			200		20-				
	Mode	:		BLE GFSK Tra	nsmitting		Channel:		2480 MHz	Z
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1197.0197	0.80	44.01	44.81	74.00	29.19	Pass	н	PK
	2	1955.4956	4.32	39.16	43.48	74.00	30.52	Pass	Н	PK
	3	4960.1307	-15.97	7 60.53	44.56	74.00	29.44	Pass	Н	PK
	4	7439.2960	-11.34	4 53.02	41.68	74.00	32.32	Pass	Н	PK
	5	9920.4614	-7.10	53.60	46.50	74.00	27.50	Pass	Н	PK
	6	14878.7919	-0.46	51.28	50.82	74.00	23.18	Pass	Н	PK
	7	1251.6252	0.93	41.75	42.68	74.00	31.32	Pass	V	PK
	8	1829.2829	3.50	40.09	43.59	74.00	30.41	Pass	V	PK
	9	4960.1307	-15.97	62.74	46.77	74.00	27.23	Pass	V	PK
	10	7439.2960	-11.34	4 54.42	43.08	74.00	30.92	Pass	V	PK
3	11	9919.4613	-7.10	54.15	47.05	74.00	26.95	Pass	V	PK
	12	12401.6268	-4.69	52.53	47.84	74.00	26.16	Pass	V	PK
	1									

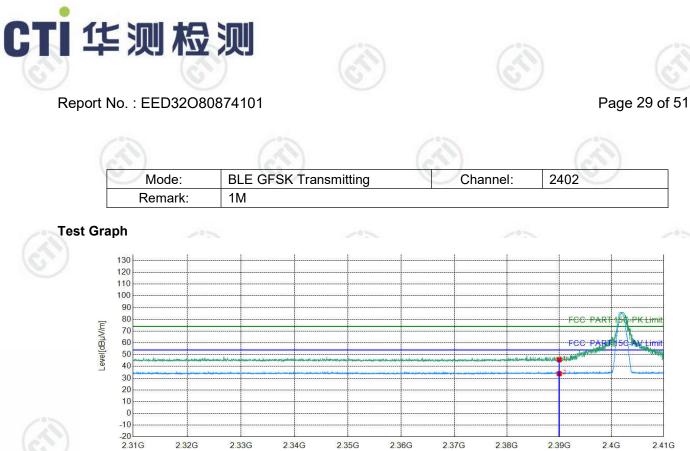
2M:

	Mode	:	BL	E GFSK Tra	nsmitting		Channel:		2402 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1279.0279	1.01	40.61	41.62	74.00	32.38	Pass	Н	PK
	2	1563.4563	1.99	40.05	42.04	74.00	31.96	Pass	Н	PK
3	3	4803.1202	-16.23	60.12	43.89	74.00	30.11	Pass	Н	PK
	4	6965.2644	-11.82	52.38	40.56	74.00	33.44	Pass	Н	PK
-	5	9606.4404	-7.36	51.32	43.96	74.00	30.04	Pass	Н	PK
	6	12424.6283	-4.72	51.20	46.48	74.00	27.52	Pass	Н	PK
	7	1197.2197	0.80	43.99	44.79	74.00	29.21	Pass	V	PK
	8	1821.0821	3.44	39.88	43.32	74.00	30.68	Pass	V	PK
	9	4803.1202	-16.23	60.19	43.96	74.00	30.04	Pass	V	PK
	10	7356.2904	-11.59	52.73	41.14	74.00	32.86	Pass	V	PK
	11	9609.4406	-7.37	51.86	44.49	74.00	29.51	Pass	V	PK
-	12	14408.7606	1.09	50.31	51.40	74.00	22.60	Pass	V	PK
)									(\mathcal{A})

Page 27 of 51

	100		100		12		1	2	
Mode	e:	E	LE GFSK Tra	nsmitting		Channel:			Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1220.2220	0.85	41.46	42.31	74.00	31.69	Pass	н	PK
2	1742.2742	3.08	40.40	43.48	74.00	30.52	Pass	Н	PK
3	4879.1253	-16.21	60.57	44.36	74.00	29.64	Pass	Н	PK
4	7359.2906	-11.58	52.99	41.41	74.00	32.59	Pass	Н	PK
5	9761.4508	-7.51	51.93	44.42	74.00	29.58	Pass	Н	PK
6	12460.6307	-4.77	52.05	47.28	74.00	26.72	Pass	Н	PK
7	1197.2197	0.80	47.35	48.15	74.00	25.85	Pass	V	PK
8	1896.6897	4.01	39.03	43.04	74.00	30.96	Pass	V	PK
9	4879.1253	-16.21	61.01	44.80	74.00	29.20	Pass	V	PK
10	6665.2444	-12.60	52.92	40.32	74.00	33.68	Pass	V	PK
11	9758.4506	-7.52	55.14	47.62	74.00	26.38	Pass	V	PK
12	13776.7184	-1.66	49.23	47.57	74.00	26.43	Pass	V	PK


Mode	e:	BL	E GFSK Tra	nsmitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1251.4251	0.93	40.94	41.87	74.00	32.13	Pass	Н	PK
2	1779.0779	3.21	39.97	43.18	74.00	30.82	Pass	Н	PK
3	4959.1306	-15.98	60.61	44.63	74.00	29.37	Pass	Н	PK
4	7438.2959	-11.35	52.95	41.60	74.00	32.40	Pass	Н	PK
5	9917.4612	-7.10	51.97	44.87	74.00	29.13	Pass	Н	PK
6	13303.6869	-3.44	49.89	46.45	74.00	27.55	Pass	Н	PK
7	1198.2198	0.80	42.97	43.77	74.00	30.23	Pass	V	PK
8	1673.2673	2.77	40.01	42.78	74.00	31.22	Pass	V	PK
9	4961.1307	-15.97	62.08	46.11	74.00	27.89	Pass	V	PK
10	7441.2961	-11.34	54.10	42.76	74.00	31.24	Pass	V	PK
11	9922.4615	-7.11	54.83	47.72	74.00	26.28	Pass	V	PK
12	12399.6266	-4.69	52.28	47.59	74.00	26.41	Pass	V	PK


Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

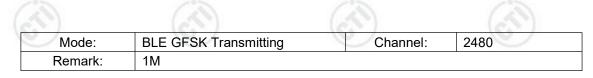
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

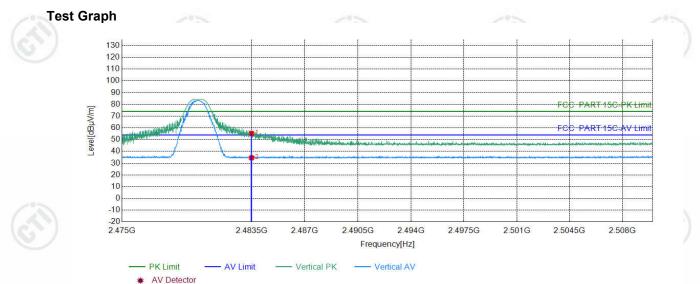
Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390.0000	5.77	39.87	45.64	74.00	28.36	PASS	Vertical	PK		
2	2390.0000	5.77	28.06	33.83	54.00	20.17	PASS	Vertical	AV		
1		GT		(67)		(C)	21		GU		

2.41G

Page 30 of 51

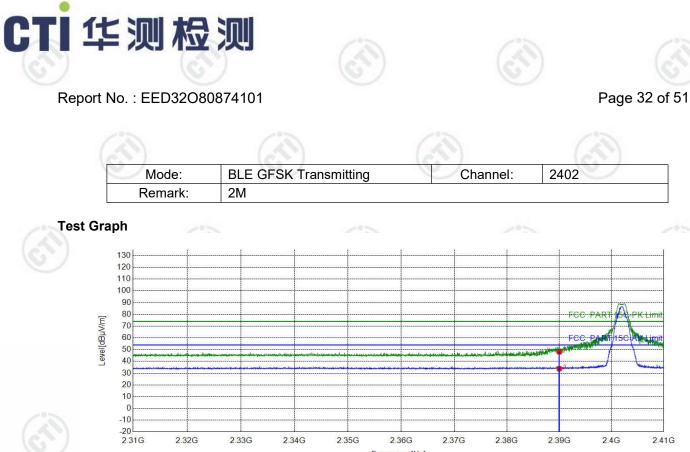
Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	51.22	57.79	74.00	16.21	PASS	Horizontal	PK
2	2483.5000	6.57	28.01	34.58	54.00	19.42	PASS	Horizontal	AV





Page 31 of 51

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	48.75	55.32	74.00	18.68	PASS	Vertical	PK
2	2483.5000	6.57	28.04	34.61	54.00	19.39	PASS	Vertical	AV



•					A					
Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390.0000	5.77	42.35	48.12	74.00	25.88	PASS	Horizontal	PK	
2	2390.0000	5.77	28.05	33.82	54.00	20.18	PASS	Horizontal	AV	
1		Gr /	•	(J)			27		GU	

2.41G

1	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	40.89	46.66	74.00	27.34	PASS	Vertical	PK
2	2	2390.0000	5.77	28.33	34.10	54.00	19.90	PASS	Vertical	AV
S).	6	ST/		G		G			(\mathbf{C})

2.35G

- Vertical PK

2.36G

Frequency[Hz]

- Vertical AV

2.37G

2.38G

2.39G

2.4G

2.41G

-20 2.31G

2.32G

- PK Limit

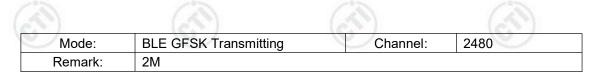
PK Detector

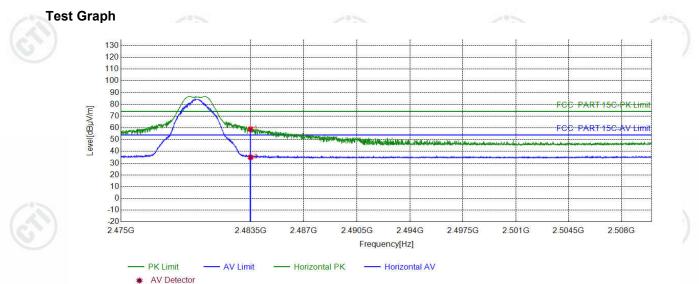
2.33G

- AV Limit

* AV Detector

2.34G





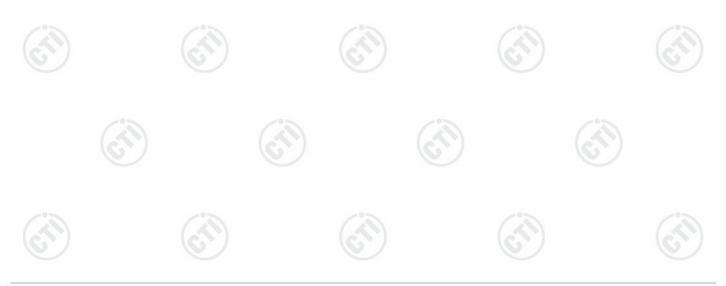
Page 34 of 51

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5000	6.57	52.43	59.00	74.00	15.00	PASS	Horizontal	PK	
2	2483.5000	6.57	28.43	35.00	54.00	19.00	PASS	Horizontal	AV	

Factor

Suspected List

* AV Detector


	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
	1	2483.5000	6.57	49.21	55.78	74.00	18.22	PASS	Vertical	PK
2	2	2483.5000	6.57	28.40	34.97	54.00	19.03	PASS	Vertical	AV
P	1		GT /		(G)		N.			GT

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

