FCC 47 CFR MPE REPORT

Soundlab Technology Company Limited

Soundbar

Model Number: Klipsch Cinema 600-Sound Bar

Additional Model: Bar 48-Sound Bar

FCC ID: 2ATKO-BAR600II

Applicant:	Soundlab Technology Company Limited				
Address:	No.101,202,Building 1, Microlab Industrial Park, No.2 Baozi South Road,				
	Kengzi, Pingshan District, ShenZhen, China				
Prepared By:	EST Technology Co., Ltd.				
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China				
Tel: 86-769-83081888-808					

Report Number:	ESTE-R2111112		
Date of Test:	Oct. 19~Dec. 07, 2021		
Date of Report:	Dec. 10, 2021		

EST Technology Co. ,Ltd

Report No. ESTE-R2111112

Page 1 of 5

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$\mid E \mid^2$, $\mid H \mid^2$ or S
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

EST Technology Co. ,Ltd Report No. ESTE-R2111112 Page 2 of 5

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode				Target	Antenna gain	
	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)	power (dBm)	(dBi)	(Linear)
GFSK	2402	3.16	2.070	3±1	0	1
	2441	2.85	1.928	2±1	0	1
	2480	2.43	1.750	2±1	0	1
8-DPSK	2402	3.27	2.123	3±1	0	1
	2441	2.97	1.982	2±1	0	1
	2480	2.57	1.807	2±1	0	1
BLE 1M	2402	3.00	1.995	3±1	0	1
	2440	2.70	1.862	2±1	0	1
	2480	2.29	1.694	2±1	0	1
BLE 2M	2402	3.08	2.032	3±1	0	1
	2440	2.80	1.905	2±1	0	1
	2480	2.38	1.730	2±1	0	1

EST Technology Co. ,Ltd

3. Calculated Result and Limit

Mode	Target power			Power Density	Limited of Power Density	Test Result
	(4D)	(dBi)	(Linear)	(S) (mW/cm^2)	(S) (mW/cm^2)	
BT	4	0	1	0.00050	1	Complies
BLE	4	0	1	0.00050	1	Complies

For 2.4G SRD

Ant gain=1.34dBi

Ant numeric gain= 1.36

Field strength = 89.87 dBuV/m@3m

 $P = \{ [10^{(89.87/20)}/10^6*3]^2/(30*1.36) \}*1000mW = 0.214mW$

Pd= (30*0.214*1.36) / (377*20^2)=0.00006< 1

So,2.4G SRD and BT/BLE simultaneous transmission=0.00050+0.00006=0.00056<1

End of Test Report

EST Technology Co. ,Ltd Report No. ESTE-R2111112