

FCC Test Report

(Co-Located)

Report No.: RFBDKX-WTW-P22120419-2

FCC ID: 2ATIO4

Product Name: Home IOT Gateway

Brand Name: Level

Model No.: H4

Received Date: 2022/12/13

Test Date: 2023/2/23

Issued Date: 2023/3/30

Applicant: Level Home Inc.

Address: 935 Main Street, Redwood City, California 94063, United States of America

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration /

Designation Number: 198487 / TW2021

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFBDKX-WTW-P22120419-2 Reference No.: BDKX-WTW-P22120419 Page No. 1 / 27

Report Format Version:6.1.2

Table of Contents

R	elease	Control Record	. 3
1	С	ertificate of Conformity	. 4
2	S	ummary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty	
3	G	eneral Information	. 6
	3.1 3.2 3.3 3.3.1 3.4 3.4.1 3.5	General Description of EUT Antenna Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test General Description of Applied Standards	. 7 . 8 . 9 10 10
4	T	est Types and Results	12
	4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2.1 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedure Deviation from Test Standard Test Setup EUT Operating Condition Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation From Test Standard Test Setup EUT Operating Condition Test Results	12 13 15 16 17 18 22 23 23 23 23 24
5		lix – Information of the Testing Laboratories	
Α	ppena	IIX – INIOTHIATION OF THE TESTING LADOPATORIES	4 1

Release Control Record

Issue No.	Description	Date Issued
RFBDKX-WTW-P22120419-2	Original release	2023/3/30

1 Certificate of Conformity

Product Name: Home IOT Gateway

Brand Name: Level

Model No.: H4

Sample Status: Engineering sample

Applicant: Level Home Inc.

Test Date: 2023/2/23

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart C (Section 15.249)

Measurement ANSI C63.10-2013

procedure: KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Annie Chang / Senior Specialist

Approved by: , Date: 2023/3/30

Jeremy Lin / Project Engineer

2 Summary of Test Results

Applied Standard	47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart C (Section 15.249)				
FCC Clause	Test Item	Result	Remarks		
15.205 / 15.209 / 15.247(d) 15.249 15.249 (d)	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -1.3dB at 2390.00MHz.		
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -15.25dB at 0.34545MHz.		

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)		
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.63 dB		
AC Power Conducted Emissions	150 kHz ~ 30 MHz	3.00 dB		
Unwanted Emissions below 1 GHz	9 kHz ~ 30 MHz	2.38 dB		
Onwanted Emissions below 1 GHZ	30 MHz ~ 1 GHz	5.7 dB		
	1 GHz ~ 6 GHz	4.83 dB		
Unwanted Emissions above 1 GHz	6 GHz ~ 18 GHz	5.37 dB		
	18 GHz ~ 40 GHz	5.24 dB		

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Home IOT Gateway				
Brand	Level				
Test Model	H4				
Status of EUT	Engineer	ing sample			
Power Supply Rating	3.6Vdc fr	om battery or 5Vdc from Adapter			
	WLAN	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM			
	Zwave	FSK			
Modulation Type	WWAN	WCDMA: BPSK, QPSK			
		HSDPA: BPSK			
		HSUPA: QPSK			
		LTE: QPSK, 16QAM			
Output Power	WLAN	219.786 mW (23.42 dBm)			
Max. EIRP Power	WWAN	LTE Band 25: 358.922mW (25.55dBm)			

Note:

1. The EUT uses following accessories.

The Let acce tellering accession					
Item	Brand	Model	Specification		
AC Adapter	TENPO	S024AMP0500350	AC Input: 100-240Vac, 50/60Hz, 0.6A DC Output: 5.0Vdc, 3.5A, 17.5W DC Cable: Nonshielded without cord, 1.0m AC Cable: Nonshielded without cord, 1.0m		
LAN Cable	•	-	Nonshielded without cord, 1.0m		

- 2. There are Z-wave, WLAN and WWAN technology used for the EUT.
- 3. WLAN and WWAN technology can transmit at same time.
- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

WLAN

	Gain (dBi)	A . (T	O	
2400 MHz	2450 MHz 2500 MHz		Antenna Type	Connector Type
3.33	3.66	3.08	PIFA	ipex

Zwave

	Gain (dBi)	A	Commonton Time	
902 MHz	915 MHz	928 MHz	Antenna Type	Connector Type
1.72	1.52	1.57	PIFA	ipex

WWAN

Antenna Type	PIFA										
Connector Type		ipex									
Frequency Band	WCDMA LTE LTE B2		B26	WCDMA	LTE	LTE	WCDMA	LTE	LTE	LTE	
Frequency Band	B5	B5	Part 22	Part 90	B2	B2	B25	B4	B4	B12	B13
Ant Gain (dBi)	0.43	0.43	0.43	0.05	3.09	3.09	3.09	0.95	0.95	-2.13	0.05

^{*}Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

2. The EUT incorporates a SISO function:

Modulation Mode	TX & RX C	onfiguration
802.11b	1TX	1RX
802.11g	1TX	1RX
802.11n (HT20)	1TX	1RX

3.3 Description of Test Modes

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20):

Channel	Frequency	Channel	Frequency
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

3.3.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applicable To		Description
Mode	RE≥1G	RE<1G	PLC	Безеприон
-	√	√	√	-

Where **RE≥1G:** Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission

NOTE:

 The EUT had been pre-tested on the positioned of Wall Mount and each 3 axis. The worst case was found when positioned on X-plane.

 For Unwanted Emission below/ above 1 GHz has Battery / EUT with Adapter mode of power supply and with Adapter mode is the worst case of power supply.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Freq. Range (MHz)	Available Channel	Tested Freq. (MHz)	Modulation Technology
902 44a LITE P25	2412 ~ 2462	1 to 11	2462 + 1882.5	OFDM
802.11g + LTE B25	1850 ~1915	26047 to 26590	2402 + 1002.3	QPSK

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Freq. Range (MHz)	Available Channel	Tested Freq. (MHz)	Modulation Technology
902 44a LITE P25	2412 ~ 2462	1 to 11	2462 + 1882.5	OFDM
802.11g + LTE B25	1850 ~1915	26047 to 26590	2402 + 1602.5	QPSK

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

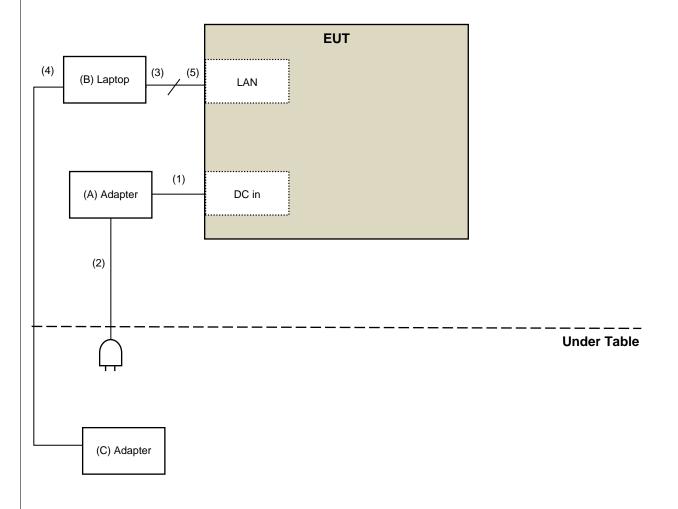
Mode	Freq. Range (MHz)	Available Channel	Tested Freq. (MHz)	Modulation Technology
902 11a . LTE B25	2412 ~ 2462	1 to 11	2462 + 1882.5	OFDM
802.11g + LTE B25	1850 ~1915	26047 to 26590	2402 + 1002.3	QPSK

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE>1G	23deg. C, 63%RH	120Vac, 60Hz	lan Chang
RE<1G	25deg. C, 68%RH	120Vac, 60Hz	lan Chang
PLC	25deg. C, 75%RH	120Vac, 60Hz	Jed Wu

Report No.: RFBDKX-WTW-P22120419-2 Page No. 9 / 27 Report Format Version:6.1.2

Reference No.: BDKX-WTW-P22120419


3.4 Description of Support Units

The ET has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Adapter	TENPO	S024AMP0500350	N/A	N/A	Supplied by applicant
В	Laptop	Lenovo	81A4	YD02TWDP	N/A	Provided by Lab
С	Adapter	Lenovo	PA-1450-55LL	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DC Cable	1	1	N	0	Supplied by applicant
2	AC Cable	1	1	N	0	Supplied by applicant
3	USB to LAN cable	1	0.2	N	0	Provided by Lab
4	DC cable	1	1.9	N	0	Provided by Lab
5	LAN cable	1	1	N	0	Supplied by applicant

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart C (15.247) FCC Part 15, Subpart C (15.249) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Unwanted Emissions below 1 GHz

D : ::						
Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until		
LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1		
Bi_Log Antenna Schwarzbeck	VULB 9168	137	2022/10/21	2023/10/20		
Coupling/Dcoupling Network	CDNE-M2	00097	2022/6/1	2023/5/31		
Schwarzbeck	CDNE-M3	00091	2022/6/1	2023/5/31		
Pre_Amplifier EMCI	EMC001340	980269	2022/6/28	2023/6/27		
Pre_Amplifier HP	8447D	2432A03504	2023/2/16	2024/2/15		
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2022/6/30	2023/6/29		
Software	Radiated_V7.7.1.1.1	N/A	N/A	N/A		
BVADT	Radiated_V8.7.08	N/A	N/A	N/A		
Spectrum Analyzer R&S	FSV40	101544	2022/5/9	2023/5/8		
Test Receiver	NoogoA	MY51210129	2022/4/8	2023/4/7		
Agilent	N9038A	MY51210137	2022/6/9	2023/6/8		
Tower ADT	AT100	0306	N/A	N/A		
Turn Table ADT	TT100	0306	N/A	N/A		

Notes:

- 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Linkou 966 Chamber 6 (CH 6).
- 3. Tested Date: 2023/2/23

Unwanted Emissions above 1 GHz

Unwanted Emissions above 1 G)1 IZ			
Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Band Pass Filter MICRO-TRONICS	BRM17690	005	2022/5/26	2023/5/25
Boresight antenna tower fixture BV	BAF-02	6	N/A	N/A
High Pass Filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2022/5/26	2023/5/25
Horn Antenna EMCO	3115	00028257	2022/11/13	2023/11/12
Horn Antenna ETS-Lindgren	3117-PA	00215857	2023/2/3	2024/2/2
Horn Antenna Schwarzbeck	BBHA 9170	212	2022/10/20	2023/10/19
Notch Filter MICRO-TRONICS	BRC50703-01	010	2022/5/26	2023/5/25
Pre-amplifier HP	8449B 3008A01201		2023/2/16	2024/2/15
Pre-amplifier (18GHz-40GHz) EMCI	EMC184045B	980175	2022/9/3	2023/9/2
Pre_Amplifier	EMC0126545	980076	2023/2/16	2024/2/15
EMCI	EMC184045B 980235		2023/2/16	2024/2/15
RF Coaxial Cable EM	EM102-KMKM-3.5+1M	EM102-KMKM-3.5+1M-01	2022/7/7	2023/7/6
RF Coaxial Cable	EMO404	190801	2022/7/7	2023/7/6
EMCI	EMC104	190804	2022/7/7	2023/7/6
RF Coaxial Cable HUBER SUHNER	SF-104	Cable-CH6-01	2022/9/20	2023/9/19
Software	Radiated_V7.7.1.1.1	N/A	N/A	N/A
BVADT	Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer	EQ./40	101042	2022/9/5	2023/9/4
R&S	FSV40	101544	2022/5/9	2023/5/8
Test Receiver Agilent	N9038A	MY51210129	2022/4/8	2023/4/7
Tower ADT	AT100	0306	N/A	N/A
Turn Table ADT	TT100	0306	N/A	N/A

Notes:

- The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA
- 2. The test was performed in Linkou 966 Chamber 6 (CH 6).
- 3. Tested Date: 2023/2/23

4.1.3 Test Procedure

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

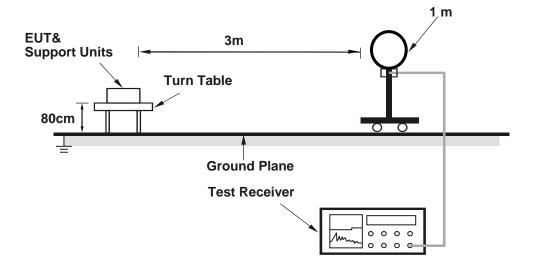
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

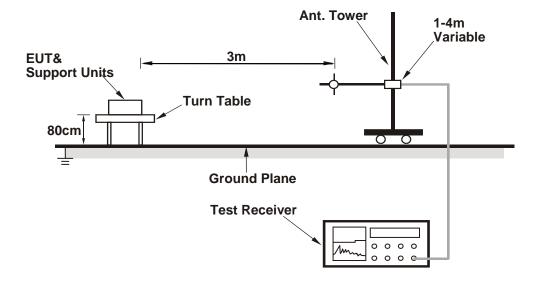
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

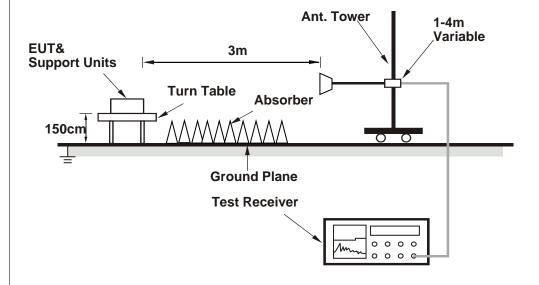

Report No.: RFBDKX-WTW-P22120419-2 Page No. 15 / 27 Report Format Version:6.1.2

Reference No.: BDKX-WTW-P22120419



4.1.5 Test Setup

For Radiated emission below 30MHz



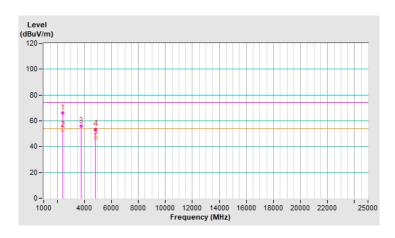
For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Condition

Controlling software (Tera Term v4.8) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

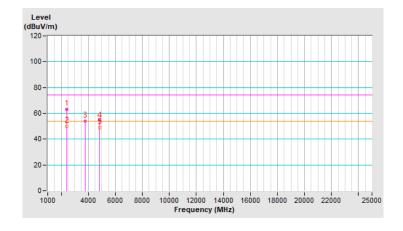

4.1.7 Test Results

Above 1GHz data:

RF Mode	802.11g + LTE Band 25	Test Frequency	2462 MHz + 1882.5MHz
Frequency Range	11 (iH7 ~ 25 (iH7		(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 1 kHz

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	65.9 PK	74.0	-8.1	1.21 H	63	67.0	-1.1	
2	2390.00	52.7 AV	54.0	-1.3	1.21 H	63	53.8	-1.1	
3	3765.00	55.7 PK	74.0	-18.3	1.15 H	52	50.3	5.4	
4	4824.00	53.4 PK	74.0	-20.6	1.06 H	31	45.7	7.7	
5	4824.00	46.9 AV	54.0	-7.1	1.06 H	31	39.2	7.7	

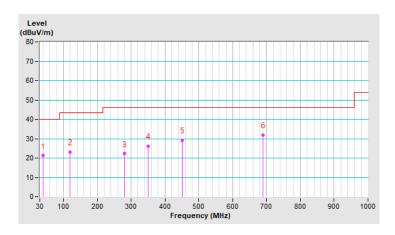
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.



RF Mode	802.11g + LTE Band 25	Test Frequency	2462 MHz + 1882.5MHz
Frequency Range	11 (iH7 ~ 25 (iH7		(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 1 kHz

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	2390.00	63.2 PK	74.0	-10.8	3.48 V	319	64.3	-1.1			
2	2390.00	49.9 AV	54.0	-4.1	3.48 V	319	51.0	-1.1			
3	3765.00	54.1 PK	74.0	-19.9	1.32 V	330	48.7	5.4			
4	4824.00	54.2 PK	74.0	-19.8	1.42 V	162	46.5	7.7			
5	4824.00	48.8 AV	54.0	-5.2	1.42 V	162	41.1	7.7			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

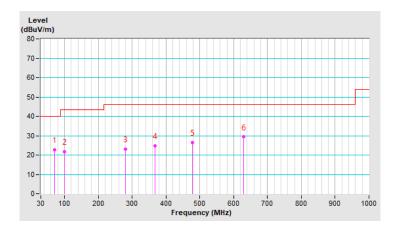


Below 1GHz data:

RF Mode	802.11g + LTE Band 25	Test Frequency	2462 MHz + 1882.5MHz
Frequency Range	3() V H7 ~ 1 (3H7	Detector Function & Bandwidth	(QP) RB = 120kHz

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	40.55	21.2 QP	40.0	-18.8	1.54 H	285	30.7	-9.5		
2	120.13	23.0 QP	43.5	-20.5	1.62 H	236	34.1	-11.1		
3	280.55	22.2 QP	46.0	-23.8	2.51 H	145	28.9	-6.7		
4	350.32	26.1 QP	46.0	-19.9	2.23 H	269	31.4	-5.3		
5	450.08	29.3 QP	46.0	-16.7	3.12 H	154	31.8	-2.5		
6	689.46	31.8 QP	46.0	-14.2	2.41 H	281	29.4	2.4		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	802.11g + LTE Band 25	Test Frequency	2462 MHz + 1882.5MHz
Frequency Range	13() N/H7 ~ 1 (4H7	Detector Function & Bandwidth	(QP) RB = 120kHz

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	71.34	22.8 QP	40.0	-17.2	2.36 V	269	34.0	-11.2			
2	99.61	21.8 QP	43.5	-21.7	2.41 V	152	34.9	-13.1			
3	280.36	23.1 QP	46.0	-22.9	1.95 V	288	29.8	-6.7			
4	368.14	24.8 QP	46.0	-21.2	1.78 V	85	29.5	-4.7			
5	477.56	26.6 QP	46.0	-19.4	2.15 V	149	28.8	-2.2			
6	630.14	29.4 QP	46.0	-16.6	1.54 V	187	27.9	1.5			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz \sim 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Eroguepov (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

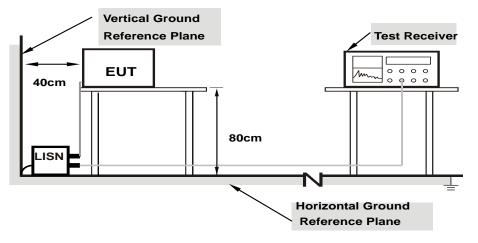
4.2.2 Test Instruments

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohm terminal	0900510	E1-011285	2022/9/19	2023/9/18
LYNICS	0900310	E1-011286	2022/9/19	2023/9/18
50 Ohms Terminator LYNICS	0900510	E1-01-305	2023/2/13	2024/2/12
Attenuator STI	STI02-2200-10	NO.4	2022/9/2	2023/9/1
DC LISN	ESH3-Z6	100219	2022/8/2	2023/8/1
R&S	ESH3-Z0	844950/018	2022/8/2	2023/8/1
DC LISN Schwarzbeck	NNLK 8121	8121-808	2022/4/29	2023/4/28
High Voltage Probe Schwarzbeck	TK9420	00982	2022/12/14	2023/12/13
Isolation Transformer Erika Fiedler	D-65396	017	2022/9/8	2023/9/7
LISN R&S	ENV216	101196	2022/5/24	2023/5/23
	NINII 17 04 04	8121-731	2022/5/26	2023/5/25
LISN	NNLK 8121	8121-00759	2022/8/18	2023/8/17
Schwarzbeck	NNLK8129	8129229	2022/6/8	2023/6/7
	NSLK 8128	8128-244	2022/11/8	2023/11/7
RF Coaxial Cable Commate	5D-FB	Cable-CO5-01	2023/1/19	2024/1/18
Software BVADT	Cond_V7.3.7.4	N/A	N/A	N/A
Test Receiver R&S	ESR3	102412	2022/12/21	2023/12/20

Notes:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Linkou Conduction 5.
- 3. Tested Date: 2023/2/23

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

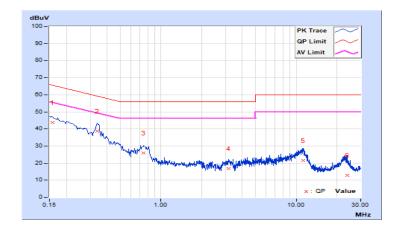
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as item 4.1.6.

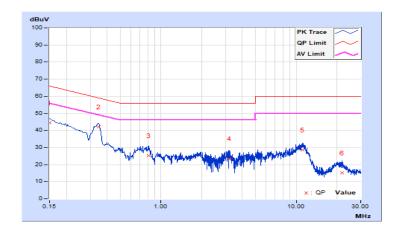


4.2.7 Test Results

RF Mode	802.11g + LTE Band 25	Test Frequency	2462 MHz + 1882.5MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		Reading Value I		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15719	10.00	33.72	15.89	43.72	25.89	65.61	55.61	-21.89	-29.72	
2	0.33763	10.06	28.79	15.53	38.85	25.59	59.26	49.26	-20.41	-23.67	
3	0.74206	10.08	15.89	9.88	25.97	19.96	56.00	46.00	-30.03	-26.04	
4	3.18052	10.14	6.66	2.76	16.80	12.90	56.00	46.00	-39.20	-33.10	
5	11.31694	10.37	11.16	5.77	21.53	16.14	60.00	50.00	-38.47	-33.86	
6	23.73193	10.49	2.41	0.60	12.90	11.09	60.00	50.00	-47.10	-38.91	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



RF Mode	802.11g + LTE Band 25	Test Frequency	2462 MHz + 1882.5MHz
Frequency Range	150kHz ~ 30MHz	RASOULITION	Quasi-Peak (QP) / Average (AV), 9 kHz

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.01	34.32	15.88	44.33	25.89	66.00	56.00	-21.67	-30.11	
2	0.34545	10.06	31.99	23.76	42.05	33.82	59.07	49.07	-17.02	-15.25	
3	0.81272	10.09	15.08	9.30	25.17	19.39	56.00	46.00	-30.83	-26.61	
4	3.20788	10.15	13.43	6.41	23.58	16.56	56.00	46.00	-32.42	-29.44	
5	11.07850	10.37	18.09	10.81	28.46	21.18	60.00	50.00	-31.54	-28.82	
6	21.81652	10.50	4.52	1.57	15.02	12.07	60.00	50.00	-44.98	-37.93	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo)	
Thouse refer to the attached me (rest estap i hete)	

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com.

Web Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFBDKX-WTW-P22120419-2 Reference No.: BDKX-WTW-P22120419

(-WTW-P22120419-2 Page No. 27 / 27