

TEST REPORT

Product Name True Wireless Earbuds

Brand Mark : AUKEY Model No. : EP-T31

FCC ID : 2ATIH-EPT31

Report Number : BLA-EMC-202007-A5102

Date of Sample Receipt : 2020/7/17

Date of Test : 2020/7/17 to 2020/7/31

Date of Issue : 2021/3/5

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result

Prepared for:

Aukey Technology Co.,Ltd

Room 102, Building P09, South China City Electronics Trading Center, Long gang District, Shenzhen, Guangdong, 518111, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Approved by:

Review by:

Report No.: BLA-EMC-202007-A5102 Page 2 of68

REPORT REVISE RECORD

Version No.	Version No. Date Description		
00	2020/8/3	Original	
01	2021/3/5	Replace the applicant, product name and model	

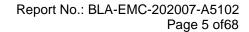


TABLE OF CONTENTS

1	TEST SUMMARY	6
2	GENERAL INFORMATION	
3		
4		
5		
6		8
7		9
8	LABORATORY LOCATION	g
9	TEST INSTRUMENTS LIST	10
R <i>A</i>	ADIATED SPURIOUS EMISSIONS	13
	LIMITS	13
	BLOCK DIAGRAM OF TEST SETUP	
	PROCEDURE	
	TEST DATA	16
R <i>A</i>	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	24
	LIMITS	24
	BLOCK DIAGRAM OF TEST SETUP	25
	PROCEDURE	
	TEST DATA	27
CC	ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	31
	LIMITS	31
	BLOCK DIAGRAM OF TEST SETUP	31
	PROCEDURE	31
	TEST DATA	33
A۱	NTENNA REQUIREMENT	35
	CONCLUSION	35
CC	ONDUCTED SPURIOUS EMISSIONS	36
	LIMITS	36
	BLOCK DIAGRAM OF TEST SETUP	36
	TEST DATA	37

CONDUCTED BAND EDGES MEASUREMENT	38
LIMITS	38
BLOCK DIAGRAM OF TEST SETUP	38
TEST DATA	39
POWER SPECTRUM DENSITY	40
LIMITS	40
BLOCK DIAGRAM OF TEST SETUP	40
TEST DATA	40
CONDUCTED PEAK OUTPUT POWER	41
LIMITS	41
BLOCK DIAGRAM OF TEST SETUP	41
TEST DATA	42
20DB BANDWIDTH	43
BLOCK DIAGRAM OF TEST SETUP	
TEST DATA	
MINIMUM 6DB BANDWIDTH	
LIMITS	
BLOCK DIAGRAM OF TEST SETUP	
TEST DATA	
10 APPENDIX	45
10.1 APPENDIXA: DTS BANDWIDTH	45
Test Result	45
Test Graphs	46
10.2 APPENDIXB: OCCUPIED CHANNEL BANDWIDTH	48
Test Result	48
Test Graphs	49
10.3 APPENDIXC: MAXIMUM CONDUCTED OUTPUT POWER	51
Test Result	51
Test Graphs	52
10.4 APPENDIXD: MAXIMUM POWER SPECTRAL DENSITY	54
Test Result	54
Test Graphs	55
10.5 APPENDIXE:BAND EDGE MEASUREMENTS	57

Test	Result	5
Test	Graphs	58
10.6	AppendixF:Conducted Spurious Emission	60
Test	Result	60
Test	· Graphs	6
APPEND	DIX A: PHOTOGRAPHS OF TEST SETUP	. 67
APPEND	DIX B: PHOTOGRAPHS OF EUT	. 68

Page 6 of 68

1 TEST SUMMARY

Test item Test Requirement		Test Method	Class/Severity	Result
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass

Page 7 of 68

2 GENERAL INFORMATION

Applicant	Aukey Technology Co.,Ltd	
Address	Room 102,Building P09,South China City Electronics Trading Center, Longgang District,Shenzhen,Guangdong,518111,China	
Manufacturer	Aukey Technology Co.,Ltd	
Address	Room 102,Building P09,South China City Electronics Trading Center, Longgang District,Shenzhen,Guangdong,518111,China	
Factory	Aukey Technology Co.,Ltd	
Address	Room 102,Building P09,South China City Electronics Trading Center, Longgang District,Shenzhen,Guangdong,518111,China	
Product Name	True Wireless Earbuds	
Test Model No.	EP-T31	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.0
Software Version	V1.0
Spectrum Spread Technology:	DTS
Rate:	1Mbps, 2Mbps
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	Internal Antenna
Antenna Gain:	0.38 dBi(Provided by the customer)

Page 8 of 68

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	+25°C	3.7Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION	
TX	Keep the EUT in continuously transmitting mode with modulation.	
Remark:Only the data of the worst mode would be recorded in this report.		

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission	±4.34dB	
Radiated Emission	±4.24dB	
Radiated Emission	±4.68dB	
AC Power Line Conducted Emission	±3.45dB	

Parameter	Expanded Uncertainty (Confidence of 95%)		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±1.5 dB		
Power Spectral Density, conducted	±3.0 dB		
Unwanted Emissions, conducted	±3.0 dB		
Temperature	±3 °C		
Supply voltages	±3 %		
Time	±5 %		
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB		
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB		

Page 9 of 68

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark	
PC	HASEE	K610D		-	
AC Adapter PISEN TS-C051					
Note:					

[&]quot;--" means no any support device during testing.

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China.

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 10 of 68

9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	5/8/2018	5/7/2021
Spectrum	R&S	FSP40	100817	7/4/2020	7/3/2021
Receiver	R&S	ESR7	101199	4/20/2020	4/19/2021
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	7/14/2019	7/13/2021
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	7/14/2019	7/13/2021
Amplifier	SKET	LNPA-0118-45	N/A	7/4/2019	7/3/2021
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2/14/2019	2/13/2022
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Shield room	SKET	833	N/A	6/10/2018	6/9/2021
Receiver	R&S	ESPI3	101082	4/20/2020	4/19/2021
LISN	R&S	ENV216	3560.6550.15	7/4/2019	7/3/2021
LISN	AT	AT166-2	AKK1806000003	12/17/2019	12/16/2020
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

Page 11 of 68

Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	5/8/2018	5/7/2021
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2021
Receiver	R&S	ESR7	101199	4/20/2020	4/19/2021
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	7/14/2018	7/13/2020
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	7/14/2019	7/13/2021
Amplifier	SKET	LNPA-0118-45	N/A	7/4/2019	7/3/2021
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2/14/2019	2/13/2022
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2021
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Page 12 of 68

Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2021
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021

Test Equipment Of F					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2021
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2021
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021

Test Equipment Of 20dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2021
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020

Page 13 of 68

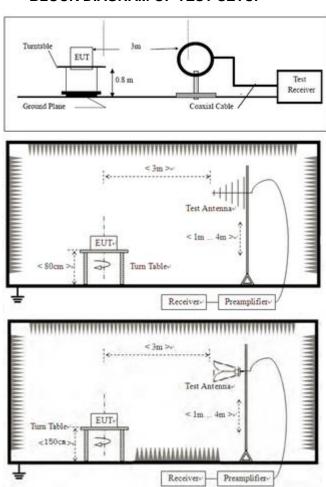
Signal Generator Aglient E8257D MY44320250 4/20/2020 4/19/2021	Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021
--	------------------	---------	--------	------------	-----------	-----------

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	7/4/2019	7/3/2021
Spectrum	Agilent	N9020A	MY49100060	12/17/2019	12/16/2020
Signal Generator	Agilent	N5182A	MY49060650	12/17/2019	12/16/2020
Signal Generator	Agilent	E8257D	MY44320250	4/20/2020	4/19/2021

RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Tester:	Eason
Temperature	23℃
Humidity	48%

LIMITS


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000

MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

BLOCK DIAGRAM OF TEST SETUP

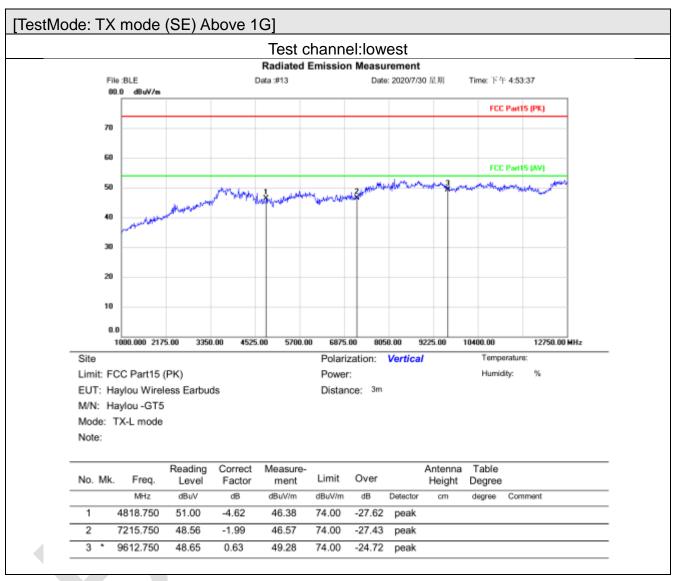
PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned

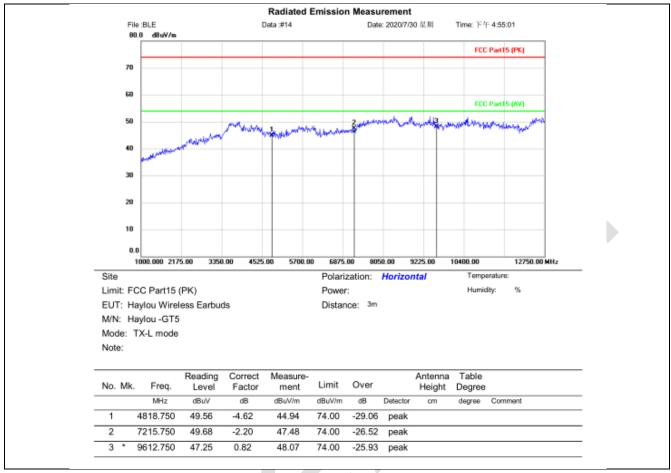
Page 15 of 68

to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

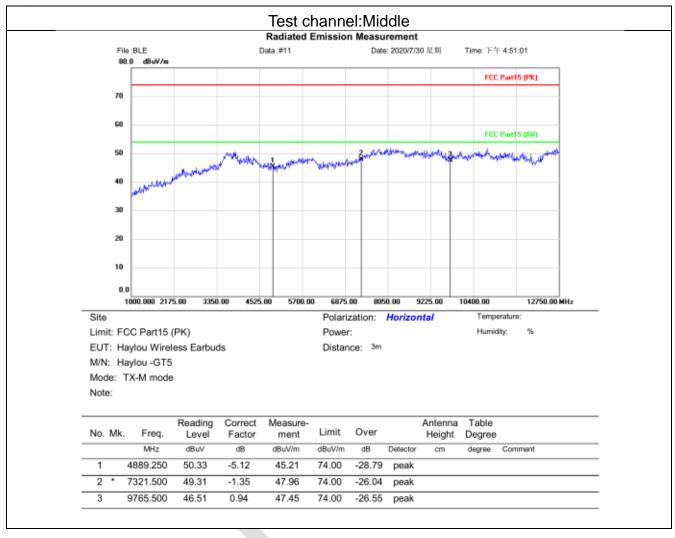
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

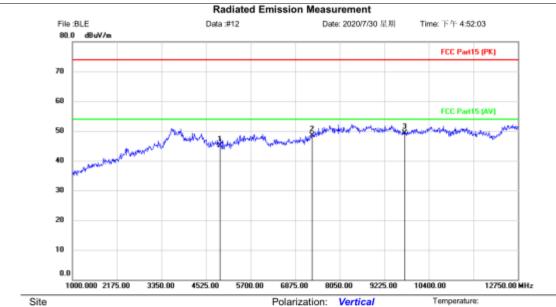

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75 GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



TEST DATA


Remark: During the test, pre-scan the 1Mbps, 2 Mbps rate, and found the 2Mbps rate which it is worse case.

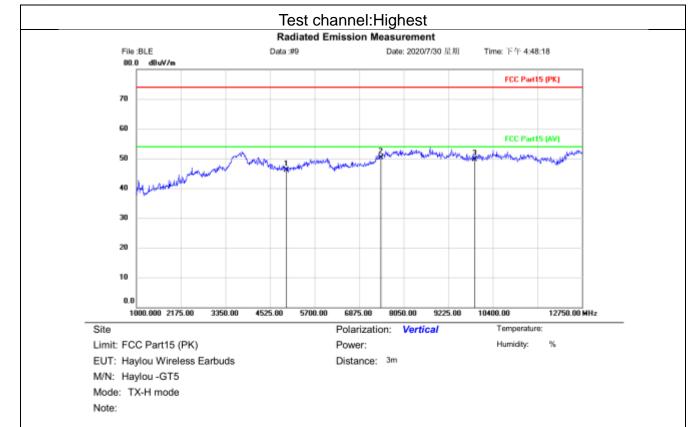


Humidity:

Limit: FCC Part15 (PK)

EUT: Haylou Wireless Earbuds

M/N: Haylou -GT5 Mode: TX-M mode


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4889.250	50.25	-5.12	45.13	74.00	-28.87	peak			
2		7321.500	49.94	-1.48	48.46	74.00	-25.54	peak			
3	*	9765.500	48.34	0.91	49.25	74.00	-24.75	peak			

Power:

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4959.750	50.99	-4.84	46.15	74.00	-27.85	peak			
2	*	7450.750	51.29	-1.06	50.23	74.00	-23.77	peak			
3		9918.250	48.31	1.41	49.72	74.00	-24.28	peak			

Humidity:

Radiated Emission Measurement File:BLE Data :#10 Date: 2020/7/30 星期 Time: 下午 4:49:49 80.0 dBuV/m FCC Part15 (PK) 70 60 FCC Part15 (AV) 50 40 30 20 10 0.0 1000.000 2175.00 3350.00 4525.00 5700.00 9225.00 12750.00 MHz 6875.00 8050.00

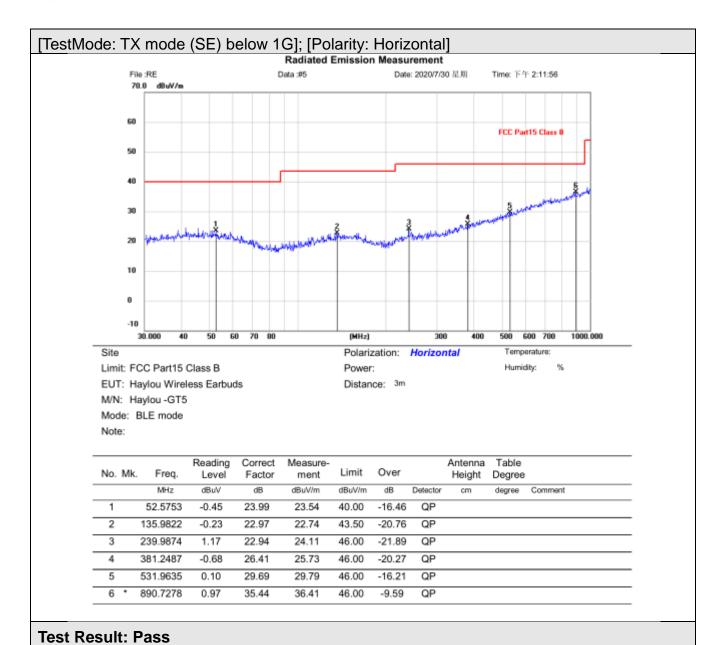
Polarization: Horizontal

Site Limit: FCC Part15 (PK)

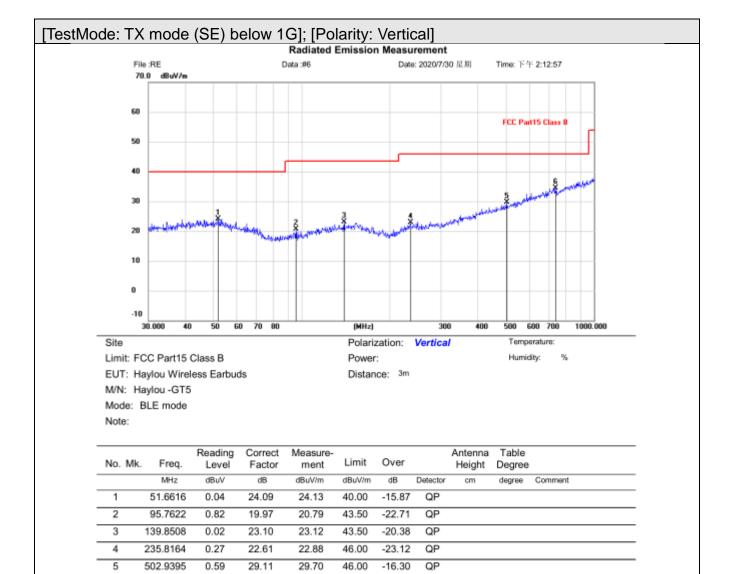
EUT: Haylou Wireless Earbuds

M/N: Haylou -GT5 Mode: TX-H mode

Note:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4959.750	51.42	-4.84	46.58	74.00	-27.42	peak			
2		7450.750	49.75	-0.52	49.23	74.00	-24.77	peak			
3	*	9918.250	48.04	1.29	49.33	74.00	-24.67	peak			

Power:


Distance: 3m

Test Result: Pass

QP

-11.43

Test Result: Pass

6

737.0714

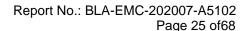
33.43

34.57

46.00

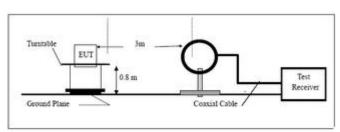
1.14

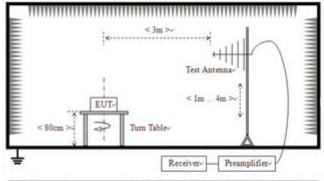
Page 24 of 68

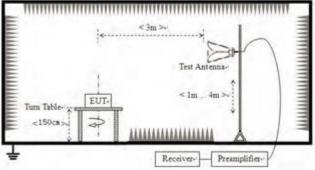

RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	;TX mode
Test Mode (Final Test)	TX mode
Tester	Eason
Temperature	23℃
Humidity	48%

LIMITS


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3


Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.



BLOCK DIAGRAM OF TEST SETUP

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not

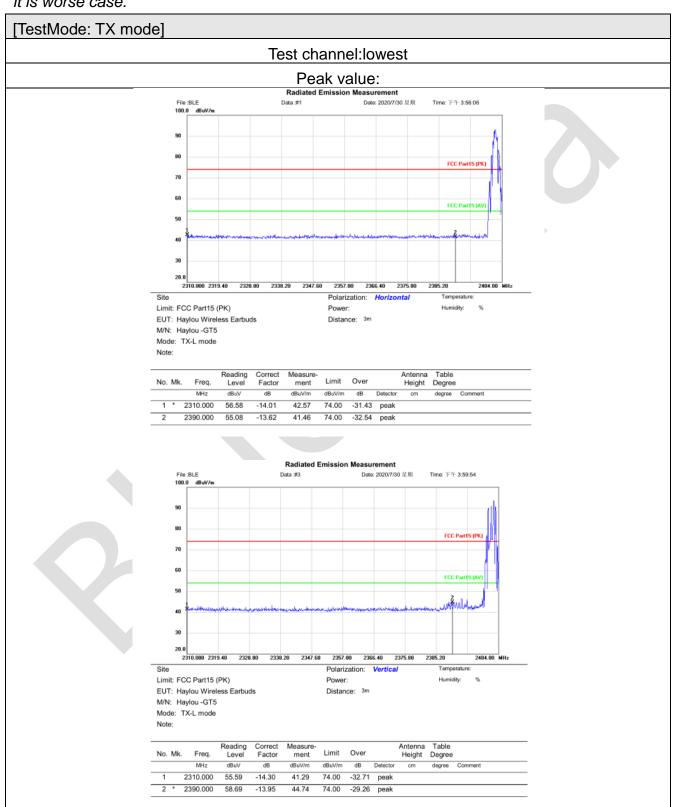
Page 26 of 68

have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

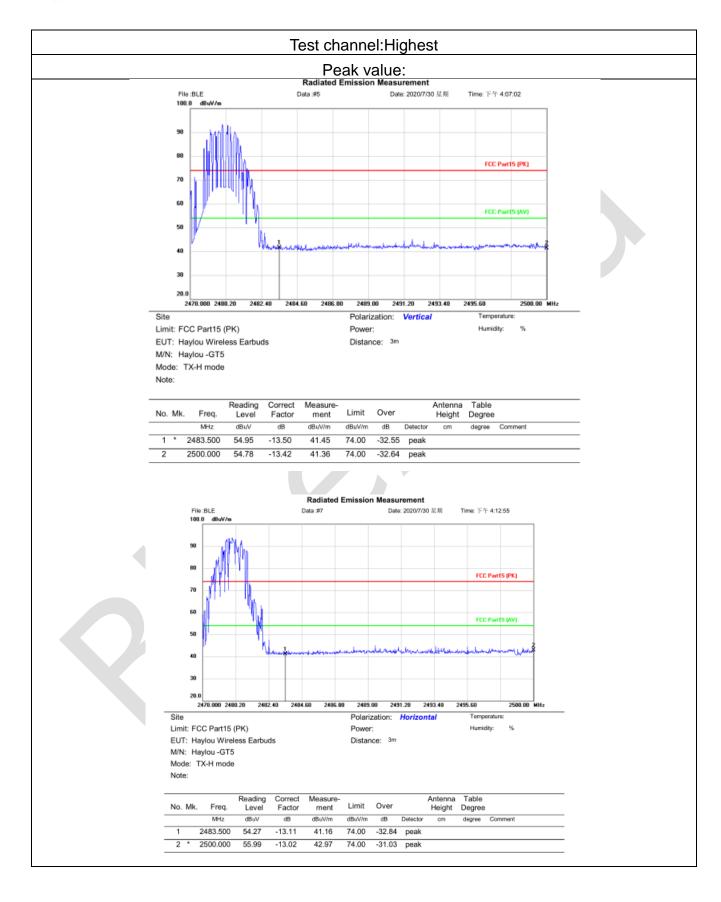
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

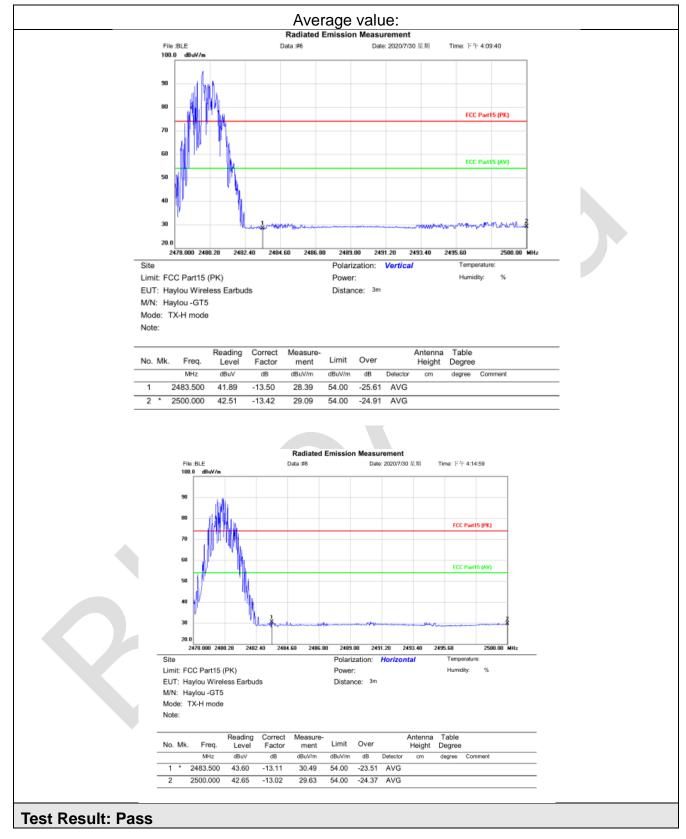
j. Repeat above procedures until all frequencies measured was complete.

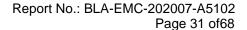

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

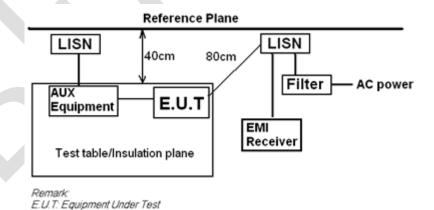
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

TEST DATA


Remark: During the test, pre-scan the 1Mbps, 2 Mbps rate, and found the 2Mbps rate which it is worse case.






CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.2						
Test Mode (Pre-Scan)	TX mode						
Test Mode (Final Test)	TX mode						
Tester	Eason						
Temperature	25 ℃						
Humidity	58%						

LIMITS

Conducted limit(dBµV)						
Quasi-peak	Average					
66 to 56*	56 to 46*					
56	46					
60	50					
	Quasi-peak 66 to 56* 56					

BLOCK DIAGRAM OF TEST SETUP

LISN: Line impedence Stabilization Network Test table height=0.8m

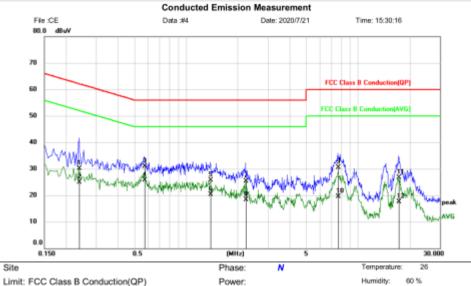
PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50?H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as

Page 32 of 68

the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor

TEST DATA

[Test Mode: TX mode]; [Line: Neutral]

Power:AC120V/60Hz

Limit: FCC Class B Conduction(QP)

EUT: Haylou Wireless Earbuds

M/N: Haylou-GT5 Mode: BLE mode

Note:

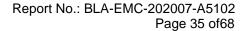

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2380	20.35	9.85	30.20	62.17	-31.97	QP	
2		0.2380	14.96	9.85	24.81	52.17	-27.36	AVG	
3		0.5740	21.12	9.73	30.85	56.00	-25.15	QP	
4	*	0.5740	15.89	9.73	25.62	46.00	-20.38	AVG	
5		1.3860	15.78	9.83	25.61	56.00	-30.39	QP	
6		1.3860	10.42	9.83	20.25	46.00	-25.75	AVG	
7		2.2300	15.37	9.86	25.23	56.00	-30.77	QP	
8		2.2300	8.36	9.86	18.22	46.00	-27.78	AVG	
9		7.6700	20.60	9.86	30.46	60.00	-29.54	QP	
10		7.6700	9.68	9.86	19.54	50.00	-30.46	AVG	
11		17.2380	16.64	10.04	26.68	60.00	-33.32	QP	
12		17.2380	7.47	10.04	17.51	50.00	-32.49	AVG	

Test Result: Pass

[Test Mode: TX mode]; [Line: Line]

Power:AC120V/60Hz

Limit: FCC Class B Conduction(QP)


EUT: Haylou Wireless Earbuds

M/N: Haylou-GT5 Mode: BLE mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1620	27.37	9.89	37.26	65.36	-28.10	QP	
2		0.1620	17.00	9.89	26.89	55.36	-28.47	AVG	
3		0.5700	22.48	9.74	32.22	56.00	-23.78	QP	
4	*	0.5700	18.24	9.74	27.98	46.00	-18.02	AVG	
5		0.9660	17.75	9.84	27.59	56.00	-28.41	QP	
6		0.9660	12.44	9.84	22.28	46.00	-23.72	AVG	
7		2.2540	17.30	9.81	27.11	56.00	-28.89	QP	
- 8		2.2540	9.45	9.81	19.26	46.00	-26.74	AVG	
9		7.6620	21.67	9.87	31.54	60.00	-28.46	QP	
10		7.6620	10.63	9.87	20.50	50.00	-29.50	AVG	
11		17.5380	17.62	10.01	27.63	60.00	-32.37	QP	
12		17.5380	8.98	10.01	18.99	50.00	-31.01	AVG	

Test Result: Pass

ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11

CONCLUSION

Standard Requirement:

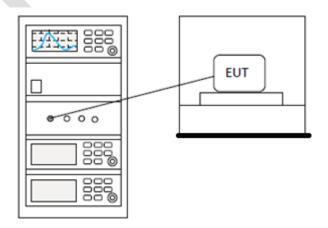
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.38dBi.

Page 36 of 68

CONDUCTED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11						
Test Mode (Pre-Scan)	TX						
Test Mode (Final Test)	TX						
Tester	Eason						
Temperature	23°C						
Humidity	48%						

LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

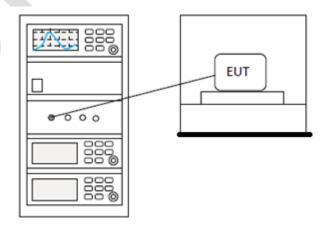
BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 38 of 68

CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	
Test Mode (Pre-Scan)	TX	
Test Mode (Final Test)	TX	
Tester	Eason	
Temperature	23℃	
Humidity	48%	

LIMITS

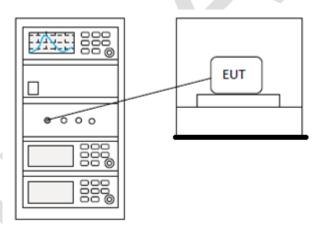
Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 11.10.2	
Test Mode (Pre-Scan)	TX	
Test Mode (Final Test)	TX	
Tester	Eason	
Temperature	23℃	
Humidity	48%	

LIMITS

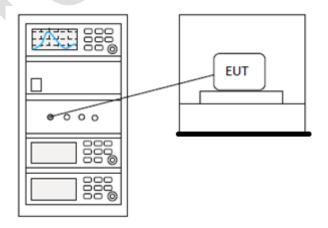
Limit: ≤8dBm in any 3 kHz band during any time interval of continuous transmission

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 41 of 68


CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1	
Test Mode (Pre-Scan)	TX	
Test Mode (Final Test)	TX	
Tester	Eason	
Temperature	23℃	
Humidity	48%	

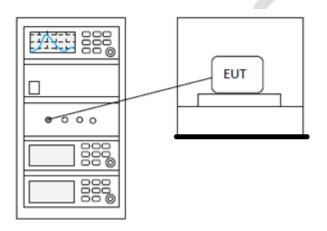
LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)
902-928	1 for ≥50 hopping channels
	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
	1 for frequency hopping systems and digital
5725-5850	modulation

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details



20DB BANDWIDTH

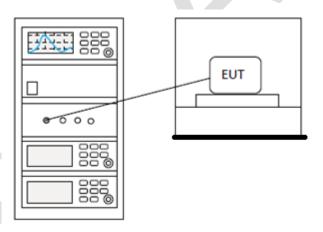
Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 6.9	
Test Mode (Pre-Scan)	TX	
Test Mode (Final Test)	TX	
Tester	Eason	
Temperature	23℃	
Humidity	48%	

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

N/A

Page 44 of 68


MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247	
Test Method	ANSI C63.10 (2013) Section 11.8.1	
Test Mode (Pre-Scan)	TX	
Test Mode (Final Test)	TX	
Tester	Eason	
Temperature	23℃	
Humidity	48%	

LIMITS

Limit:	≥500 kHz
	_500 KHZ

BLOCK DIAGRAM OF TEST SETUP

TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details