

Toll-free: (866) 311-3268 www.ComplianceTesting.com info@ComplianceTesting.com

Test Report

Prepared for: Luna Products LLC

Model: LP.KEY03.345.1

Description: 3-Button Keyfob

Serial Number: NA

FCC ID: 2ATK4LPKEY033451

То

FCC Part 15.231 And RSS-210

Test Result: PASS

Date of Issue: July 10, 2024

On the behalf of the applicant:

Luna Products LLC 3145 Tiger Run CT. STE 110 Carlsbad, CA 92010 United States

Attention of:

Robert Reichert, Sr. Regulatory Engineer Ph: 833-586-2776 E-mail: rreichert@lunaproducts.com

Prepared by Compliance Testing, LLC 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax <u>www.compliancetesting.com</u> Project No: p2460006

Project Test Engineer John Michalowicz

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the sample tested.

Test Results Summary

Specification	Test Name	Pass, Fail, N/A	Comments
15.231(a),(e)	Fundamental Field Strength	Pass	
15.231(d)	Out of Band Spurious Emissions	Pass	
15.231(c), RSS-210	99% Occupied Bandwidth	Pass	

Statements of conformity are reported as:

- Pass the measured value is below the acceptance limit, acceptance limit = test limit.
- Fail the measured value is above the acceptance limit, *acceptance limit = test limit*.

Test Report Revision History

Revision	Date	Revised By	Reason for Revision
1.0	July 10, 2024	John Michalowicz	Original Document

Table of Contents

Description	Page
TEST RESULTS SUMMARY	2
STANDARD TEST CONDITIONS ENGINEERING PRACTICES	7
FUNDAMENTAL FIELD STRENGTH	9
RADIATED SPURIOUS EMISSIONS	12
99% OCCUPIED BANDWIDTH	17
TEST EQUIPMENT UTILIZED	

ANAB

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted below.

Please refer to <u>http://www.compliancetesting.com/labscope.html</u> for current scope of accreditation.

FCC Site Reg. #349717

IC Site Reg. #2044A-2

The applicant has been cautioned as to the following

15.21: Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a): Special Accessories

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator the responsible part may employ other methods of ensuring that the special accessories are provided to the consumer, without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Standard Test Conditions Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.10-2009 and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104°F) unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

Environmental Conditions					
Temperature Humidity Pressure (°C) (%) (Mbar)					
26.1 – 27.2	31 - 41	967.8 – 969.7			

EUT Description

Model: LP.KEY03.345.1 Description: 3-Button Keyfob Firmware: N/A Software: 0 Serial Number: NA Highest Clock Frequency: 345 MHz (Transmitter) Additional Information: The EUT is a battery powered Key fob with wireless capability. The EUT transmits on 345 MHz with a button press.

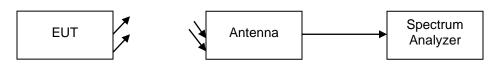
EUT Operation during Tests

The EUT was powered with a CR2032 battery and placed in a constant transmit mode during testing unless otherwise stated.

Accessories: NA

Cables: NA

Modifications: NA


Fundamental Field Strength Engineer: John Michalowicz

Test Date: 7/03/24

Test Procedure

The EUT was tested in a semi-anechoic chamber at a distance of 3 meters from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Fundamental Field Strength.

Test Setup

Spectrum Analyzer Settings

Detector Settings	RBW	VBW	Span	
peak	peak 300 kHz		As Necessary	

Sample Calculations:

Correction Factors include Antenna and cable insertion loss.

Measured Level includes correction factors that were entered into the spectrum analyzer before recording test data. All following limits were converted to dBuV/m by the calculation stated below: analyzer before recording test data.

20*LOG(uV/m)

Fundamental Frequency (MHz)	Field Strength of Fundamental (uV/m)	Field Strength of Spurious Emissions (uV/m)	
260 - 470	3750 to 12500	375 to 1250	

*Linear interpolations

Fundamental Field Strength

Tuned Frequency (MHz)	Peak Measured Level (dBuV/m)	Peak. Limit (dBuV/m)	Avg. Measured Level (dBuV/m)	Avg. Limit (dBuV/m)	Result
345	84.49	97.26	65.1	77.26	Pass

Duty cycle correction = -19.39 dB

	ectrum Analyzer - Swept SA								
	RF2 PRESEL 50 Ω DC 5.00000 s			SENSE:INT		IGN AUTO Avg Type:	Voltage	TR	PMJul 10, 2024 ACE 1 2 3 4 5 6
			PNO: Wide 🕞 FGain:Low	Trig: Video Atten: 26					DET PPPPP
									1 5.000 s
10 dB/div Log _w	Ref 121.28 dB	μV						40.	.26 dBµV
3									
111									
101									
101									
91.3									
81.3									
71.3									
61.3			(TRIG LVL
51.3									
51.3				englettillikan adat				1.4 1.	
41.3 MP.M.P	and all the limit limit and address to	en per la	n al al al serie di la			olina and di kanada a l	i de la constanta da la composición de la constanta da la constanta da la constanta da la constanta da la const La constanta da la constanta da		in the second
- Million and	ha ya ng	A MARINE AND A MARINE	a ha hanan din di	(A) production distriction	ورواحية المليمة ومنامل معر	ور أداره خاط الدام الزوم إلا.	n in the second state of the second state of the second second second second second second second second second	Mighten beidpischen (se	period in the second
31.3									
	5.000000 MHz								Span 0 Hz
Res BW (0	CISPR) 120 kHz		#VB	W 3.0 MHz		STATUS	Swee	p 6.000 s	(40001 pts)
Mod						STATUS			

5 second Period while holding the pushbutton

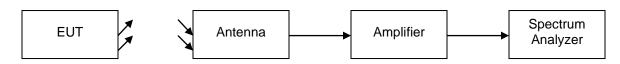
2 second period

Keysight Spectrum Analyzer - Swept S								
XX RL RF2 PRESEL 50 Ω D Sweep Time 2.000 s	C		SENSE:INT		IGN AUTO Avg Type:	Voltage	TR	PMJul 10, 2024 ACE 1 2 3 4 5 6
		PNO:Wide 🖵 FGain:Low	Trig: Video Atten: 26					DET PPPPP
							Mkr1	790.4 ms
10 dB/div Ref 121.28 dE	¥μV						37.	86 dBµV
-09 4								
111								
101								
91.3								
81.3	h n							
						ΠΠ	ΠΠ	
71.3								
61.3								TROLVL
51.3								
		u lit 💧	ىلىرىنى 1		1. 1.1	يرو البيال		
41.3 Yulan jahara kipani najai	· William William	halan an a	ay and a share with a	en han han han han han han han han han ha	ive and the prov	n Nin Mini	i inninge Alberta	h what have
31.3								
Center 345.000000 MHz					1			Span 0 Hz
Res BW (CISPR) 120 kHz		#VB	W 3.0 MHz			Swe	ep 2.000 s	(1601 pts)
MSG					STATUS			

Pulse
 Keysight Spectrum Analyzer - Swept SA

 X
 R L
 RF2 PRESEL
 50 Ω
 DC
12:19:28 PM Jul 10, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P P P P P P Avg Type: Voltage PNO: Close Trig: Video IFGain:Low Atten: 26 dB NFE ΔMkr1 17.88 ms -35.80 dB 10 dB/div Log Ref 121.28 dBµV mh**l**lithiu X2 1<u>Δ</u>2 Center 345.000000 MHz #Res BW (-6dB) 3 KHz h.M. Adahandu alle alle date Span 0 Hz Span 0 Hz Sweep 200.0 ms (1601 pts) a.Akt #VBW 3.0 MHz STATUS

Pulse 1	Pulse 1	Summation	Duty Cycle
ms	count	ms	dB
17.88	12	214.56	-19.39



Radiated Spurious Emissions Engineer: John Michalowicz Test Date: 7/3/24

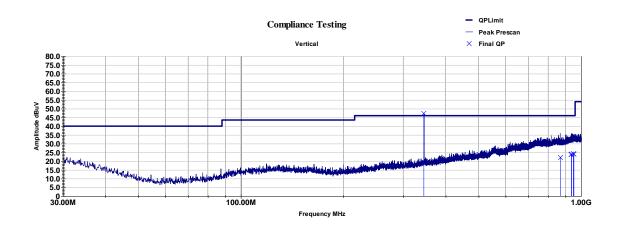
Test Procedure

The EUT was tested in a semi-anechoic chamber set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the limits for Radiated Spurious Emissions. The antenna, band reject filter, amplifier and cable correction factors were input into the spectrum analyzer before recording data. The spectrum for each tuned frequency was examined to the 10th harmonic.

Test Setup

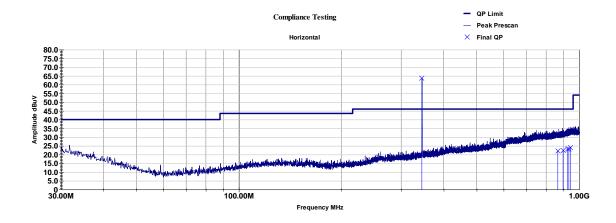
Analyzer Settings

Detector Settings	Detector Settings (MHz)		Span
Peak	1	3	As Necessary
Average	1	3	As Necessary


Sample Calculations:

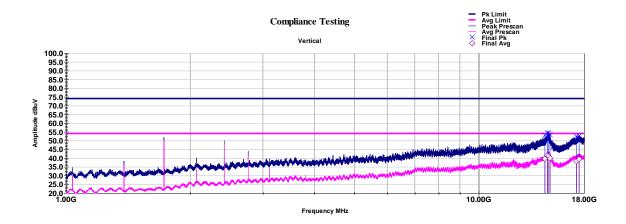
Correction Factors include Antenna and cable insertion loss correction factors.

Measured Level includes correction factors that were input to the spectrum analyzer before recording test data

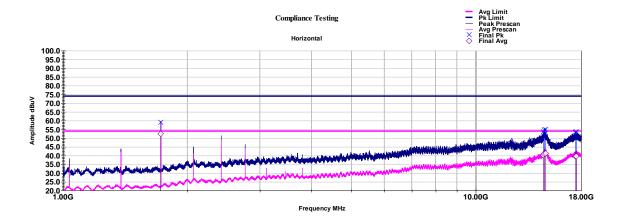


30 - 1000 MHz

Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
344.995	51.00	260.00	NA	NA	NA	NA	NA
869.176	145.00	322.00	25.77	-3.79	22.00	46.00	-24.00
935.063	352.00	335.00	25.56	-1.89	23.70	46.00	-22.30
936.961	64.00	325.00	25.61	-1.69	23.90	46.00	-22.10
948.348	72.00	352.00	25.53	-1.40	24.10	46.00	-21.90
952.257	255.00	281.00	25.54	-1.47	24.10	46.00	-21.90
Final = Raw + Path Loss							
Margin = Fi	nal - Limit						

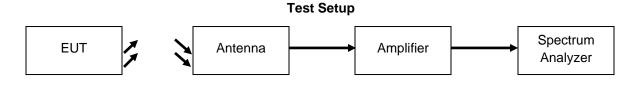


Frequency	Azimuth	Height	Raw QP	Correction	Final QP	Limit	QP Margin
MHz	deg	cm	dBuV	dB	dBuV/m	dBuV/m	dB
345.001	299.00	100.00	NA	NA	NA	NA	NA
865.76	353.00	325.00	25.90	-3.78	22.10	46.00	-23.90
896.697	199.00	325.00	25.75	-3.40	22.40	46.00	-23.60
924.953	331.00	325.00	25.63	-2.56	23.10	46.00	-22.90
932.607	253.00	148.00	25.62	-2.41	23.20	46.00	-22.80
942.815	359.00	325.00	25.58	-1.74	23.80	46.00	-22.20
Final = Raw	Final = Raw + Path Loss						
Margin = Fi	nal - Limit						



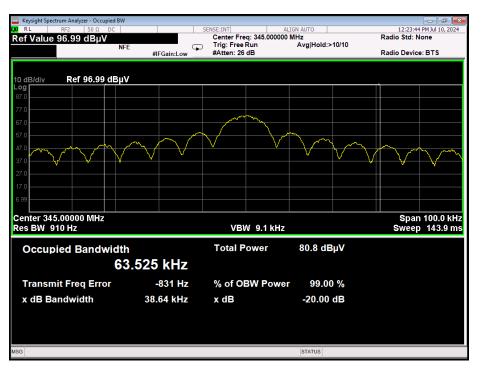
1 - 18 GHz

Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
MHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
14463978250	76.00	395.00	48.61	35.10	4.35	52.97	74.00	-21.03	39.45	54	-14.55
14668485000	0.00	121.00	47.95	34.96	6.54	54.49	74.00	-19.51	41.50	54	-12.50
14777740250	165.00	325.00	48.39	34.83	6.08	54.47	74.00	-19.53	40.91	54	-13.09
14881629750	316.00	170.00	48.44	35.07	4.71	53.14	74.00	-20.86	39.77	54	-14.23
17245752500	110.00	100.00	45.72	31.47	6.83	52.55	74.00	-21.45	38.30	54	-15.70
17501974000	340.00	322.00	44.68	31.27	8.09	52.77	74.00	-21.24	39.36	54	-14.64
Final = Raw +	Path Loss										
Margin = Fina	l - Limit										


Frequency	Azimuth	Height	Raw Pk	Raw Avg	Correction	Final Pk	Pk Limit	Pk Margin	Final Avg	Avg Limit	Avg Margin
MHz	deg	cm	dBuV	dBuV	dB	dBuV/m	dBuV/m	dB	dBuV/m	dBuV/m	dB
1724943750	106.00	100.00	75.02	68.42	-15.89	59.13	74.00	-14.87	52.53	54	-1.47
14571080750	312.00	121.00	48.02	34.56	5.50	53.52	74.00	-20.48	40.06	54	-13.94
14656053750	312.00	124.00	48.09	34.47	6.49	54.57	74.00	-19.43	40.96	54	-13.04
14774732000	198.00	197.00	48.87	35.06	6.12	54.98	74.00	-19.02	41.17	54	-12.83
17417591000	77.00	100.00	45.43	31.67	7.83	53.26	74.00	-20.74	39.50	54	-14.50
17523483500	3.00	185.00	45.50	31.51	8.09	53.58	74.00	-20.42	39.60	54	-14.40
Final = Raw +	Path Loss										
Margin = Final - Limit											

99% Occupied Bandwidth Engineer: John Michalowicz Test Date: 7/3/24

Test Procedure


The EUT was tested in a semi-anechoic chamber at a distance of 3 meter from the receiving antenna. The Span was set wide enough to capture the entire transmit spectrum and the resolution bandwidth was set to at least 1% of the span. The analyzer was set to max hold while the 99% bandwidth was measured.

Occupied Bandwidth Summary

Frequency (MHz)	Recorded Measurement (kHz)	Result
345	63.5	Pass

99% Bandwidth

Test Equipment Utilized

Description	Manufacturer	Model #	CT Asset #	Last Cal Date	Cal Due Date
Horn Antenna	ARA	DRG-118/A	i00271	8/11/22	8/11/24
Bi-Log Antenna Schaffner		CBL 6111D	i00349	2/7/23	2/7/25
3 Meter Semi-Anechoic Chamber	Panashield	3 Meter Semi-Anechoic Chamber	i00428	7/13/23	7/13/26
MXE EMI receiver	Keysight	N9038A	i00552	3/1/24	3/1/25
Temp./humidity/pressure monitor (rad. immunity) Omega Engineering		iBTHX-W-5	i00629	1/25/24	1/25/25

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

Measurement Uncertainty

Measurement	U _{lab}				
Radio Frequency	± 3.3 x 10 ⁻⁸				
RF Power, conducted	± 1.5 dB				
RF Power Density, conducted	± 1.0 dB				
Conducted Emissions	± 1.8 dB				
Radiated Emissions	± 4.5 dB				
Temperature	\pm 1.5 deg C				
Humidity	± 4.3 %				
DC voltage	± 0.20 VDC				
AC Voltage	± 1.2 VAC				

Measurement Uncertainty (U_{lab}) for Compliance Testing is listed in the table below.

The reported expanded uncertainty +/- $U_{lab}(dB)$ has been estimated at a 95% confidence level (k=2)

 U_{lab} is less than or equal to U_{ETSI} therefore

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance limit

END OF TEST REPORT

Test Setup Photos FCC ID: 2ATK4LPKEY033451

