Report Ref: 20E8887-3b Page 1 of 21 Compliance Engineering Ireland Ltd

www.cei.ie

Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000, 8256722

Project Num	20E8928-3b					
Quotation	Q20-1410-1					
Prepared For	Sensata Technologies Ltd					
Company Address	11 Technology Park, Belfast Road, Antrim,					
	Northern Ireland BT41 1QS					
Contact	James Kyle					
Contact Email	jakyle@sensata.com					
Contact Phone	+44 28 9448 3067					
Prepared By	Compliance Engineering Ireland					
Test Lab Address	Clonross Lane, Derrockstown,					
	Dunshaughlin, Co. Meath, Ireland					
Tested By	Joy Dalayap Michael Kirby					
Test Report By	Michael Kirby					
FCC Test Firm Registration	409640					
IC Site Registration	IE0001					
Date	15 th Mar 2021					
EUT Description	HUBA					
FCC ID	2ATIMHUBA					
	25094-HUBA					
Authorised by	Paul Reilly					
Authorised Signature:	Part Bulg					

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

FCC 15.247 Section	RSS-247 Section	TEST PARAMETERS	Test Result
15.205	RSS Gen 8.9	Radiated Spurious Emissions	Pass
15.209	RSS Gen 8.10		

RSS 247-2 (Feb 2017) RSS Gen Issue5 Amd 2 (Feb 2021)

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

1.0	EUT DESCRIPTION	
1.1	EUT OPERATION	. 5
1.2	MODIFICATIONS	. 5
1.3	DATE OF TEST	. 5
1.5	DESCRIPTION OF TEST MODES	. 6
2.0	EMISSIONS MEASUREMENTS	. 6
3.0	CONDUCTED EMISSIONS ON THE MAINS MEASUREMENTS	. 8
4.0	CONDUCTED MEASUREMENTS ON THE ANTENNA PORT	
5.0	SPURIOUS EMISSIONS	16
6.0	LIST OF TEST EQUIPMENT	20
7.0	MEASUREMENT UNCERTAINTY	21
APPEN	IDIX A SCANS FOR RADIATED MEASUREMENTS	22
APPEN	IDIX B SCANS FOR RADIATED BAND EDGE /RESTRICTED BAND	26

1.0 EUT Description

Model:	HUBA
Туре:	Wireless Gateway
Type of radio:	Stand-alone
Transmitter Type:	802.15.4 (Thread), 802.11G 802.11N Wifi
Operating Frequency Range(s):	2.405 GHz - 2.480GHz Thread
	2.412-2.462GHz Wifi
Number of Channels:	16 Thread
	11 Wifi
Antenna:	Integral
Power configuration:	12 v Battery.
Ports:	None
Classification:	DTS, CYY
HVIN:	HUBA
PMN:	HUBA
Test Standards:	15.247 RSS-247
Test Methodology:	Measurements performed according to the procedures in
	ANSI C63.10-2013
	KDB 558074 V5 R02

The EUT was a Gateway for use in the vehicles. Its purpose was to relay packets received on the 433MHz band using a transmitter in the 2.4GHz band.

The EUT contained transmitters using Wifi and Thread technology and also a 433MHz receiver.

For Wifi it was possible to switch between 2 internal antennas, one an internal module antenna and the other one a printed pcb antenna.

The Thread radio had its own dedicated pcb antenna.

This report details test carried out with the Wifi and Thread transmitters transmitting simultaneously.

1.1 EUT Operation Operating Conditions during Test:

The EUT was operated in test mode where the channel and modulation was set via USB connection from the EUT to a laptop.

The EUT was powered from a bench PSU set to 12Vdc. for all tests

Radiated measurements were performed on a sample with standard internal antennas with Wifi and Thread transmitting simulateously.

Environmental conditions

	Temperature	Relative Humidity
Test	C°	%
Radiated Emissions <1GHz	17	41
Radiated Emissions >1GHz	21	44

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on 17th -19th Feb 2021.

1.4 Special Software

Tests were performed manually, and no special software was used.

2 Emissions Measurements

2.1 Conducted Emissions Measurements

Radio Conducted measurements were carried out on the EUT as per section 1.1 above.

All results were measured as conducted on the antenna except radiated spurious emissions.

2.2 Radiated Emissions Measurements

Emissions below 1GHz were measured using a test antenna positioned at a distance of 3 metres from the EUT (as measured from the closest point of the EUT) which was placed on a turntable allowing 360 degree rotation, in a semi anechoic chamber. The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres. In this case the resolution bandwidth was 100kHz.

Emissions in the above 1GHz were measured using a horn antenna located at 3 metres distance from the EUT in a fully anechoic chamber.

The radiated emissions were maximised by configuring the EUT and by rotating the EUT, and by raising and lowering the test antenna from 1 to 4 metres.

Emissions above 18GHz were measured using a horn antenna located at 1 metre distance from the EUT in a fully anechoic chamber. The radiated emissions were maximised by configuring the EUT and by rotating the EUT and raising the test and antenna from 1 to 4 metres.

The resolution bandwidth was 1MHz and video bandwidth was 3 MHz for peak measurements for radiated emissions above 1GHz.

A pre-scan was performed to determine the worst case EUT orientation for the radiated measurements. All radiated tests were performed with the EUT in orientation O1 for Horizontal polarization measurements and with the EUT in orientation O2 for Vertical polarisation measurements.

Ref Appendix C for orientations.

3. Spurious Emissions Measurements

3.1 Test setup

A number of co-location tests were performed, and the worst case are reported here.

For the restricted band at 2.4835GHz it was found that the worst case results were achieved with Wifi at 2.462GHz and Thread at 2.475GHz

For the restricted band below 2.39GHz it was found that the worst case results were achieved with Wifi at 2.422 GHz and Thread at 2.405 GHz

A full scan was performed with Wifi operating at 2.462GHz and Thread operating at 2.475GHz

3.2 Radiated Spurious Emissions in Restricted bands

3.2.1 Test Method

As per Ansi63.10 Section 11.12.1 and 6.10.5

Ansi63.10 Section 11.12.1 Radiated emission measurements

Because the typical emission requirements are specified in terms of radiated field strength levels, measurements performed to determine compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for determining compliance to the specified requirements; however antenna-port conducted measurements are also now acceptable to determine compliance (see 11.12.2 for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in 6.3, 6.5, and 6.6 shall be followed

6.10.5 Restricted-band band-edge measurements

These procedures are applicable for determining compliance at band edges of restricted bands. **6.10.5.1 Test setup**

Restricted-band band-edge tests shall be performed as radiated measurements, on a test site meeting the specifications in 5.2 at the measurement distances specified in 5.3.57

The instrumentation shall meet the requirements in 4.1.1 using the bandwidths and detectors specified in 4.1.4.2. Considering the requirements of 5.8, the antenna(s) shall be connected to the antenna ports. When performing radiated measurements, the measurement antenna(s) shall meet the specifications in 4.3. The EUT shall be connected to an antenna and operated at the highest power settings following procedures in 6.3, and the relevant procedure in 6.4, 6.5, or 6.6

Results

Ref scans in Appendix B

3.3 Radiated Spurious Emissions

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Factor dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m	Quasi Peak Limit dBuV/m	Margin dB
154.3	22.1	Vertical	11.9	1.2	35.2	43.5	8.3
240	8.1	Vertical	15.7	1.4	25.2	46.0	20.8
272	-0.2	Horizontal	17.2	1.4	18.4	46.0	27.6
400	5.8	Vertical	16.3	1.6	23.7	46.0	22.3
336	19.2	Horizontal	15.5	1.5	36.2	46.0	9.8
384	22.1	Horizontal	15.7	1.7	39.5	46.02	6.52
400	12.2	Horizontal	16.3	1.6	30.1	46.0	15.9

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
4.951	46.3	33.5	37.4	5.4	Horizontal	0.00	47.8	74	26.2
9.848	41.3	38.2	36.3	8.3	Horizontal	0.00	51.5	74	22.5
9.848	42.2	38.2	36.3	8.3	Vertical	0.00	52.4	74	21.6

Average measurements were not performed, where recorded peak levels were less than the average limit of 54dBuV/m

Test Result: - Pass

4 List of Test Equipment

Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Due Date	Cal Interval Months
Spectrum Analyser 30Hz-	Rohde &	WOUEI	Senariaum	IVEI	Date	WOITINS
40GHz	Schwarz	FSP40	100053	850	11-Dec-21	36
Test Receiver 3.6GHz	Rohde & Schwarz	ESR	1316.3003k03- 101625-s	869	28-May-23	36
Antenna Biconical	Schwarzbeck	VHBB 9124	9124 667	871	03-Sep-21	36
Antenna Horn	EMCO	3115	9905-5809	655	14-Mar-21	24
Anechoic Chamber	CEI	SAR 10M	845	845	16-May-22	36
Antenna Log Periodic	Chase	UPA6108	1072	609	03-Sep-21	36
Fully Anechoic Chamber	CEI	FAR 3M	906	906	22-Mar-21	36
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	30-Sep-21	12
Antenna Horn Standard Gain 18-26.5GHz	A-Info	LB-42-25-C- KF	J2021091103028	877	05-Oct-21	12

5 Measurement Uncertainties

Measurement	Uncertainty		
Radio Frequency	+/- 5x10 ⁻⁷		
Maximum Frequency Deviation	+/- 1.7 %		
Conducted Emissions	+/- 1 dB		
Radiated Emission 30MHz-100MHz	+/- 5.3 dB		
Radiated Emission 100MHz-300MHz	+/- 4.7 dB		
Radiated Emission 300MHz-1GHz	+/- 3.9 dB		
Radiated Emission 1GHz-40GHz	+/- 3.8 dB		
Modulation bandwidth	+/- 5x10 ⁻⁷		
Duty Cycle	+/- 5 %		
Power supply	±0.1 VDC		
Temperature	±0.2 °C		
Frequency	±0.01 ppm		

The measurement uncertainties stated were calculated with a k=2 for a confidence level of over 95% as per ETS TR100 028.

The test data can be compared directly to the specification limit to determine compliance, as the calculated measurement uncertainty meets the requirements of the applicable specification.

Appendix A

Radiated Spurious Emissions Co-location

Page 12 of 21

			~			1 490 12 4	0
Spectrum	Spectr		Receive				
	RBW 100 kHz		0 ms	871_3	3mx		
Input 1 AC		Preamp	ON Step	TD Scan			
Scan <mark>O</mark> 1Pk	Мах						
				100 MHz			
		1					
90 dBµV						1	
80 dBµV				1		1	
70 dBµV		1		1		1	
60 dBµV							
ου ασμν							
50 dBµV		1		1		l l	
40 dBµV							
	M				A. A		
30 dBµV ~	MM .				1 m		
N. J. W	Waller	W	1 Mar		5	Imen Im	M M.
20 dBµV	-V-10441	MMMarra .	P Lo M. U.C.	. months	with	W Muss	White
			and house	When			2.8
10 dBµV							
							TF
Start 30.0 M	1Hz	i	1 1	î		Stor	0 300.0 MHz
		h Channel	Padiated E	missions 201		Vertical 3metre	
	I IY CI TIQ	in channer	Naulaleu E	1113310113 301			3

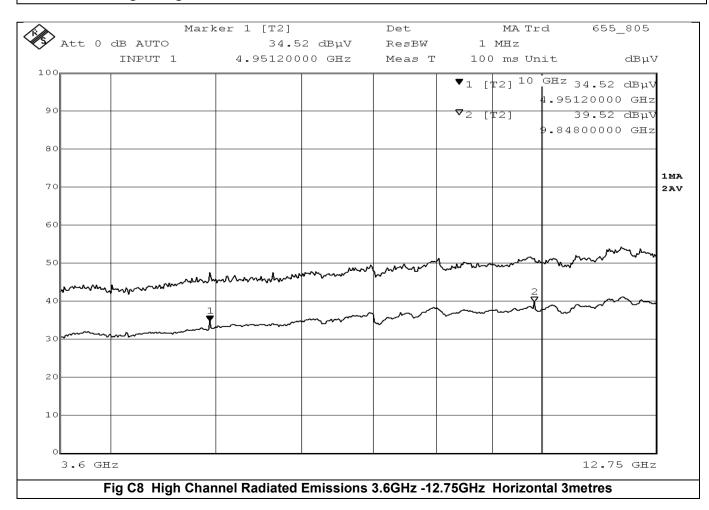
Spectrum	Spectro	um 2 🛛 🗴	Receiver	×		
) ms	871_3r	nx	
Input 1 AC		Preamp	ON Step T) Scan		
Scan 🔾 1Pk	(Мах					
				100 MHz		
90 dBµV						
80 dBµV						
70 dBµV						
60 dBµV						
50 dBµV						
40 dBµV						
30 dBµV					MMM.	
20 dBµV	- un mu				and the second	-anto mark "Une
	and the second sec	an and solver	man winner	montheman		
10 dBµV						
Start 30.0 M	MHz	i		i		TF Stop 300.0 MHz
		Channel R	adiated Emi	ssions 30MH	z -300MHz Horiz	

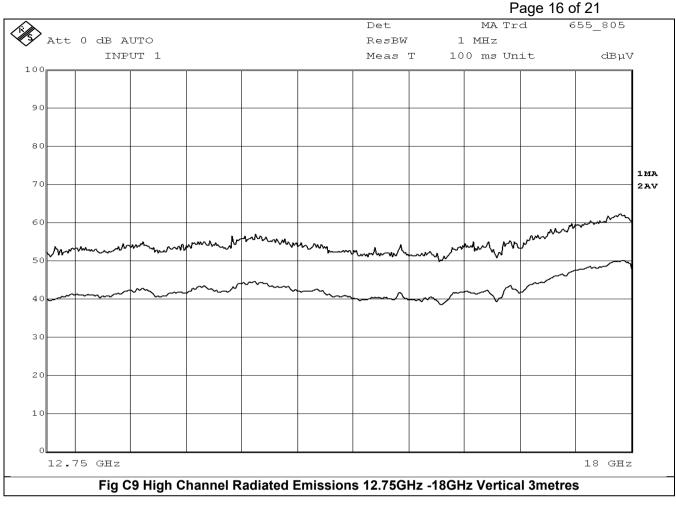
_			
Page	13	$\cap t^{2}$	1
I auc	10		

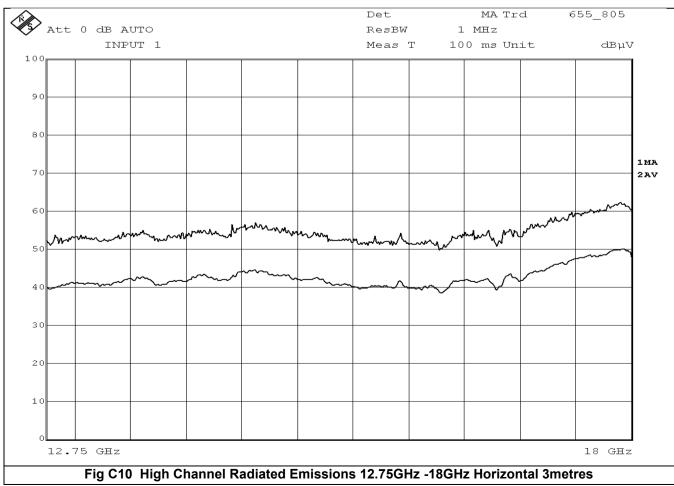
Spectrum 2 🕱 Receiver 🛞	
RBW 100 kHz MT 100 ms 609_3mx	
input 1 AC 🖷 Att 🛛 0 dB 🖷 Preamp 🛛 ON 🛛 Step TD Scan	
Scan O1Pk Max	······
ю dвµv	
30 dBµV	
'Ο dBμV	
0 dBµV	
50 dBµV	
ю dBµV	
ю dвµv	and another and the second
0 dBuy have have been and have a second and a second a secon	Amphanananan
D dBuy	
O dBUV have have back a have a have a have been a have	
0 dBµV	
	TF
Start 300.0 MHz	Stop 1.0 GHz

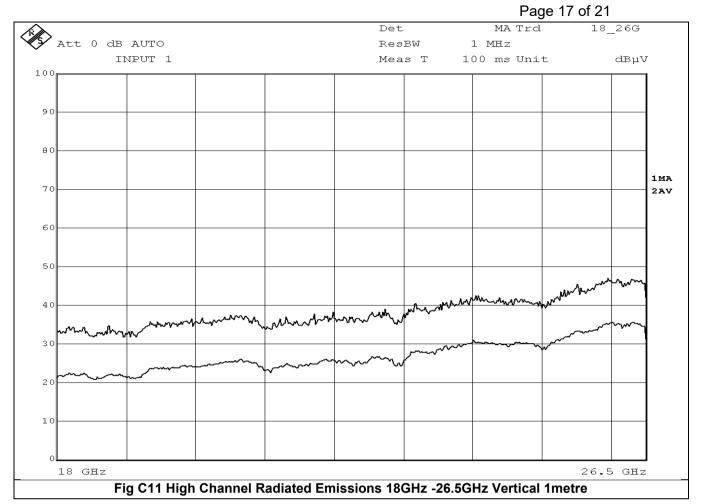
Spectrum	Spectrum 2	🗴 Rec	eiver 🗵			(₩)
	W 100 kHz MT		•	609_3mx		
Input 1 AC 🖷 Att	0 dB 👄 Prea	mp ON	Step TD Scan			
Scan O1Pk Max	· · · · · ·					
90 dBµV	1 1 1 1		I I I I		1 1 1 1	
80 dBµV	1 1 1 1					
70'dBµV						
60 dBµV						
50 dBµV						
40 dBµV						su di ce
30 dBµV				monorman	at her and	Juddame and the second
20 dBµV	Munday And and	and have a	the factor and the		1 1 1 1	
10 dBµV						
						TF
Start 300.0 MHz						Stop 1.0 GHz
Fig	C4 High Chan	nel Radiate	d Emissions	300MHz -1GHz	Horizontal 3me	tres

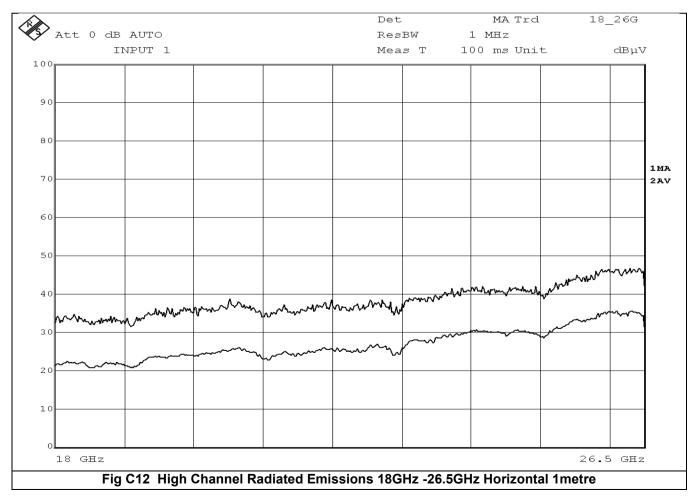
				Page 14 of 21
Spectrum	Receiver (Spectrum 2	Spectrum 3	
R	BW 1 MHz MT	100 ms	655Rx	
•		p ON Step TD :	Scan	
🛛 Scan 🧿1Pk Ma	axo2Av Max			
			M1[1]	98.26 dBµV
100 dBµV			M1 0.000 s	2.474500000 GHz 92.92 dBμV
100 000			M2 0.000 s	2.462000000 GHz
90 dBµV				
92 - 9243 - 12344				
80 dBµV			<mark>//</mark>	
70 dBµV				<u> </u>
60 dBµV				
			111	
50 dBµV				mon man man man and the
-		mountermanter	month Munimum a	
40 dBUV	name the second states of the			
			human	
30 dBµV				
20 dBµV				
10 dBµV				
				TF
Start 1.0 GHz				Stop 3.6 GHz


Fig C5 High Channel Radiated Emissions 1GHz -3.6GHz Vertical 3metres


Spectrum R	eceiver 🗴 Spectrum 2 🗴	Spectrum 3 🛞	
		55Rx	
	0 dB Preamp ON Step TD Scan		
Scan 😑 1Pk Maxo2A	/ Max		
100 dBµV		1	
90 dBµV			
80 dBµV			
70 40.44			
70 dBµV			
60 dBµV			
50 dBµV		heredunanterinderent	mon
		Rales Contraction Contractor	
40 dBUV	and the stand of t		
		1	
30 dBµV			
1			
20 dBµV			+ 1
10 dBµV			+
		TE	
Start 1.0 GHz		Stop 3.6	GHz
	High Channel Radiated Emissions		


Page 15 of 21 Det MA Trd 655_805 Att 0 dB AUTO ResBW 1 MHz INPUT 1 Meas T 100 ms Unit dBµV 100 10 ["]GHz 90 80 1 MA 70 2AV 60 50 4 (30 20 10 3.6 GHz 12.75 GHz


Report Ref: 20E8887-3b

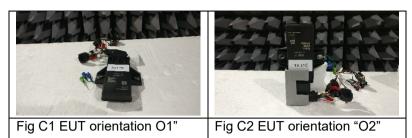

Fig C7 High Channel Radiated Emissions 3.6GHz -12.75GHz Vertical 3metres

Appendix B

Radiated tests for Band Edges /Restricted band Co-Location

Page 19 of 21

Spectru	ım	Sp	ectru	ım 2	🗴 Re	ceiv	er	X	J				
	RI	3W 1	MHz	MT	100 ms				655Rx				
Input 1				Pream	p ON	Step	D TD So	an					
Scan 😑	1Pk Max	KO2AV	/ Мах										
									M2				dBµV
110 dBµV			-			-		-		00 s		2.39000000	
100 dBµV	_		_			_			M1	[1] 00 s		83.35 2.40550000	dBµV
									0.0	uu s	1	2.40550000	U GHZ
90 dBµV-													MI
80 dBµV-								_					1
70 dBµV-						_		_					1
60 dBµV-						_							1
50 dBµV-						1/4						M2	
40 dBµV-				min		-		-	minin	minim	m		ſ
						M5						MB	1
<u>30 dBµV-</u>						-		-	_	-			
20 dBuV-			_			_		_				-	
10 dBµV–													
01							T	F				010.41	
Start 2.2	22 GHZ							_				Stop 2.41	GHZ
Marker	- I	n (- 1			- 1					1 =		- 1
Diagr Scan	Type N1	Ref	Trc 1	5	timulus 2.4055 (-U		_	o nse 35 dBµV	Function	Fun	ction Result	
Scan	N1 N2		1		2.4033 (s ивµ∨ Ю2 dBµV				
Scan	N3		2		2.39 (ιz αθμν IS dBμV				
Scan	N4		1		2.30025 (32 dBµV				
Scan	N5		2		2.3 (′4 dBµV				
	F	ia B1	<u> </u>	locatio	n Restrict	od h	and \	/or	tical noa	k and avera	ao at 3 mot	roe	


Spectru	um	Sp	ectru	um 2 🗴 Re	eceiver	×					
	R	BW 1	MHz	MT 100 ms		6	55Rx				
Input 1	AC 🔵 🗛	tt () dB 🖷	Preamp ON	Step T) Scan					
Scan C	1Pk Ma	x <mark>o</mark> 2Av	(Max								
110 dBµV 100 dBµV							M6[2 	0 s .]		43.84 c 2.366500000 107.24 c 2.405500000	CHz IBWV
90 dBµV-			-								
80 dBµV-											H
70 dBµV-										M2	H L
60 dBuV-											l i
					M4	m				M3	
50 dBµV-	m	~~~	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					MG		
40 dBµV-					0.001				_A		
					M5	1.12	-				
- 30 dBµ V-		0.000									
20 dBµV-	2										
10 dBuV-			_								
TF											
Start 2.	22 GHz			ľ				•		Stop 2.41	GHz
Marker											
Diagr	Туре	Ref	Trc	Stimulus		Respons	e	Function	Func	tion Result	
Scan	N1		1	2.4055	GHz	107.24 0	dΒµV				
Scan	N2		1	2.39		65.84 c					
Scan	N3		2	2.39	7942439639402	50.48 c					
Scan	N4		1	2.30025		52.21 c					
Scan	N5		2		GHz	30.15 c					
Scan	N6		2	2.3665	GHz	43.84 c	явµ∨ ∣				
	Fig	B2	Co-	location Restrie	cted bar	nd Horiz	ontal r	beak and av	erage at 3	metres	

Page 20 of 21

Spectru	ım	Sp	ectru	m 2 🗴 Re	eceiver	×		
	RE	3W 1	MHz	MT 100 ms		655Rx		×
Input 1	AC 👄 At	t 10) dB 👄	Preamp ON	Step TD	Scan		
Scan 😑	1Pk Max	< <mark>⊜</mark> 2A∖	Max					
10 dBµV						M2	00 s	103.62 dBµ\ 2.475500000 GH: 64.24 dBµ\ 2.483500000 GH:
90 авцу- 80 авцу- 70 авцу-				M2				
60 dBµV–				M3				M4
50 dBµV–				- V				
40 dBµV–								M5
30 dBµV-						-		
20 dBµV-								
10 dBµV– F								
Start 2.4	175 GH2	2						Stop 2.505 GHz
1arker								-
Diagr	Type	Ref	Trc	Stimulus		Response	Function	Function Result
Scan	N1		1	2.4755		103.62 dBµV		
Scan	N2		1	2.4835		64.24 dBµV		
Scan	NЗ		2	2.4835	GHz	50.02 dBµV		
Scan	N4		1		GHz	51.20 dBµV		
Scan	N5		2	2.5	GHz	32.27 dBµV		

Spectru	um	Sp	ectru	ım 2	🗴 Receiv	er 🗴				
	RE	3W 1	MHz	MT	100 ms		655Rx			
Input 1	AC 🔵 At	t !	5 dB 🖷	Preamp	ON Step) TD Scan				
Scan 🤆	1Pk Max	< ○ 2A\	/ Max							,
110 dBµV 100 dBµV 90 dBµV-							M2	00 s		104.57 dBµV 2.475500000 GHz 63.49 dBµV 2.483500000 GHz
90 dBµV- 80 dBµV- 70 dBµV-	6									
60 dBµV-	7			M3					Ν	14
50 dBµV-	_						_			
40 dBµV-		_							~ ~ ~	15
30 dBµV-										
20 dBµV-										
10 dBµV- TF		_								
Start 2.	475 GHz	z			1					Stop 2.505 GHz
Marker										-
Diagr	Type	Ref	Trc	Sti	mulus	Respo	nse	Function	Fur	ction Result
Scan	N1		1		2.4755 GHz	104.57	′ dBµV			
Scan	N2		1		2.4835 GHz	63.49) dBµV			
Scan	NЗ		2		2.4835 GHz		. dBµV			
Scan	N4		1		2.5 GHz	51.64	F dBµV			
Scan	N5		2		2.5 GHz	32.53	3 dBµV ∣			
	Fig	B4	Co-	location	Restricted	band Ho	izontal	peak and a	average at	3 metres

Appendix C

Orientations for Radiated Emissions

End of Report