Page 1 of 38

Compliance Engineering Ireland Ltd

Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000 , 8256722 www.cei.ie

Project Num	20E8887-1b	
Quotation	Q20-2505-1	
Prepared For	Sensata Technologies Ltd	
Company Address	11 Technology Park, Belfast Road, Antrim,	
	Northern Ireland BT41 1QS	
Contact	James Kyle	
Contact Email	jakyle@sensata.com	
Contact Phone	+44 28 9448 3067	
Prepared By	Compliance Engineering Ireland	
Test Lab Address	Clonross Lane, Derrockstown,	
	Dunshaughlin, Co. Meath, Ireland	
Tested By	Joy Dalayap Michael Kirby	
Test Report By	Michael Kirby	
FCC Test Firm Registration	409640	
IC Site Registration	IE0001	
Date	4 th Jan 2021	
EUT Description	Range Extender	
FCC ID	2ATIMREX	
IC ID	25094-REX	
Authorised by	Paul Reilly	
Authorised Signature:	Par Rig	

Page 2 of 38

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

FCC 15.247 Section	RSS-247 Section	TEST PARAMETERS	Test Result
15.247 (a)2	RSS-247 5.2a	6dB bandwidth	Pass
15.247 (e)	RSS-247 5.2b	Power Spectral Density	Pass
15.247 (b)3	RSS-247 5.4d	Output power Conducted	Pass
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Pass
15.205	RSS Gen 8.9	Radiated Spurious Emissions	Pass
15.209	RSS Gen 8.10		
	RSS Gen 6.7	99% bandwidth	Pass

RSS 247-2 (Feb 2017) RSS Gen Issue5 Amd 1 (Mar 2019)

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

Page 3 of 38

Exhibit A – Technical Report

Table of Contents

1.0	EUT DESCRIPTION	4
1.1	EUT OPERATION	5
1.2	MODIFICATIONS	5
1.3	DATE OF TEST	5
1.4	DESCRIPTION OF TEST MODES	6
2.0	EMISSIONS MEASUREMENTS	7
3.0	CONDUCTED EMISSIONS ON THE MAINS MEASUREMENTS	8
4.0	CONDUCTED MEASUREMENTS ON THE ANTENNA PORT	9
5.0	SPURIOUS EMISSIONS	16
6.0	LIST OF TEST EQUIPMENT	20
7.0	MEASUREMENT UNCERTAINTY	21
۸ DDI	ENDIX A SCANS FOR CONDUCTED MEASUREMENTS	າາ
	ENDIX B SCANS FOR CONDUCTED MEASUREMENTS	
ΔΡΡΙ	FNDIX C. SCANS FOR RADIATED SPURIOUS EMISSIONS	33

Page 4 of 38

1.0 EUT Description

Model:	REX
Type:	Range Extender
Type of radio:	Stand-alone
Transmitter Type:	802.15.4 (Thread)
Operating Frequency Range(s):	2.405 GHz - 2.480GHz
Number of Channels:	16
Antenna:	Integral
Power configuration:	12 v Battery.
Ports:	None
Classification:	DTS, CYY
HVIN:	REX
PMN:	REX
Test Standards:	15.247 RSS-247
Test Methodology:	Measurements performed according to the
	procedures in ANSI C63.10-2013
	KDB 558074 V5 R02

The EUT was a Range Extender for use in automobiles. Its purpose was to relay packets received on the 433MHz band using a transmitter in the 2.4GHz band.

The EUT contained a transmitter using Thread technology and a 433MHz receiver.

The Thread antenna was an internal pcb antenna.

This report details tests carried out on the transmitter.

Page 5 of 38

1.1 EUT Operation

Operating Conditions during Test:

Conducted measurements were carried out on a sample where the antenna was replaced by cable and SMA.

The EUT was operated in test mode where the channel and modulation was set via USB connection from the EUT to a laptop.

The EUT was powered from a bench PSU set to 12Vdc. for all tests

Radiated measurements were performed on a sample with standard internal antenna.

Environmental conditions

	Temperature	Relative Humidity
Test	°C	%
Conducted Emissions	19	47
Radiated Emissions <1GHz	18	42
Radiated Emissions >1GHz	19	47

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on 17th,22nd Aug and 22nd Dec 2020.

Page 6 of 38

1.4 Description of Test modes

Channel List

Channel	Channel	Freq MHz
Low	11	2405
	12	2410
	13	2415
	14	2420
	15	2425
	16	2430
	17	2435
Mid	18	2440
	19	2445
	20	2450
	21	2455
	22	2460
	23	2465
	24	2470
	25	2475
High	26	2480

All tests were performed with the EUT on the low mid and high channels.

Page 7 of 38

2 Emissions Measurements

2.1 Conducted Emissions Measurements

Radio Conducted measurements were carried out on the EUT as per section 1.1 above.

All results were measured as conducted on the antenna except radiated spurious emissions.

2.2 Radiated Emissions Measurements

Radiated Power measurements were made at the Compliance Engineering Ireland Ltd anechoic chamber located in Dunshaughlin, Co. Meath, Ireland to determine the radio noise radiated from the EUT. A "Description of Measurement Facilities" has been submitted to the FCC and approved pursuant to Section 2.948 of CFR 47 of the FCC rules.

The EUT was centred on a motorized turntable, which allows 360 degree rotation.

Emissions below 1GHz were measured using a test antenna positioned at a distance of 3 metres from the EUT (as measured from the closest point of the EUT). The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres. In this case the resolution bandwidth was 100kHz. Emissions in the 1GHz-3.6GHz range were measured using a horn antenna located at 3 metres distance from the EUT in a fully anechoic chamber.

The radiated emissions were maximised by configuring the EUT and by rotating the EUT, and by raising and lowering the test antenna from 1 to 4 metres.

Emissions above 3.6GHz were measured using a horn antenna located at 1 metre distance from the EUT in a fully anechoic chamber. The radiated emissions were maximised by configuring the EUT and by rotating the EUT and raising the test and antenna from 1 to 4 metres.

In this case the resolution bandwidth was 1MHz and video bandwidth was 3 MHz. for peak measurements. The Video bandwidth was changed to 10Hz for Average measurements (as per ANSI 63.10 2013 Section 4.1.4.2.3)

A pre-scan was performed to determine the worst case EUT orientation for the radiated measurements.

All radiated tests were performed with the EUT in orientation O1 for Horizontal polarization measurements and with the EUT in orientation O2 for Vertical polarisation measurements.

Ref Appendix D for orientations.

Page 8 of 38

3.0 Results for Conducted emissions on the mains

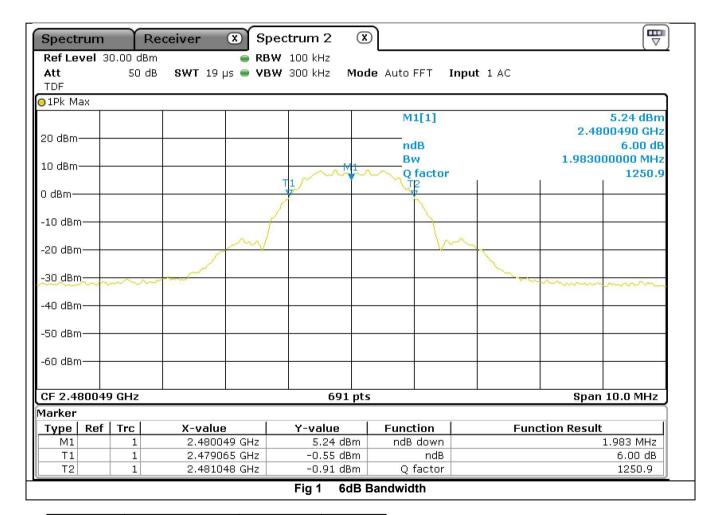
Test not performed as the host for the EUT is battery powered only

Page 9 of 38

4. Conducted Measurements

4.1 Bandwidth

4.1.1 6dB bandwidth


Test Method

As per Ansi 63.10 Section 11.8.2

Ansi63.10 Section 11.8.2 Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

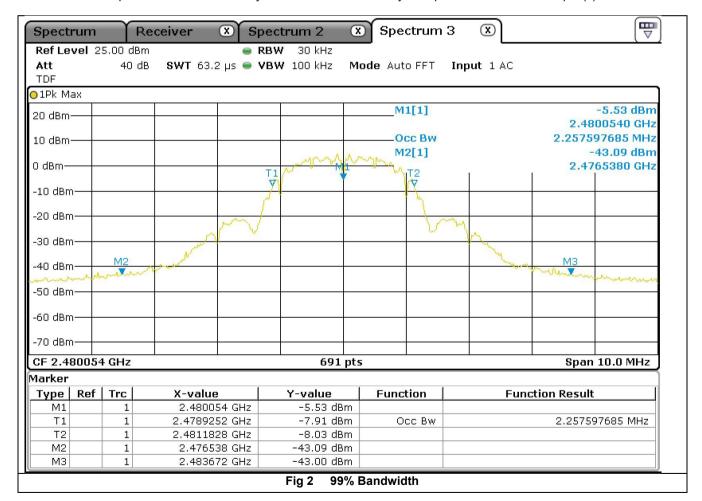
Limit for 6dB Bandwidth = 500KHz min

Frequency	6dB Bandwidth	Limit Min	Margin
GHz	MHz	KHz	MHz
2.405	1.983	500	1.483
2.44	1.968	500	1.468
2.48	1.983	500	1.483

Result :- Pass

Report Ref: 20E8887-1b Page 10 of 38

4.1.2 99% bandwidth


Test Method As per Ansi 63.10 Section 6.9.3

Ansi63.10 Section 6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

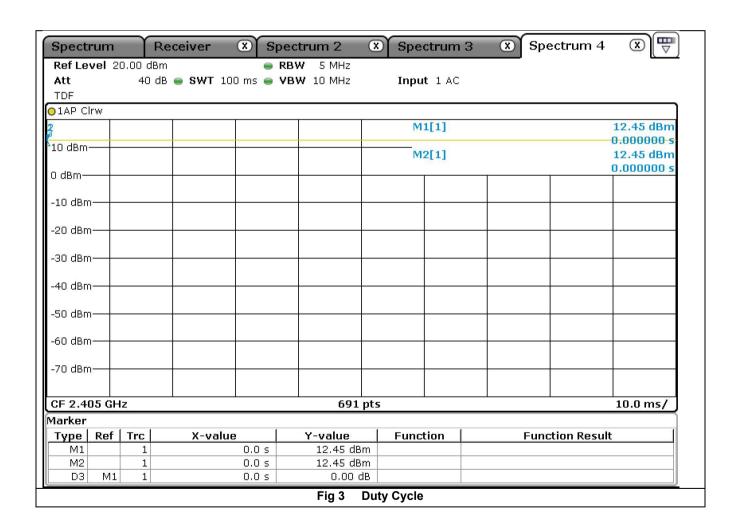
The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Frequency	99% Bandwidth
GHz	MHz
2.405	2.243
2.44	2.257
2.48	2.257

Page 11 of 38

4.2 **Duty Cycle**


Test Method

As per Ansi 63.10 Section 11.6 KDB 558074 zero span measurement method

Ansi63.10 Section 11.6 Duty cycle (D), transmission duration (7), and maximum power control level

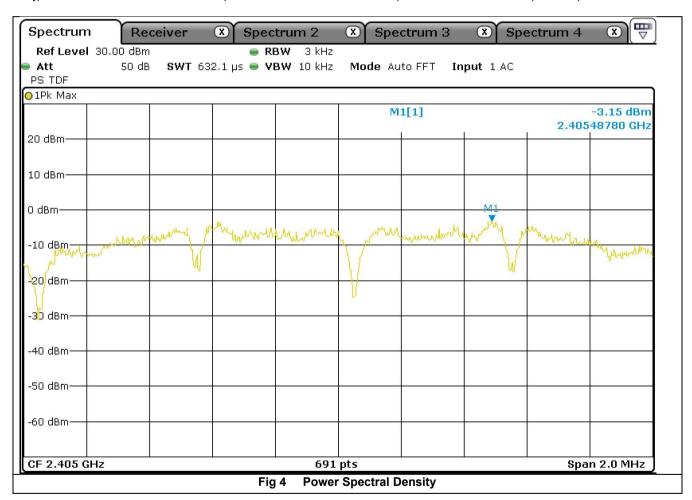
Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98%). When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e., no transmitter OFF-time is to be considered).

KDB 558074 D01 FAQ section

Duty Cycle >98%

Note the duty cycle results above shows how the sample operated during testing. Real life worst case duty cycle is protocol limited to 55% for 802.154.4 devices.

Report Ref: 20E8887-1b Page 12 of 38


4.3 Power Spectral Density

Test Method As per Ansi 63.10 Section 11.10.2

Ansi63.10 Section Section 11.10.2 Method PKPSD (peak PSD)

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

Frequency	Measurement	Conducted Peak	Limit	Margin
GHz	dBm	dBm	dBm	dB
2.405	-3.15	-3.15	8	11.15
2.44	-2.86	-2.86	8	10.86
2.48	-2.81	-2.81	8	10.81

Result :- Pass

Report Ref: 20E8887-1b Page 13 of 38

4.4 Output power Conducted

4.4.1 Test Method

As per Ansi 63.10 Section 11.9..1.1

Ansi63.10 Section 11.9.1.1 RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ [3 × RBW].
- c) Set span ≥ [3 × RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

4.4.2 Results

Frequency	Measurement	Conducted Peak	Limit	Margin
GHz	dBm	dBm	dBm	dB
2.405	12.45	12.45	30	17.55
2.44	12.36	12.36	30	17.64
2.48	12.45	12.45	30	17.55

Report Ref: 20E8887-1b Page 14 of 38

5. Spurious Emissions Measurements

5.1 Conducted Emissions

5.1.1 Test Method

As per Ansi63.10 Section 11.11.1 and 6.10.4

Ansi63.10 Section 11.11.1 General

Typical regulatory requirements specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

a) If the maximum peak conducted output power procedure was used to determine compliance as described in 11.9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

Ansi63.10 Section 6.10.4 Authorized-band band-edge measurements (relative method)

These procedures are applicable for determining compliance at authorized-band band-edges where the requirements are expressed as a value relative to the in-band signal level. Procedures for determining compliance with field strength limits at or close to the band-edges are given in 6.10.6 (see also Table A.2).

5.1.2 Results

		dBc Limit	
Frequency	100KHz RBW	Min	Margin
GHz	dBm	dB	dB
2.405	11.8	20	-
4.81	-54.63	20	46.43
7.215	-42.87	20	34.67
12.025	-67.65	20	59.45

		dBc Limit	
Frequency	100KHz RBW	Min	Margin
GHz	dBm	dB	dB
2.44	11.71	20	-
4.88	-53.48	20	45.19
7.32	-42.12	20	33.83
12.2	-64.87	20	56.58

		dBc Limit	
Frequency	100KHz RBW	Min	Margin
GHz	dBm	dB	dB
2.48	11.82	20	-
4.96	-40.78	20	32.6
7.44	-48.8	20	40.62
12.4	-71.51	20	63.33

Ref Appendix A for Scans

Test Result: - Pass

Page 15 of 38

5.2 Radiated Spurious Emissions in Restricted bands

5.2.1 Test Method

As per Ansi63.10 Section 11.12.1 and 6.10.5

Ansi63.10 Section 11.12.1 Radiated emission measurements

Because the typical emission requirements are specified in terms of radiated field strength levels, measurements performed to determine compliance have traditionally relied on a radiated test configuration.92 Radiated measurements remain the principal method for determining compliance to the specified requirements; however antenna-port conducted measurements are also now acceptable to determine compliance (see 11.12.2 for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in 6.3, 6.5, and 6.6 shall be followed

6.10.5 Restricted-band band-edge measurements

These procedures are applicable for determining compliance at band edges of restricted bands.

6.10.5.1 Test setup

Restricted-band band-edge tests shall be performed as radiated measurements, on a test site meeting the specifications in 5.2 at the measurement distances specified in 5.3.57

The instrumentation shall meet the requirements in 4.1.1 using the bandwidths and detectors specified in 4.1.4.2. Considering the requirements of 5.8, the antenna(s) shall be connected to the antenna ports. When performing radiated measurements, the measurement antenna(s) shall meet the specifications in 4.3. The EUT shall be connected to an antenna and operated at the highest power settings following procedures in 6.3, and the relevant procedure in 6.4, 6.5, or 6.6

FCC KDB 558074 D01 15.247

Question 3: What measurement methods are available for making average measurements on devices with protocol-limited duty cycles such as ZigBee devices (DTS devices certified under Section 15.247)?

Answer 3 c) Taking a RMS average measurement while EUT is transmitting continuously, i.e., greater than 98%, and correcting for operational duty cycle – When greater than 98% duty cycle is achieved for testing purposes, applying average measurement techniques (e.g., average detector / reduced VBW) then adjusting for the protocol limited duty factor to determine the average emission is acceptable. If the 558074 D01 15.247 Meas Guidance v05r02 Page 13 EUT supports more than one operational duty cycle the worst-case value should be used, i.e., the highest operational duty cycle. This measurement refers to spectrum analyzer settings 11.12.2.5.1 (Trace averaging with continuous EUT transmission at full power) in ANSI C63.10.

5.2.2 Result

Thread duty cycle is protocol limited to $37.2\% = 20*\log(1/0.372)$ yields a -8.59dB duty cycle correction factor for average measurements.

Therefore the tabulated results for average measurements for harmonics of the fundamental contain duty cycle correction of –8.59dB for average measurements. (this is added to the average measurement)

Ref Section 5.5

Report Ref: 20E8887-1b Page 16 of 38

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
4.810	51.2	32.4	37.1	5.2	Vertical	0.00	51.7	74	22.3
12.052	43.6	40.3	37.1	7.4	Vertical	0.00	54.2	74	19.8
4.810	48.7	32.4	37.1	5.2	Horizontal	0.00	49.2	74	24.8
12.025	39.6	40.3	36.5	7.8	Horizontal	0.00	51.2	74	22.8

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
12.052	45.0	40.3	37.1	7.4	Vertical	-8.59	47.0	54	7.0

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
4.880	52.7	32.4	37.3	5.2	Vertical	0.00	53.0	74	21.0
7.320	53.0	37.7	38	6.7	Vertical	0.00	59.4	74	14.7
4.880	50.4	32.4	37.3	5.2	Horizontal	0.00	50.7	74	23.3
7.320	51.4	37.7	38	6.7	Horizontal	0.00	57.8	74	16.2

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
7.320	51.4	37.7	38	6.7	Vertical	-8.59	49.2	54	4.8
7.320	47.5	37.7	38	6.7	Vertical	-8.59	45.3	54	8.7

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
4.960	50.3	33.5	37.4	5.4	Vertical	0.00	51.8	74	22.2
7.440	54.7	37.7	37.5	6.3	Vertical	0.00	61.2	74	12.8
4.960	48.7	33.5	37.4	5.4	Horizontal	0.00	50.2	74	23.8
7.440	50.2	37.7	37.5	6.3	Horizontal	0.00	56.7	74	17.3

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
7.440	51.4	37.7	37.5	6.3	Vertical	-8.59	49.3	54	4.7
7.440	50.5	37.7	37.5	6.3	Vertical	-8.59	48.4	54	5.6

Report Ref: 20E8887-1b Page 17 of 38

5.3 Radiated Band Edge / Restricted band Measurements

Radiated Measurement

Result

5.3.1 Radiated Restricted Band near 2.4 GHz band

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain dB	Cable Loss dB	Antenna Polarity V/H	Duty Cycle Correction	Final Peak Level dBuV/m	Average Limit +20dB	Margin dB
2.4835	72.3	28.7	38.3	3.4	Vertical	0.00	66.1	74	7.9
2.4000	12.0	20.7	30.3	5.4	Vertical	0.00	00.1	74	1.5
2.5000	65.0	28.7	38.3	3.4	Vertical	0.00	58.8	74	15.2
2.4835	71.5	28.7	38.3	3.4	Horizontal	0.00	65.3	74	8.7
2.5000	63.1	28.7	38.3	3.4	Horizontal	0.00	56.9	74	17.1

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.4835	59.9	28.7	38.3	3.4	Vertical	0.00	53.7	54	0.3
2.5000	52.5	28.7	38.3	3.4	Vertical	0.00	46.3	54	7.7
2.4835	59.4	28.7	38.3	3.4	Horizontal	0.00	53.2	54	0.8
2.5000	52.3	28.7	38.3	3.4	Horizontal	0.00	46.1	54	7.9

5.3.2 Radiated Band Edges near 2.4 GHz band

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.400	67.0	27.4	38.5	3.5	Vertical	0.00	59.4	74	14.6
2.393	64.6	27.4	38.5	3.5	Vertical	0.00	57.0	74	17.1
2.400	65.8	27.4	38.5	3.5	Vertical	0.00	58.2	74	15.9
2.393	63.8	27.4	38.5	3.5	Vertical	0.00	56.2	74	17.8

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.400	55.7	27.4	38.5	3.5	Vertical	0.00	48.09	54	5.9
2.393	53.6	27.4	38.5	3.5	Vertical	0.00	46.0	54	8.0
2.400	55.7	27.4	38.5	3.5	Horizontal	0.00	48.1	54	5.9
2.393	53.6	27.4	38.5	3.5	Horizontal	0.00	46.0	54	8.0

Test Result: - Pass

Page 18 of 38

5.4 Radiated Power at fundamental

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Final Peak Level	Transmitted power EIRP
GHz	dBuV/m	dB	dB	dB	V/H	dBuV/m	dBm
2.405	111.4	27.4	38.5	3.5	Vertical	103.8	9
2.405	117.8	27.4	38.5	3.5	Horizontal	110.2	15
2.405	117.1	27.4	38.5	3.5	Vertical	109.5	14
2.405	116.4	27.4	38.5	3.5	Horizontal	108.8	14
2.405	112.4	27.4	38.5	3.5	Vertical	104.8	10
2.405	117.8	27.4	38.5	3.5	Horizontal	110.2	15
2.440	115.8	27.4	38.5	3.5	Horizontal	108.2	13
2.440	115.4	27.4	38.5	3.5	Vertical	107.8	13
2.480	112.4	28.7	38.3	3.4	Horizontal	106.2	11
2.480	111.8	28.7	38.3	3.4	Vertical	105.6	10

Note the Radiated field strength was measured at 3 metres and the conversion formula below was used to determine the EIRP in dBm $EIRP (dBm) = E_{3m} (dBuV/m) - 95.2$

Page 19 of 38

5.5 Protocol Limitation

FCC KDB 558074 D01 15.247

Question 3: What measurement methods are available for making average measurements on devices with protocol-limited duty cycles such as ZigBee devices (DTS devices certified under Section 15.247)?

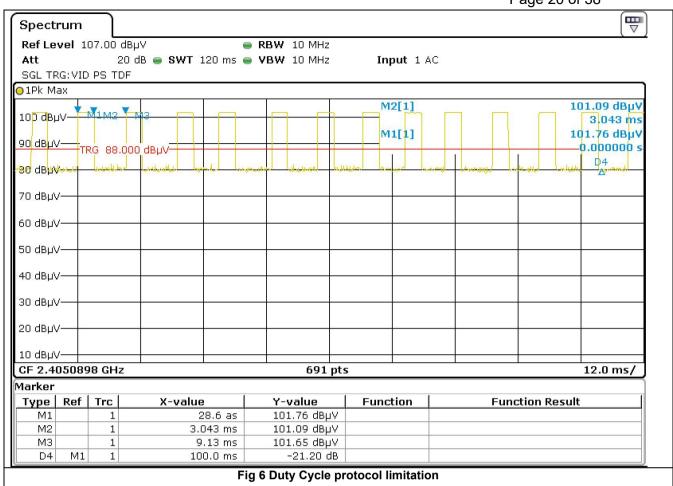
Answer 3 c) Taking a RMS average measurement while EUT is transmitting continuously, i.e., greater than 98%, and correcting for operational duty cycle – When greater than 98% duty cycle is achieved for testing purposes, applying average measurement techniques (e.g., average detector / reduced VBW) then adjusting for the protocol limited duty factor to determine the average emission is acceptable. If the 558074 D01 15.247 Meas Guidance v05r02 Page 13 EUT supports more than one operational duty cycle the worst-case value should be used, i.e., the highest operational duty cycle. This measurement refers to spectrum analyzer settings 11.12.2.5.1 (Trace averaging with continuous EUT transmission at full power) in ANSI C63.10.

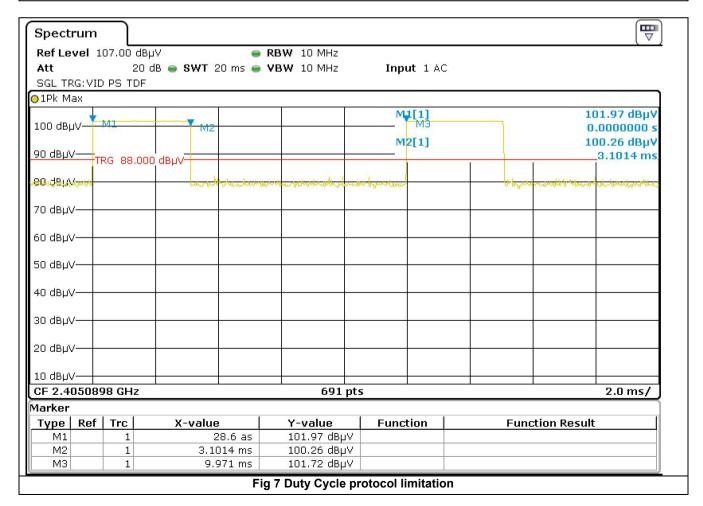
Ansi 63.10 section 11.6 **Duty cycle (***D***)**, **transmission duration (***T***)**, **and maximum power control level** Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

- a) A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.
- b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:
- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW ≥ RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \, \mu s$.)

5.5.1 Test procedure

The EUT was operated in a mode which presented the worst-case duty cycle. Tests were performed as a radiated measurement


5.5.2 Result


Thread duty cycle is protocol limited to $37.2\% = 20*\log(1/0.372)$ yields a -8.59dB duty cycle correction factor for average measurements.

Therefore the tabulated results for average measurements for harmonics of the fundamental contain duty cycle correction of -8.59dB for average measurements. (this is added to the average measurement)

Window	Pulse	No of	Duty Cycle	20 log duty
(mS)	Width (mS)	Pulses		cycle (dB)
100	3.1014	12	0.372	-8.59

Report Ref: 20E8887-1b Page 20 of 38

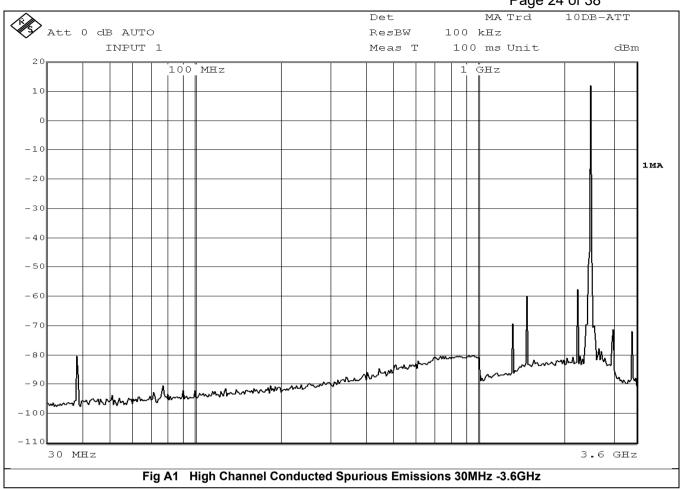
Page 21 of 38

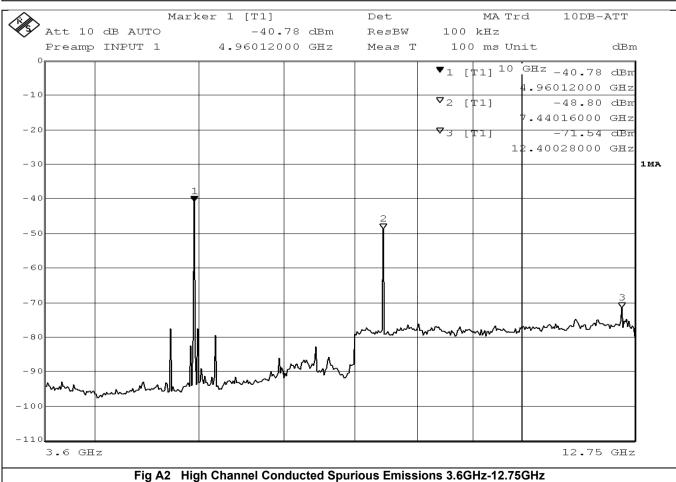
6 List of Test Equipment

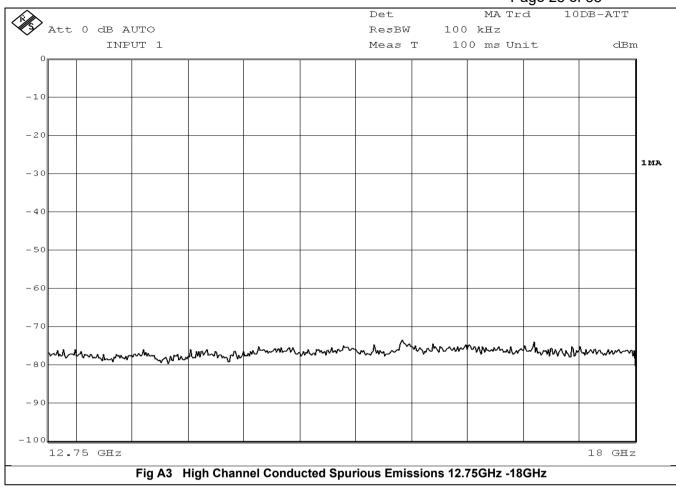
Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Due Date	Cal Interval Months
Spectrum Analyser 30Hz-40GHz	Rohde & Schwarz	FSP40	100053	850	11-Dec-21	36
Test Receiver 3.6GHz	Rohde & Schwarz	ESR	1316.3003k03- 101625-s	869	28-May-23	36
Antenna Biconical	Schwarzbeck	VHBB 9124	9124 667	871	03-Sep-21	36
Antenna Horn	EMCO	3115	9905-5809	655	14-Mar-21	24
Anechoic Chamber	CEI	SAR 10M	845	845	16-May-22	36
Antenna Log Periodic	Chase	UPA6108	1072	609	03-Sep-21	36
Fully Anechoic Chamber	CEI	FAR 3M	906	906	22-Mar-21	36
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	30-Sep-21	12
Antenna Horn Standard Gain 18- 26.5GHz	A-Info	LB-42-25-C-KF	J2021091103028	877	05-Oct-21	12

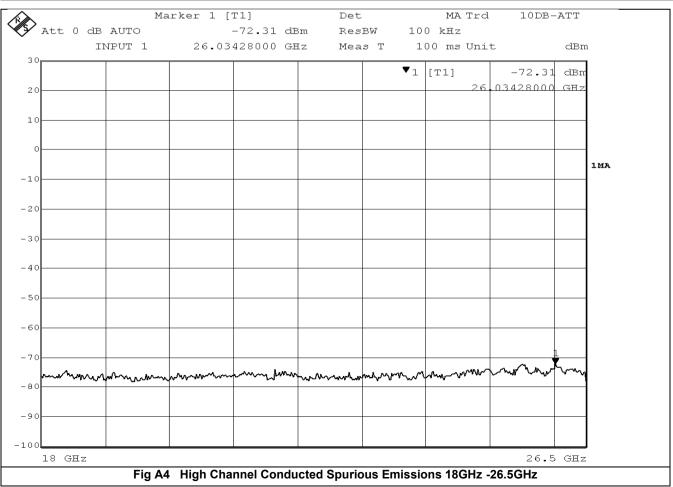
Page 22 of 38

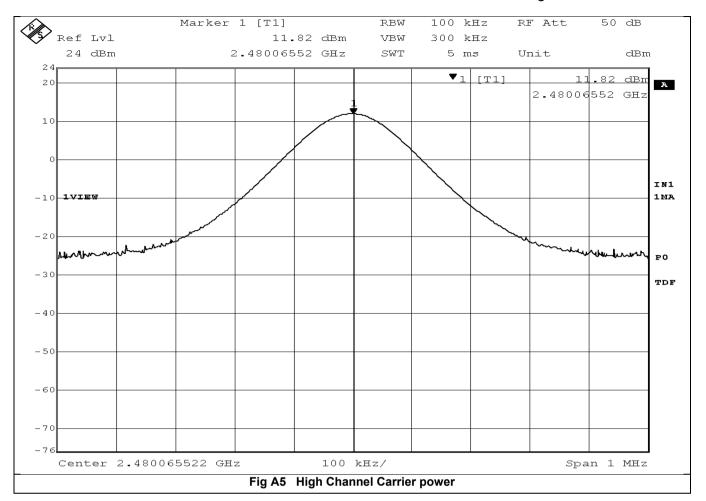
7 Measurement Uncertainties

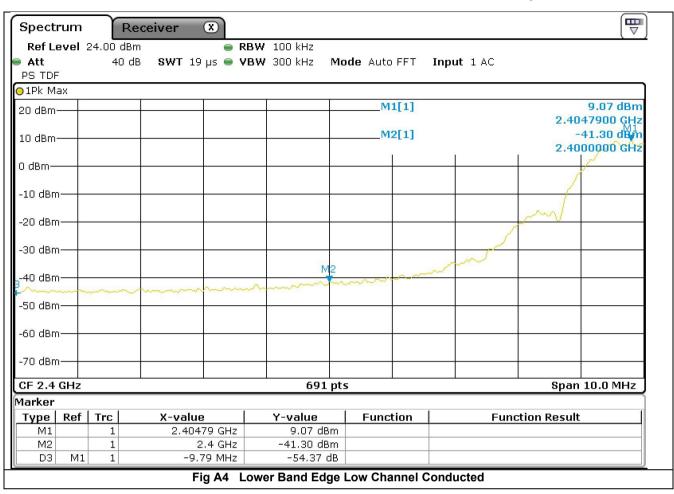

Measurement	Uncertainty
Radio Frequency	+/- 5x10 ⁻⁷
Maximum Frequency Deviation	+/- 1.7 %
Conducted Emissions	+/- 1 dB
Radiated Emission 30MHz-100MHz	+/- 5.3 dB
Radiated Emission 100MHz-300MHz	+/- 4.7 dB
Radiated Emission 300MHz-1GHz	+/- 3.9 dB
Radiated Emission 1GHz-40GHz	+/- 3.8 dB


The measurement uncertainties stated were calculated with a k=2 for a confidence level of over 95% as per ETS TR100 028.

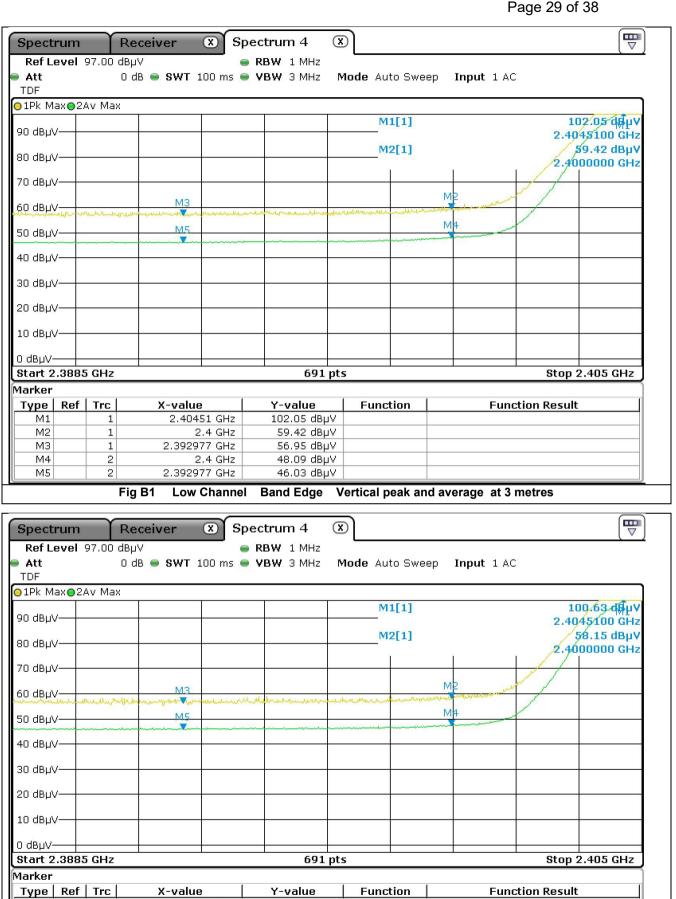

Page 23 of 38


Appendix A


Conducted Measurements on the Antenna Port



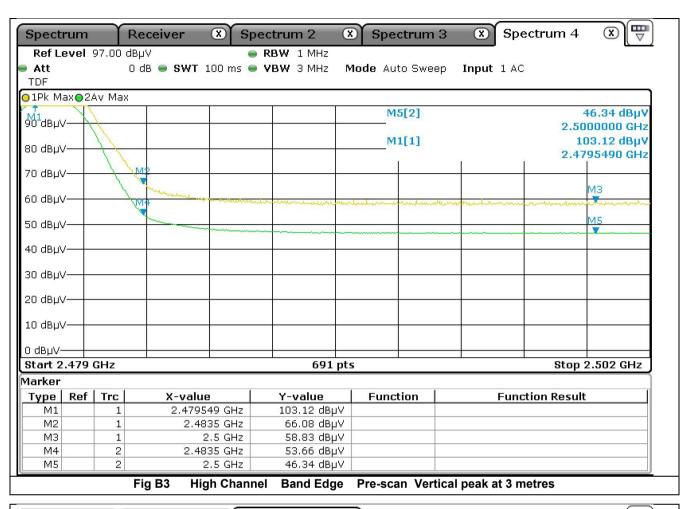
Report Ref: 20E8887-1b Page 27 of 38

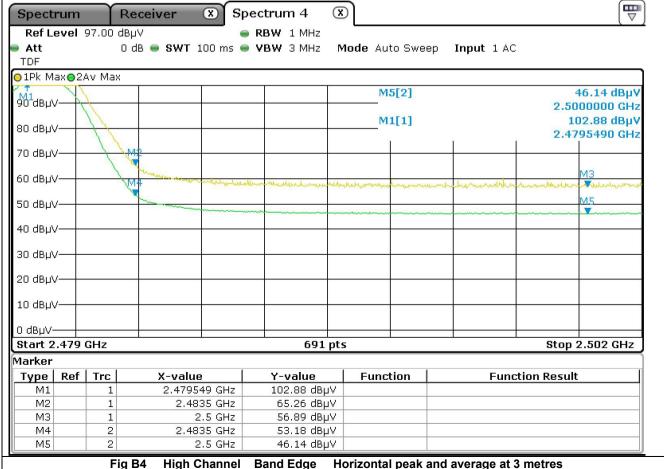


Page 28 of 38

Appendix B

Radiated tests for Band Edges /Restricted band

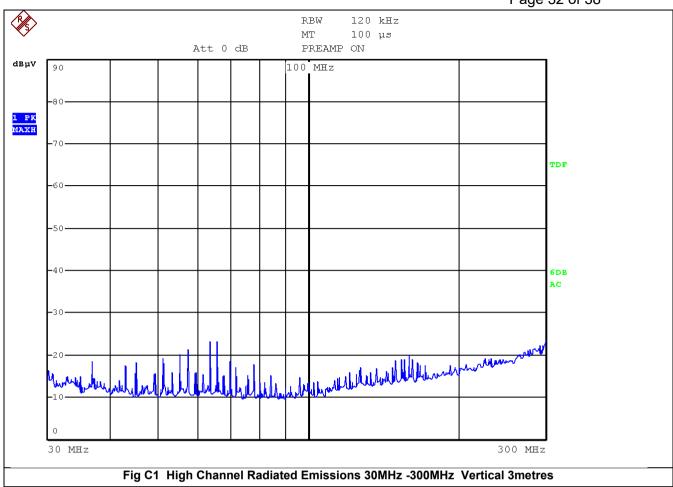

	Fig B2	Low Channel	Band Edge	Horizontal peak and average at 3 metres	
2		2.392977 GHz	45.72 dBµ	V	
2	!	2.4 GHz	47.34 dBµ	V	
1		2.392977 GHz	56.22 dBµ	V	
1		2.4 GHz	58.15 dBµ	V	

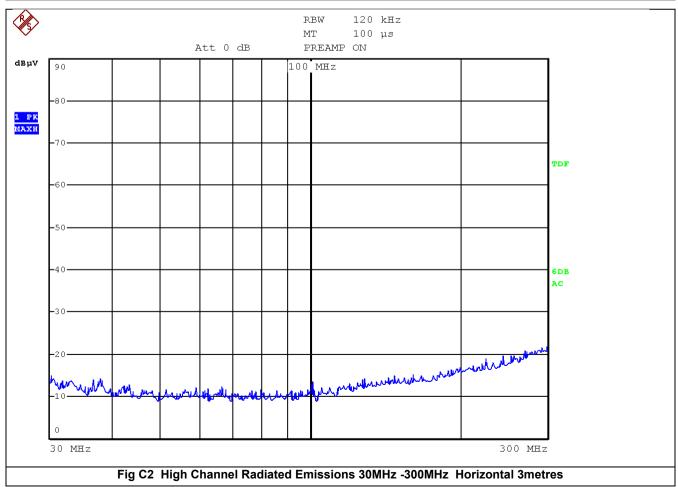

100.63 dBµV

M1

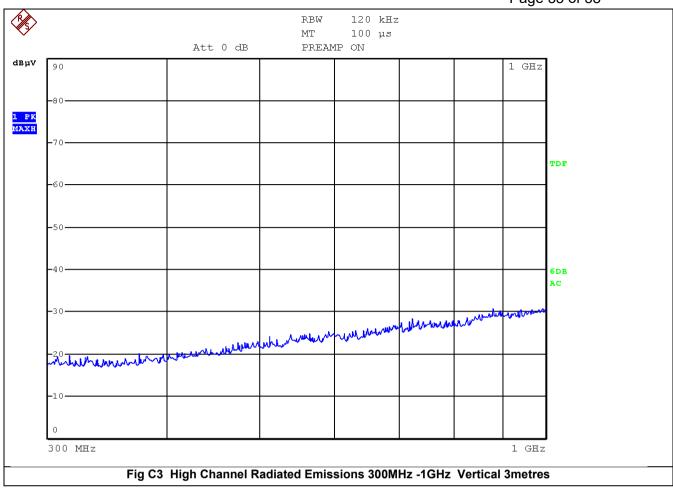
M2 M3 M4 M5 2.40451 GHz

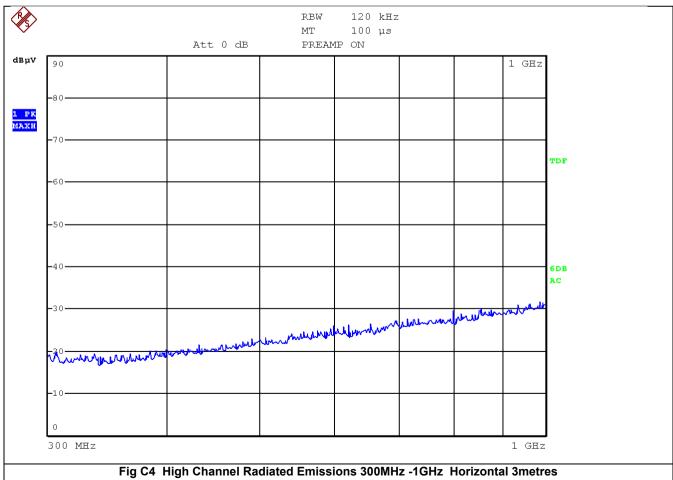
Report Ref: 20E8887-1b Page 30 of 38

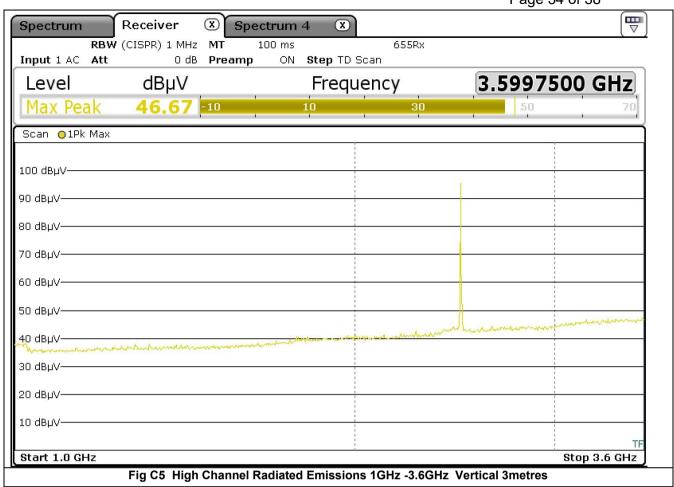


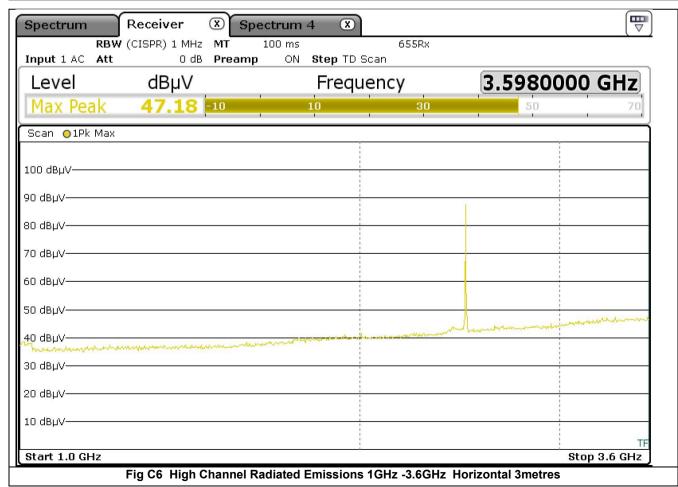

Page 31 of 38

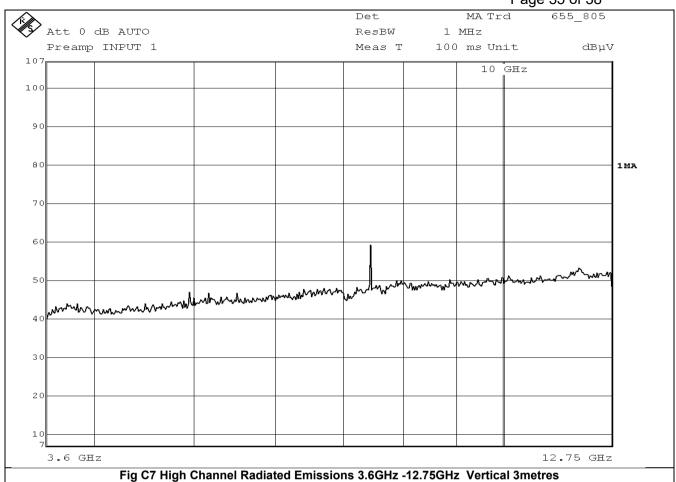
Appendix C

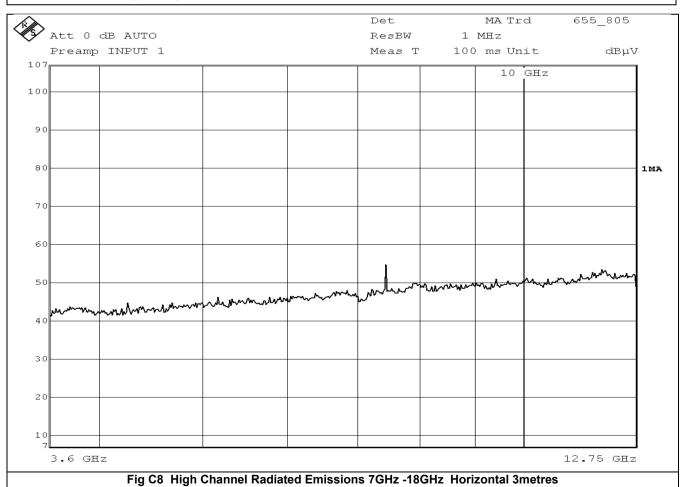

Radiated Spurious Emissions

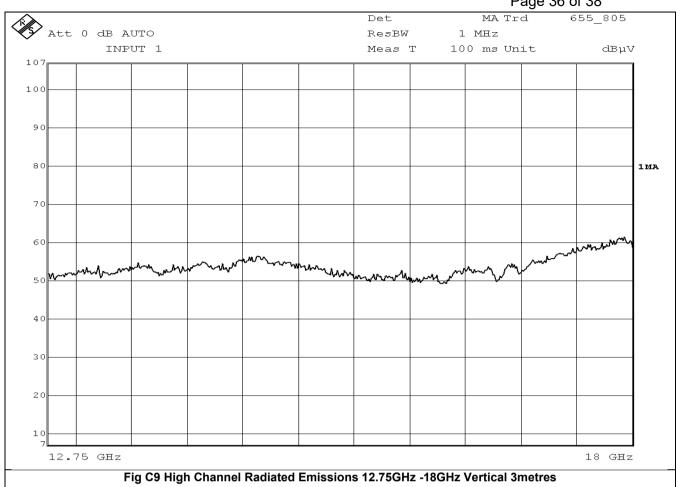

Report Ref: 20E8887-1b Page 32 of 38

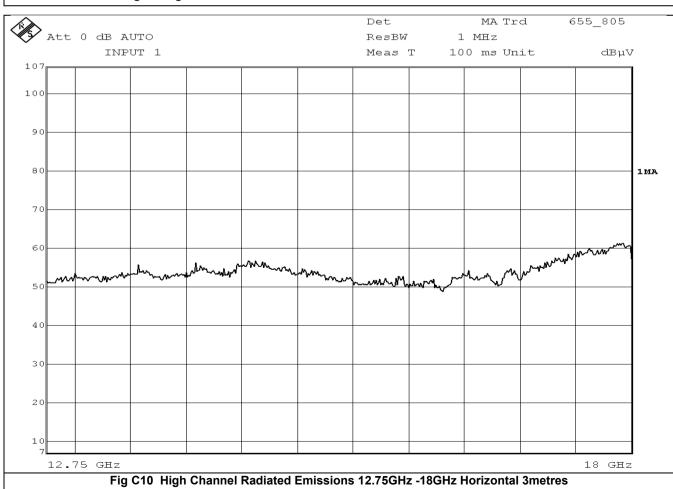


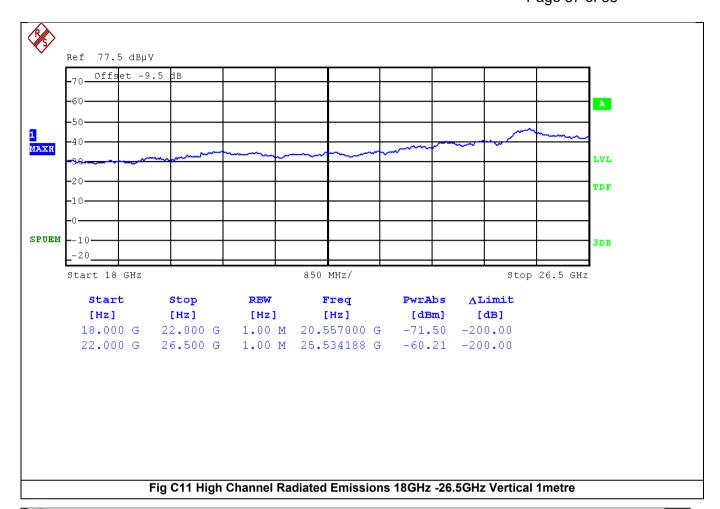

Report Ref: 20E8887-1b Page 33 of 38

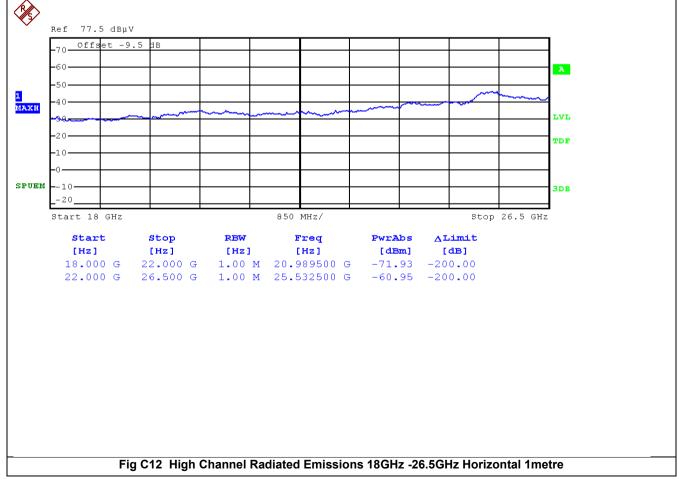


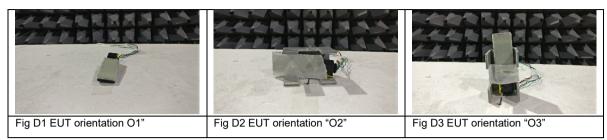



Report Ref: 20E8887-1b Page 34 of 38









Page 38 of 38

Appendix D

Orientations for Radiated Emissions

End of Report