Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

SEHUBB-WR2315RF Issued: June 26, 2023

EMC Test Report

regarding

USA: CFR Title 47, Part 15.247/15.109 (Emissions) Canada: IC RSS-247/GENe (Emissions)

for

HUBB

Category: Vehicular DTS Transceiver

Judgments: FCC 15.247, ISED RSS-247v2 Compliant Testing Completed: June 16, 2023

Prepared for:

Sensata Technologies

Unit 11, Antrim Technology Park, Antrim Northern Ireland BT41 1QS United Kingdom Phone: +44 28 9448 2181, Fax: +44 28 9446 8440 Contact: Michael Maingot, mmaingot@sensata.com

Data Rec./Rev. by:

Nantz Rpt. Prep./Rev. by:

Rpt. Auth. by: Joseph Brunett, EMC-002790-NE

Date of Issue:

June 26, 2023

Revision History

Rev.	No.	Date	Details	Revised By	
r0 r1		June 26, 2023 July 15, 2023	Initial Release. Clarify manuf. settings.	J. Nantz J. Nantz	
Cont	ents				
Revis	ion History				2
Table	of Content	s			2
1 Te 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	Laboratory Report Re Subcontrac Test Data Limitation Copyright Endorseme Test Locat	tention cted Testing of Results			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2 Te 2.1		tions and Procedures fication and General Proced	ures		6 6
3 Co 3.1	Description 3.1.1 EU 3.1.2 Mo 3.1.3 Var 3.1.4 Tes 3.1.5 Fur 3.1.6 Mo 3.1.7 Pro	n and Declarations T Configuration des of Operation triants to Samples difications Made oduction Intent	e Equipment Under Test		
 4 En 4.1 4.2 4.3 	4.1.1 Rad 4.1.2 Con 4.1.3 Pov Intentional 4.2.1 Dur 4.2.2 Fur 4.2.3 Effe 4.2.4 Pov Unintentio 4.3.1 Res	diated Test Setup and Proce nducted Emissions Test Setu wer Supply Variation I Emissions ty and Transmission Cycle, ndamental Emission Bandwi ective Isotropic Radiated Po- wer Spectral Density nal Emissions stricted Band Transmit Cha	edures		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5 Measurement Uncertainty and Accreditation Documents

List of Tables

1	Test Site List.
2	Equipment List.
3	EUT Declarations
4	Pulsed Emission Characteristics (Duty Cycle)
5	Intentional Emission Bandwidth
6	Radiated Power Results
7	Power Spectral Density Results
8	Transmit Chain Spurious Emissions
9	Measurement Uncertainty.

List of Figures

1	Photos of EUT
2	EUT Test Configuration Diagram
3	Radiated Emissions Diagram of the EUT
4	Radiated Emissions Test Setup Photograph(s)
5	Conducted RF Test Setup Photograph(s)
6	Example Pulsed Emission Characteristics (Duty Cycle)
7	Example Intentional Emission Bandwidth Plots
7	Example Intentional Emission Bandwidth Plots
8	Power Spectral Density Plots
8	Power Spectral Density Plots
9	Worst Case Transmitter OOB Emissions Measured
10	Accreditation Documents

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until June 2033.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratory's scope of accreditation. Any data in this report that is not covered under the laboratory's scope is clearly identified.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.					
Description	Location	Quality Num.			
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC			

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Cal/Ver By / Date Due
EMI Receiver	R & S / ESW26	101313	RSESW2601	RS / October-2023
Spectrum Analyzer	R & S / FSV30	101660	RSFSV30001	RS / Apr-2024
Spec. Analyzer 70GHz	Anritsu / MS2760A	1705006	ANMS2760A1	ANR / Sept-2023
Pk/Avg Pwr Mtr	BK Prec. / RFP3008	620C22101	BKPM300801	BK / Mar-2024
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2023
Log Periodic Antenna	EMCO / 3146	9305-3614	LOGEMCO01	Keysight / Aug-2023
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2024
K-Band Horn	JEF / NRL Std.	001	HRNK01	AHD / Jul-2024
Power Meter	R & S / NRP50S	101087	RSNRP50	RS / Nov-2024

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Sensata Technologies is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Sensata Technologies HUBB for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)		
United States Canada	Code of Federal Regulations ISED Canada	CFR Title 47, Part 15.247/15.109 IC RSS-247/GENe		
this testing. In conjunction with t	•	rules and directives above at the date of pecifications and procedures are followed ons.		
ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"			
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"			
KDB 558074 D01 v05r02	"GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPEC- TRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES "			
KDB 662911 D01v02r01	"Emissions Testing of Transmitters wit	th Multiple Outputs in the Same Band"		
KDB 662911 D02 v01	"MIMO with Cross-Polarized Antenna	"		
TP0102RA	"AHD Internal Document TP0102 - R	adiated Emissions Test Procedure"		

Date: June 26, 2023

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a vehicle wireless gateway module containing WLAN and THREAD DTS transceivers and a 433.92 MHz receiver. The EUT is approximately 16 x 12 x 3 cm in dimension, and is depicted in Figure 1. It is powered by 13.5 VDC nominal vehicular power system. The EUT is used in a motor vehicle as a gateway module to receive TPM sensor data and communicate this data via WLAN and/or THREAD to other on vehicle modules. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 3:	EUT	Declarations.
----------	-----	---------------

General Declarations	
Equipment Type:	Vehicular DTS Transceiver
Country of Origin:	Not Declared
Nominal Supply:	13.5 VDC nominal
Oper. Temp Range:	-40° C to $+85^{\circ}$ C
Frequency Range:	RF: 433.92 MHz, WLAN/THREAD: (2400 – 2483.5 MHz)
Antenna Dimension:	Integral
Antenna Type:	PCB Trace (PIFA)
Antenna Gain:	WLAN: 3.8 dBi max. THREAD: 4.4 dBi max.
Number of Channels:	WLAN g/n20: (1-11), THREAD: (11-26)
Channel Spacing:	5 MHz
Alignment Range:	Not Declared
Type of Modulation:	WLAN: $802.11 \text{ g/n}(20)$ SISO, THREAD: OQPSK
United States	
FCC ID Number:	2ATIMHUBB
Classification:	DTS
Canada	
IC Number:	25094-HUBB
Classification:	Other

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

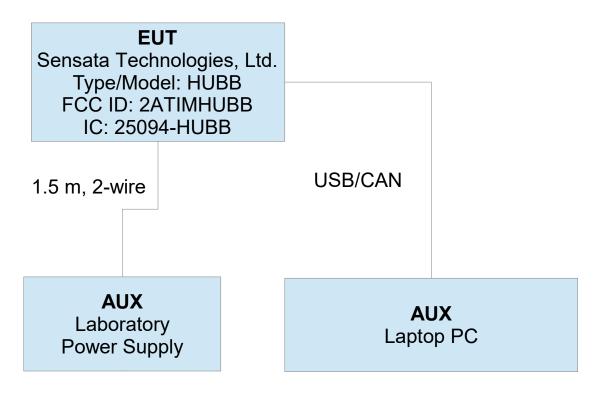


Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

The EUT employs a 2.4 GHz WLAN 11g/n(20) DTS transceiver and a 2.4 GHz THREAD DTS transceiver, along with a 433.92 MHz receiver for Tire Pressure Monitoring (TPM) signals. The WLAN radio includes two antenna ports (only one of which is used) and the THREAD thread radio has only a single port. All DTS antennas are PCB traces - the 433.92 MHz receiver employs a metal frame antenna.

3.1.3 Variants

There is only a single variant of the EUT, as tested.

3.1.4 Test Samples

Two samples of the EUT were provided in total, one normal (production ready) sample (SN: TP2) with integral antennas and one with the WLAN and THREAD antennas replaced by coaxial cable connections (SN:COND1). Each sample provided was capable of receiving radio instructions via CAN + USB interface to a personal computer. The manufacturer provided software tools and firmware needed to place the EUT radio into test and normal operating modes.

3.1.5 Functional Exerciser

Normal functionality was confirmed by measurement of transmitted signals.

3.1.6 Modifications Made

In pretesting it was determined that the output power settings for the WLAN radio must be set to a value of 60 and the THREAD radio power setting must be adjusted to 8 in order to meet band-edge intermodulation requirements. These power settings were selected by the manufacturer for final testing. The manufacturer also selected to firmware deactivate the WLAN Loop antenna. (The WLAN radio employs 2 PCB trace antennas (PIFA and Loop) for diversity which are software selectable from within the chipset).

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and IC correspondence on ICES-003). UHF Receiver emissions for this product are addressed separately by the manufacturer under SDoC procedures.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

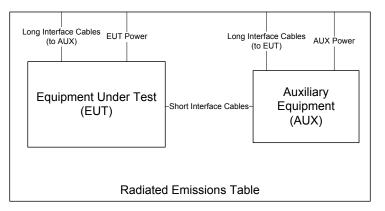


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulation. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, 10cm diameter single-axis broadband probes meeting the requirements of ISED SPR-002 section 5.2 are employed. Measurements are repeated and summed over three axes, and the entire frequency range is measured with and without the EUT transmitting.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

Transmit Antenna Port Conducted Emissions At least one sample EUT supplied for testing was provided with a 50Ω antenna port. Conducted transmit chain emissions measurements (where applicable) are made by connecting the EUT antenna port directly to the test receiver port. Photographs of the test setup employed are depicted in Figure 5.

Figure 5: Conducted RF Test Setup Photograph(s).

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

4.2**Intentional Emissions**

Duty and Transmission Cycle, Pulsed Operation 4.2.1

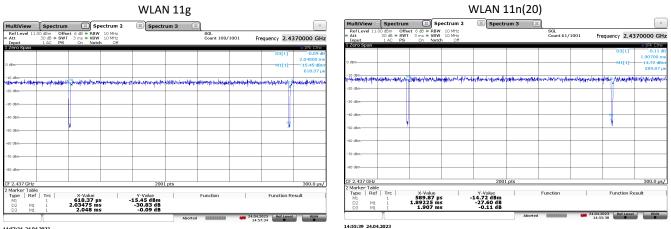

The details and results of testing the EUT for pulsed operation are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 6.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

Test Date:	1-Jun-23		
Test Engineer:	John Nantz		
EUT	Sensata HUBB		
Meas. Distance:	Conducted		

	Test Mode Pulsed Operation / Average Measurement Duty Cycle							
	Mode	Data Rate	Voltage	Oper. Freq	Pulse Length	Pulse Period	Duty Cycle	Power Duty Correction
R0	Wode	Mbps	V	MHz	ms	ms	%	dB
R1	802.11g SISO	6.0	13.4	2437	2.035	2.048	99	0.0
R2	802.11n(20) SISO	7.2	13.4	2437	1.892	1.907	99	0.0
R3	THREAD	0.25	13.4	2440	100.000	100.000	100	0.0
#	C1	C2	C3	C4	C5	C6	C7	C8

* Duty Cycle is measured in line with DTS guidance 558074 D01 v5 r02 section 6(b) for averaging only over full-power transmission pulses.

14:57:34 24.04.2023

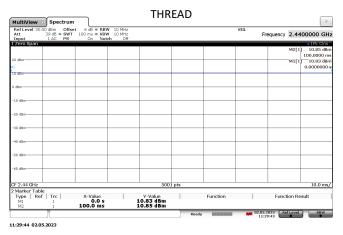


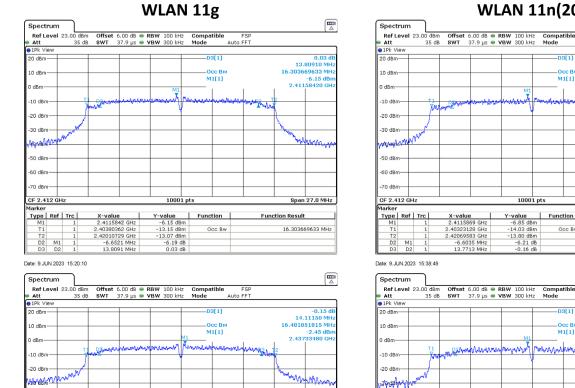
Figure 6: Example Pulsed Emission Characteristics (Duty Cycle).

4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available packet length and minimum packet spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 6 dB bandwidth is measured for the lowest, middle, and highest channels available. The 99% emission bandwidth per IC test procedures is also reported. The results of this testing are summarized in Table 5. Plots showing measurements employed obtain the emission bandwidths reported are provided in Figure 7.

 Table 5: Intentional Emission Bandwidth.

							Test Date: Fest Engineer: EUT leas. Distance:									
				Occupie	d Bandwidth											
Transmit Mode	Data Rate	Path	Voltage	Oper. Freq	6 dB BW	6 dB BW Limit	99% OBW	Pass/Fail								
Transmit Wode	(Mbps)	A / B	(V)	(MHz)	(MHz)	(MHz)	(MHz)	r ass/r an								
	6.0				2412.0	13.81	0.50	16.30	Pass							
802.11G SISO		Α	13.4	2437.0	14.11	0.50	16.48	Pass								
				2462.0	13.89	0.50	16.34	Pass								
				2412.0	13.77	0.50	17.42	Pass								
802.11n(20) SISO	7.2	А	А	А	А	А	А	А	А	А	13.4	2437.0	13.63	0.50	17.53	Pass
				2462.0	13.98	0.50	17.46	Pass								
				2405.0	1.67	0.50	2.25	Pass								
Thread	0.25	5 A	A 13.4	2440.0	1.67	0.50	2.25	Pass								
				2480.0	1.65	0.50	2.26	Pass								
C1	C2	C3	C4	C5	C6	C7	C8	С9								


Auto FFT

-Occ By M1[1]

0.16 d

13.77130 17.464553545

-6.85 d 2.41

10001 pt:

10001 pts

Function

Occ Bw

Y-value -6.23 dBm -14.77 dBm -12.58 dBm -6.24 dB -0.19 dB

Function

Comp Mode

Occ Bw

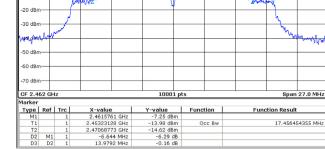
3[1]

Occ Bw M1[1]

Auto FFT

Y-value -2.45 dBm -10.91 dBm -11.14 dBm -6.29 dB -0.15 dB

6.00 dB ● RBW 100 kHz 37.9 µs ● VBW 300 kHz


X-value 2.4373348 GHz 2.42871723 GHz 2.44519908 GHz -7.4297 MHz 14.1115 MHz

Offset SWT

10

X-value 2.4617057 GHz 2.45377392 GHz 2.47010999 GHz -6.6899 MHz 13.8874 MHz

WLAN 11n(20)

M1 D2 Date: 9 JUN 2023 15:26:16

40 dBr

-50 dBm

-60 dBm

70 dBr

arke

D2 D3 M1 D2

Spectrum

20 dBm

10 dBm

0 dBm

-10 dBm

-20 dBm

-30 dBm

AMAMA

-50 dBm

-60 dBm

-70 dBm

CF 2.462 GH Marker

D2 D3

Type Ref Trc

CF 2.437 GH

Type Ref Trc

Date: 9.JUN.2023 15:23:05

Ref Level 23.00 dBm Att 35 dB 1Pk View

Figure 7(a): Example Intentional Emission Bandwidth Plots.

Date: 9 JUN 2023 15:31:37

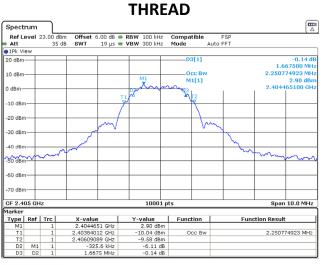
Span 27.0 MHz

16.481851815 MHz

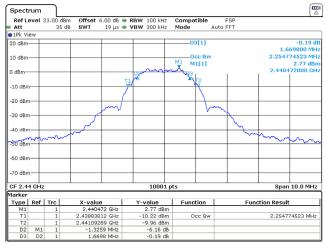
13.88740 M

Span 27.0 MHz

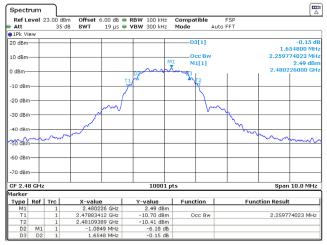
16.336066393 MHz


336066393 M −6.23 dl 2.46170579 C

M.


Function Result

Function Result


¹⁰ dBr Mr. Runny RASIM -20 dBr -30 dBr Advald with mallyn 50 dBn 60 dBn 70 dBn CF 2.412 G 1000 27.0 MHz Marker Type Ref Trc X-value 2.4115869 GHz 2.40323128 GHz 2.42069583 GHz -6.6035 MHz 13.7713 MHz Y-value -6.85 dBm -14.03 dBm -13.80 dBm -6.21 dB -0.16 dB Function **Function Result** 17.464553545 MHz Occ Bw M1 D2 D2 Date: 9.JUN.2023 15:38:49 Spectrum Ref Level 23.00 dBm Offset 6.00 dB ● RBW 100 kHz Compatible Att 35 dB SWT 37.9 µs ● VBW 300 kHz Mode ● IPk View Auto FFT 20 dBm 13.63090 17.529347065 MI 10 dBn -Occ By M1[1] -2.88 d 2.43 0 dBm man www mannan Ram 10 dBn -20 dBn -зраярыhann 40 dBn -50 dBm 60 dBm 70 dBn CF 2.437 G 10001 Spa 27.0 MHz Marke X-value 2.4365788 GHz 2.42818808 GHz 2.44571743 GHz -6.2904 MHz 13.6309 MHz Y-value -2.88 dBm -10.15 dBm -9.51 dBm -6.20 dB -0.13 dB Type Ref Trc Function **Function Result** Occ Bw 17.529347065 MHz M1 D2 Date: 9.JUN.2023 15:35:08 Spectrum Ref Level 23.00 Att 3 1Pk View Offset SWT : 6.00 dB 👄 RBW 100 kHz 37.9 µs 👄 VBW 300 kHz Comp Mode 35 dB Auto FFT 3[1] 20 dBm -0.16 13.97920 Mi 17.456454355 Mi -7.25 dB 2.46157610 G 10 dBn M1[1] 0 dBn -10 dBn KimenAllanah m. -20 dBn -30 dBn gol glothe Mr. -50 dBm

Date: 9.JUN.2023 15:48:49

Date: 9.JUN.2023 15:51:23

Date: 9.JUN.2023 15:52:36

Figure 7(b): Example Intentional Emission Bandwidth Plots.

4.2.3Effective Isotropic Radiated Power

The EUT's radiated power is computed from antenna port conducted power measurements and the gain of the EUT antenna(s). Where the EUT is not sold with an antenna connector, a modified product has been provided including such. The results of this testing are summarized in Table 6.

Table 6: Radiated Power Results.

Test Date:	9-Jun-23
Test Engineer:	John Nantz
EUT:	Sensata HUBB
Meas. Distance:	Conducted

		Fundamental Power													
			Freq.	Path	Pout (Pk)	Pout (Avg)	Duty	Pout(Avg) + Duty	Ant Gain	EIRP (Avg)	EIRP (Avg) Limit	Pass	Comments		
#	Mode	Channel	MHz	A / B	dBm	dBm	dB	dBm	dBi	dBm	dBm	dB			
R1		1	2412.0		15.8	6.7	0.0	6.7	3.8	10.5	36.0	25.5			
R2	802.11G SISO	6	2437.0	Α	16.8	10.5	0.0	10.5	3.8	14.3	36.0	21.7			
R3		11	2462.0		15.9	6.6	0.0	6.6	3.8	10.4	36.0	25.6			
R4 R5		1	2412.0		15.7	6.3	0.0	6.3	3.8	10.1	36.0	25.9			
R5	802.11n(20) SISO	6	2437.0	A	16.8	10.1	0.0	10.1	3.8	13.9	36.0	22.1			
R6	5150	11	2462.0		15.7	6.2	0.0	6.2	3.8	10.0	36.0	26.0			
R7		11	2405.0		7.2	6.9		6.9	4.4	11.3	36.0	24.7			
R8	Thread	18	2440.0	Α	7.0	6.7		6.7	4.4	11.1	36.0	24.9			
R9		26	2480.0		6.6	6.4		6.4	4.4	10.8	36.0	25.2			
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13		

ROW COLUMN

All C6 Measured conducted from radio conducted sample. Avg Power measured per DTS Guidance 558074 D01 v5 r02 Section 8.3.2.2 / ANSI C63.10 11.9.2.3.1 (AVGPM)

Measured conducted from radio conducted sample. Pk Power measured per DTS Guidance 558074 D01 v5 r02 Section 8.3.1.3 / ANSI C63.10 11.9.1.3 (PKPM1) C5 All All

C9 Maximum Antenna Gain across Band. For MIMO, Gain = Gain_dBi + 10*log10(N), N = 2 antennas.

4.2.4Power Spectral Density

For this test, the EUT was attached directly to the test receiver. Following FCC DTS measurement procedures, the emission spectrum is first scanned for maximum spectral peaks, the span and receiver bandwidth are then reduced until the power spectral density is measured in the prescribed receiver bandwidth. The results of this testing are summarized in Table 7. Plots showing how these measurements were made are depicted in Figure 8.

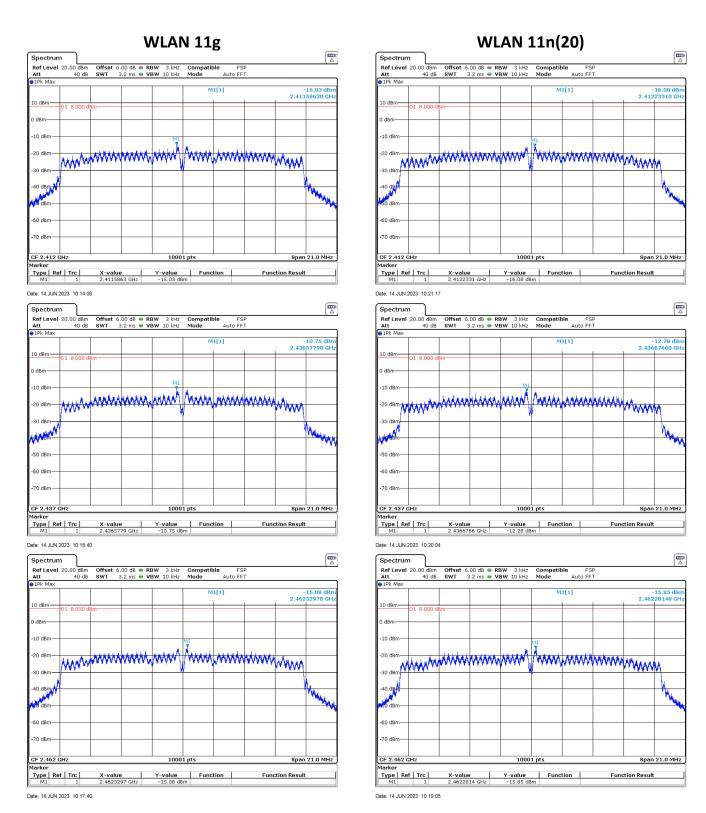
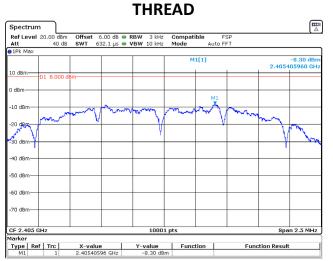
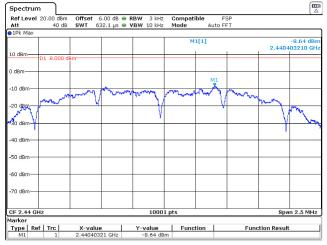
Table 7:	Power	Spectral	Density	Results.
----------	-------	----------	---------	----------

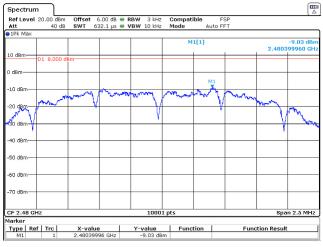
	Frequency Range 2400-2483.5		Detector Pk	IF Bandwidth 3 kHz		Video Bandwidth 10 kHz			Test Date: Test Engineer: EUT: Meas. Distance:	8-Jun-23 John Nantz Sensata HUBB Conducted
					Po	wer Spectral Density				
		Path		Frequency	Ant.	PK PSDcond (meas)	Duty	PSDcond (calc)	PSD Limit	Pass By
R0	Mode	A / B	Channel	(MHz)	Used	(dBm/3kHz)	dB	(dBm/3kHz)	(dBm/3kHz)	(dB)
R1			1	2412	Cond.	-15.0	0.0	-15.0	8.00	23.0
R2	802.11G SISO	А	6	2437	Cond.	-10.8	0.0	-10.8	8.00	18.8
R3			11	2462	Cond.	-15.1	0.0	-15.1	8.00	23.1
R4			1	2412.0	Cond.	-15.9	0.0	-15.9	8.00	23.9
R5	802.11n(20) SISO	А	6	2437.0	Cond.	-12.3	0.0	-12.3	8.00	20.3
R6			11	2462.0	Cond.	-16.1	0.0	-16.1	8.00	24.1
R7			11	2405.0	Cond.	-8.3	0.0	-8.3	8.00	16.3
R8	Thread	А	18	2440.0	Cond.	-8.6	0.0	-8.6	8.00	16.6
R9			26	2480.0	Cond.	-9.0	0.0	-9.0	8.00	17.0
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
	ROW	COLUMN								

All All

PSD measured conducted following DTS guidance 558074 D01 v5 r02 8.4 / ANSI C63.10 11.10 PKPSD procedure. C6

C7 Not applicable for PKPSD measurements


Figure 8(a): Power Spectral Density Plots.

Date: 14.JUN.2023 10:23:52

Date: 14.JUN.2023 10:25:03

Date: 14.JUN.2023 10:25:54

4.3 Unintentional Emissions

4.3.1 Restricted Band Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 8. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 8(a): Transmit Chain Spurious Emissions.

Frequency Range 30 >= f > 1000 MHz	Det Pk/QPk	IF Bandwidth 100 kHz	Video Bandwidth 300 kHz	Test Date: Test Engineer:	3-Jun-23 John Nantz
f < 1000 MHz	Pk/Avg	1 MHz	3 MHz	EUT:	Sensata HUBB
				Meas. Distance:	Conducted

	Transmitter Spurious in Restricted Bands														FCC/IC
			Frequ	iency	Output	t Power	Ant	GR Factor	Avg Duty		Electr	ric Field @ 3m		Pass	
	Mode	Path	Start	Stop	Pk	Avg	Gain		Factor	Calc. Pk	Calc. Pk Limit Pk Calc.		Limit Qpk/Avg		
#		A / B	MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
R1	R1 Fundamental Restricted Band Edge (Low Side)														
R2	802.11G	А	2390.0	2390.0	-33.3	-52.8	3.8	0.0	0.0	61.9	74.0	42.4	54.0	11.6	max all - L,M,H channels
R4	Fundamenta	al Restricted	l Band Edge	(High Side)									-	-
R5	802.11G	Α	2483.5	2483.5	-33.1	-52.4	3.8	0.0	0.0	62.1	74.0	42.8	54.0	11.2	max all - L,M,H channels
R7															
R8	802.11G	max	30	88	-64.8		3.8	4.7	0.0	30.4			40	9.6	max all - L,M,H channels
R9	802.11G	max	88	216	-72.3		3.8	4.7	0.0	22.9			43	20.1	max all - L,M,H channels
R10	802.11G	max	216	1000	-69.7		3.8	4.7	0.0	25.5			46	20.5	max all - L,M,H channels
R14	802.11G	max	1000.0	4000.0	-53.0	-64.1	3.8	0.0	0.0	42.2	74.0	31.1	54.0	22.9	max all - L,M,H channels
R15	802.11G	max	4824.0	4824.0	-45.0	-60.6	3.8	0.0	0.0	50.2	74.0	34.6	54.0	19.4	
R16	802.11G	max	4874.0	4874.0	-40.9	-53.7	3.8	0.0	0.0	54.3	74.0	41.5	54.0	12.5	
R17	802.11G	max	4924.0	4924.0	-47.4	-61.2	3.8	0.0	0.0	47.8	74.0	34.1	54.0	20.0	
R18	802.11G	max	4000.0	6000.0	-40.9	-53.7	3.8	0.0	0.0	54.3	74.0	41.5	54.0	12.5	max all - L,M,H channels
R19	802.11G	max	6000.0	8400.0	-55.4	-65.1	3.8	0.0	0.0	39.8	74.0	30.1	54.0	23.9	max all - L,M,H channels
R20	802.11G	max	8400.0	12500.0	-52.9	-62.6	3.8	0.0	0.0	42.3	74.0	32.7	54.0	21.3	max all - L,M,H channels
R21	802.11G	max	12500.0	26000.0	-60.5	-69.5	3.8	0.0	0.0	34.7	74.0	25.7	54.0	28.3	max all - L,M,H channels
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15

ROW COLUMN

All C5/C6 Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12

All C8 Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c)

All C10/C12 Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

2 Sc										٢	1Pk Clrw	r⊜2Pk Clrw	• 3Av	Clrw TDF
	Limit (Check 1	100 MHz			P.	ASS	1 GHz				10	GHz	
	Line F	CC PART	T 15 E F	IELD 3	м ор сі	A: P	ASS							
	Line E	cc dAb1	T 15 E E	TELD 3	M AV CI	AC D	A CREC PART 15 9	SUBICIE FIE	ELD 3M PK	(
70 di	BuV/m	CC PAR	T 15 SU	BC FF	TELD 3	ME D	100							
	Liner	CC FAR	15 30	BUEF	IEED SI									
										×				
60 di	BµV/m—							1						
00 0	op v/m							1						
50 di	BµV/m—						FCC PART 15 E	FIELD 3M A	AV CLASS	B				
											×			
			<u> </u>							•				
40 di	Build (m							1		L X				
FCC P	PART 15 E	FIELD 3M	QP CLASS	в				1		14.1				www.mapping.ord
			۲ I	Managara					n i			- N	w. Mr.	AND PARTY WAY TO BE
							n		ll h		1	1 W		Wr.
30- di	B¦µV/m∔—	+						,		lund				1.1
									4 J. F			1	- *	MAN AV
										M E	4	N N	may	www.
20 di	BµV/m.							ļ.	1 1 1		hater			
				Water and				SHANANAY	NA WEY		Assal Plate			
,							n i i	Junio -	LLT		i k	, "		
alma, Ma	lin him	. Walinahia	المصالحة الأ	بادية	al the second	an a shall be	www.	1271	1116	V 14				
10.91	BARANAMA	Munici An I lliche	1. officiality in the	- main	A NOT THE AND A NOT	M . H .			1 In June		Horas Langer			
								hourse	and the second sec					
机压机	S. Laker	المعديدان	A. L. L.		rundulu	م ما م	with mulant	1 de						
~~ Y V*	WILPHIAN	NMMMMM	MUNUM			h h h h h h h	Law Mr And Law A.		1		1 1	1 1 1 1		; TF
				Range	1			_ R	ange 2	Ra	nge 3			ge 5
Star	rt 30.0	MHZ											Stop	26.5 GHz
Frequenc	• •		Det		IF Band	lwidth	Video Bandwidth					Test Date:		3-Jun-23
$30 \ge f \ge 1$	000 MHz		Pk/QPk		1001	Hz	300 kHz					Test Engineer:		John Nantz
f < 1000) MHz		Pk/Avg		1 M	Hz	3 MHz					EUT:		Sensata HUBB
												Meas. Distance:		Conducted
						ter Spuri	ious in Restricted B	ands						F
		Frequ	uency	Outpu	t Power	Ant	GR Factor	Avg Duty		Electri	c Field @ 3n	n	Pass	
Mode	Path	Start	Stop	Pk	Avg	Gain		Factor	Calc. Pk	Limit Pk	Calc. Avg	Limit Qpk/Avg		
	A/B	MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
Fundamental Restri				apin	ann				aba tam	2000.000	alba () III	abattin		
802.11n(20) SISO	A	2390.0	2390.0	-29.8	-51.2	3.8	0.0	0.0	65.4	74.0	44.0	54.0	8.6	max all - L,M,H channels
Fundamental Restri				-27.0	-31.2	5.0	0.0	0.0	05.4	/4.0	44.0	54.0	0.0	max an - 1, wi, i i challich
			1	21.6	<i></i>	2.0	0.0	0.0	(2.6	74.0	12.0	54.0	10.1	11 1 1 1 1 1
802.11n(20) SISO	Α	2483.5	2483.5	-31.6	-51.3	3.8	0.0	0.0	63.6	74.0	43.9	54.0	10.1	max all - L,M,H channels
802.11n(20) SISO	max	30	88	-64.7		3.8	4.7	0.0	30.5			40	9.5	max all - L,M,H channels
802.11n(20) SISO	max	88	216	-67.0		3.8	4.7	0.0	28.2			43	14.8	max all - L,M,H channels
802.11n(20) SISO	max	216	1000	-65.1		3.8	4.7	0.0	30.1			46	15.9	max all - L,M,H channels
802.11n(20) SISO	max	1000.0	4000.0	-55.0	-66.7	3.8	0.0	0.0	40.2	74.0	28.5	54.0	25.5	max all - L,M,H channels
		1	1				1		1		1			

Table 8(b): Transmit Chain Spurious Emissions.

ROW COLUMN All

max

max

max

max

max

max

max

C2

4824.0

4874.0

4924.0

4000.0

6000.0

8400.0

12500.0

C3

4824.0

4874.0

4924.0

6000.0

8400.0

12500.0

26000.0

C4

R21

R15 802.11n(20) SISO

R16 802.11n(20) SISO

R17 802.11n(20) SISO

R18 802.11n(20) SISO

R19 802.11n(20) SISO

R20 802.11n(20) SISO

802.11n(20) SISC

C1

All

All

C8 C5/C6 Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12

0.0

0.0

0.0

0.0

0.0

0.0

0.0

48.4

55.1

48.1

44.1

39.8

42.2

35.0

C10

0.0

0.0

0.0

0.0

0.0

0.0

0.0

C9

74.0

74.0

74.0

74.0

74.0

74.0

74.0

C11

33.7

40.2

33.0

32.5

30.1

32.5

25.7

C12

54.0

54.0

54.0

54.0

54.0

54.0

54.0

C13

20.3

13.8

21.0

21.5

23.9

21.5

28.3

C14

max all - L,M,H channels

max all - L,M,H channels

max all - L,M,H channels

nax all - L,M,H channels

C15

C8 Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c)

-46.8

-40.1

-47.1

-51.1

-55.4

-53.0

-60.2

C5

-61.5

-55.0

-62.2

-62.7

-65.1

-62.7

-69.5

C6

3.8

3.8

3.8

3.8

3.8

3.8

3.8

C7

C10/C12 Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

2 Scan		● 1 P	< Clrw 🤅	2Pk Clr	w o 3Av	Clrw TDF
Limit Check 100 MHz PASS 1 GHz					10 GHz	
Line FCC PART 15 E FIELD 3M QP CLAS PASS						
Line FCC PART 15 E FIELD 3M AV CLAS PASEC PART 15 SUB C E FIELD 3M P	PK					1
TO BE THE FOC PART 15 SUB C E FIELD 3M AV CLAS PASS C PART 15 SUB C E FIELD 3M F PASS	1			1 1 1	1	
	×					1
60 dBµV/m						
FCC PART 15 E FIELD 3M AV CLASS	SB				1	
50 dBµV/m						
	×					
					×	
	÷ [_	-			/
FCC PART 15 E FIELD 3M QP CLASS B	i ľ				i h	. www.in/
	N 1	M M		pr pr	W W .	Unimara
30 dBuV/m						
30 dBuV/m	while			1 I L		un Mrs
an adjust we want to a start of the start of	lina f	<u>~</u>	1. t	ana ana	www.	how we want
20 dBuV/m		N. Hugo	Ν۹			
	and the		WY I			
	war oo jira	ų.		,Los		
20 dBpV/m http://www.www.www.www.www.www.www.www.www.w	1					
	1	- Adda	A CONTRACTOR			1
Har muga Martin and Martin a						-
Range 1 Range 2		Rande	3	i	Rar	nge 5
Start 30.0 MHz		- Antonigo				p 26.5 GHz
					0.0	P 2010 0112

Table 8(c): Transmit Chain Spurious Emissions.

Frequenc			Det		IF Band		Video Bandwidth		Test Date:		3-Jun-23
$30 \ge f \ge 1$ $f \le 100$			Pk/QPk Pk/Avg		100 k 1 M		300 kHz 3 MHz		Test Engineer: EUT:		John Nantz Sensata HUBB
									Meas. Distance:		Conducted
					Transmit	ter Spur	ious in Restricted B	ands			FCC/IC
Mode	Dath	Frequ	uency	Outpu Ble	t Power	Ant	GR Factor	Avg Duty	Electric Field @ 3m	Pass	

			Frequ	lency	Output	t Power	Ant	GR Factor	Avg Duty			1	Pass		
	Mode	Path	Start	Stop	Pk	Avg	Gain		Factor	Calc. Pk	Limit Pk	Calc. Avg	Limit Qpk/Avg		
#		A / B	MHz	MHz	dBm	dBm	dBi	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
R1	Fundamental Restr	icted Band H	Edge (Low S	Side)											
R2	THREAD	N/A	2390.0	2390.0	-54.8	-66.5	4.4	0.0	0.0	40.4	74.0	28.7	54.0	25.3	max all - L,M,H channels
R3	Fundamental Restr	icted Band H	Edge (High)	Side)											
R4	THREAD	N/A	2483.5	2483.5	-31.1	-44.7	4.4	0.0	0.0	64.1	74.0	50.6	54.0	3.4	max all - L,M,H channels
R5															
R6	THREAD	N/A	30	88	-79.3		4.4	4.7	0.0	15.9			40	24.1	max all - L,M,H channels
R7	THREAD	N/A	88	216	-78.9		4.4	4.7	0.0	16.3			43	26.7	max all - L,M,H channels
R8	THREAD	N/A	216	1000	-80.6		4.4	4.7	0.0	14.6			46	31.4	max all - L,M,H channels
R9	THREAD	N/A	1000.0	4000.0	-47.1	-53.3	4.4	0.0	0.0	48.1	74.0	41.9	54.0	12.1	max all - L,M,H channels
R10	THREAD	N/A	4824.0	4824.0	-54.3	-62.2	4.4	0.0	0.0	40.9	74.0	33.0	54.0	21.0	
R11	THREAD	N/A	4874.0	4874.0	-56.3	-64.0	4.4	0.0	0.0	38.9	74.0	31.2	54.0	22.8	
R12	THREAD	N/A	4924.0	4924.0	-55.0	-64.6	4.4	0.0	0.0	40.2	74.0	30.6	54.0	23.4	
R13	THREAD	N/A	4000.0	6000.0	-54.3	-62.2	4.4	0.0	0.0	40.9	74.0	33.0	54.0	21.0	max all - L,M,H channels
R14	THREAD	N/A	6000.0	8400.0	-55.3	-65.1	4.4	0.0	0.0	39.9	74.0	30.1	54.0	23.9	max all - L,M,H channels
R15	THREAD	N/A	8400.0	12500.0	-50.4	-61.5	4.4	0.0	0.0	44.8	74.0	33.7	54.0	20.3	max all - L,M,H channels
R16	THREAD	N/A	12500.0	26000.0	-55.7	-69.0	4.4	0.0	0.0	39.5	74.0	26.2	54.0	27.8	max all - L,M,H channels
#	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15

ROW COLUMN All All

 C5/C6
 Conducted measurements were made in line with DTS guidance 558074 D01 v5 r02 sections 8.5, 8.6, 8.7 / ANSI C63.10 11.10, 11.11, 11.12

 C8
 Ground Reflection Factor as described in ANSI C63.10-2013 section 11.12.2.2 (c)

 C10/C12
 Computed according to ANSI C63.10-2013 section 11.12.2.2 (e)

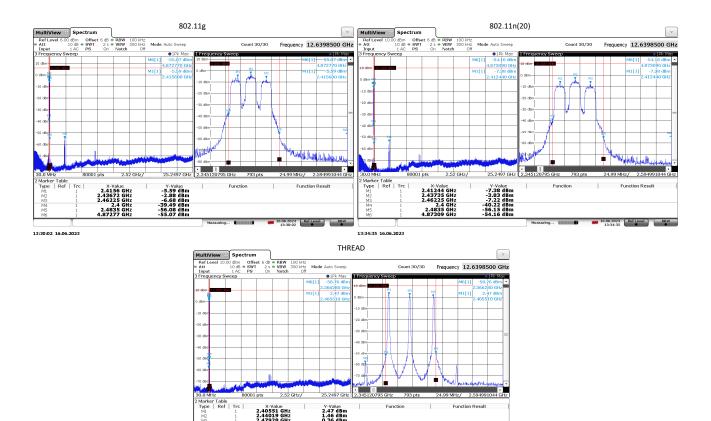

All

Table 8(d): Transmit Chain Spurious Emissions.

	Frequency Range 30 >= f > 1000 MHz f < 1000 MHz		Det Pk/QPk Pk/Avg	IF Bar 100	ndwidth I kHz MHz	Video Ban 300 kl 3 MF	dwidtl Hz							est Date: ngineer: EUT: bistance:	J. Nantz Sensata HUBB
				Simult	aneous Tra	ansmitter - Inter-	-modu	lation 1	Measu	rements					FCC/IC
		Frequ	iency	OATS	S Table	Test Ant	enna				Electric	Field @ 3m		Pass	
	Mode	Start	Stop	Ht	Angle	QN	Pol	Ka	Kg	Meas. Pk	Limit Pk	Meas. Avg	Limit Avg		
#		MHz	MHz	m	deg		H/V	dBm	dBm	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	Comments
R1	Intermod - Restricted Band (Low Side /	High Side)												
R2	802.11g + THREAD	2389.8	2389.8	1.5	.0	HQR1TO18S01	H/V	32.1	-0.3	63.2	74.0	53.6	54.0	0.4	L,M,H channels, both
R3	802.11g + THREAD	2489.0	2489.0	1.5	.0	HQR1TO18S01	H/V	32.9	-0.3	61.8	74.0	51.9	54.0	2.1	L,M,H channels, both
R4	Intermod - Restricted Band (Low Side /	High Side)			•									•
R5	802.11n + THREAD	2375.6	2375.6	1.5	.0	HQR1TO18S01	H/V	32.0	-0.3	62.5	74.0	53.2	54.0	0.8	L,M,H channels, both
R6	802.11n + THREAD	2483.5	2483.5	1.5	.0	HQR1TO18S01	H/V	32.8	-0.3	62.4	74.0	52.4	54.0	1.6	L,M,H channels, both
#	C1	C2	C3	C4	C5	C6 C		C7	C8	C9	C10	C11	C12	C13	C14

4.3.2 OOB Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions relative to the fundamental in a 100 kHz receiver bandwidth (at the nominal voltage and temperature) in the worst cases are provided in Figure 9 below.

13:40:49 16.06.2023

Figure 9: Worst Case Transmitter OOB Emissions Measured.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 9: Measurement Uncertainty.

Measured Parameter	${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \text{ MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \text{ MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \text{ MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \text{ MHz})$	$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	Gordon Heim EMC-002401-NE RANIALED ENGINEER
NVLAP LAB CODE: 200129-0	- AND
AHD (Amber Helm Development, L.C.) Sister Lakes, MI	a subble day
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for	Joseph Brunett
Electromagnetic Compatibility & Telecommunications	EMC-002790-NE
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025-2017. This accreditation demonstrates technical competence for a defined scope and the operator all aboratory quality management system (refer to joint ISO/LAC-AF Communique dated January 2009).	///IRIE
2023-06-20 through 2024-06-30 Effective Dates	RATIFIED ENGINE

Figure 10: Accreditation Documents