

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202202124F01

TEST Report

Applicant: SHENZHEN SAITAKE ELECTRONIC CO.,LTD.

Address of Applicant: NO.1 1/F&3F,BLOCK 5,TIANFU'AN INDUSTRIAL PARK,

LEZHUJIAO VILLAGE, HUANGMABU COMMUNITY, HANGCHENG STREET,BAO'AN DISTRICT, SHENZHEN,

China

Manufacturer: SHENZHEN SAITAKE ELECTRONIC CO.,LTD.

Address of NO.1 1/F&3F,BLOCK 5,TIANFU'AN INDUSTRIAL PARK,

Manufacturer: LEZHUJIAO VILLAGE, HUANGMABU COMMUNITY,

HANGCHENG STREET, BAO'AN DISTRICT, SHENZHEN,

China

Equipment Under Test (EUT)

Product Name: N-S Controller

Model No.: STK-7039RG

Series model: STK-7039, STK-8039XRG, STK-8039, STK-7039HX

Trade Mark: N/A

FCC ID: 2ATI7STK-7039RG

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Feb.11,2022

Date of Test: Feb.11,2022- Feb.23,2022

Date of report issued: Feb.23,2022

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Feb.23,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Feb.23,2022
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Feb.23,2022
	Reviewer		
Approved By :	Kerin Yang	Date:	Feb.23,2022
	Authorized Signature	_	

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	Δ
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.2. TEST MODE	
4.3. DESCRIPTION OF SUPPORT UNITS	
4.4. DEVIATION FROM STANDARDS	
4.6. Test Facility	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	
6.4. Frequencies Separation	
6.5. HOPPING CHANNEL NUMBER	
6.6. DWELL TIME	
6.7. BAND EDGE	
6.7.2. Radiated Emission Method	
6.8. Spurious Emission	
6.8.1. Conducted Emission Method	
6.8.2. Radiated Emission Method	
7. TEST SETUP PHOTO	47
8. EUT CONSTRUCTIONAL DETAILS	
U. LU I UUIU IIIUU IIUIAL DL IAILU	

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	requency Range Measurement Uncertainty	
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Conducted Disturbance 0.15~30MHz 2.66 dB			
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Product Name:	N-S Controller
Model No.:	STK-7039RG
Series model:	STK-7039, STK-8039XRG, STK-8039, STK-7039HX
Model Difference	All the model are the same circuit and RF module, except the model name and colour.
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8QPSK
Antenna Type:	PCB Antenna
Antenna gain:	-1.42dBi
Power supply:	DC 3.7V/800mAh Form Battery and DC 5V From External Circuit
Adapter Information (auxiliary test equipment supplied by test Lab)	N/A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

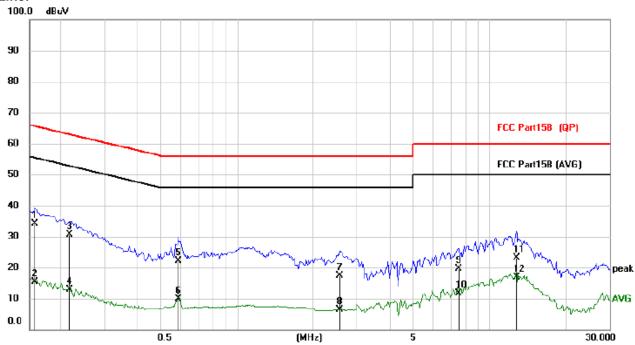
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

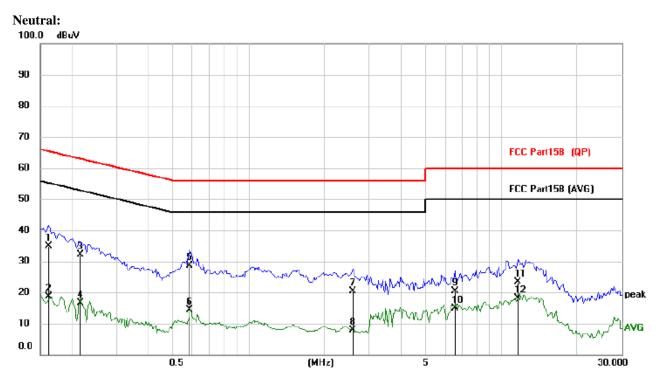
	. Test instruments list									
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date				
				No.	(mm-dd-yy)	(mm-dd-yy)				
1	3m Semi- Anechoic	Shenzhen C.R.T	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024				
	Chamber	technology co., LTD								
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024				
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 21 2021	May 20 2022				
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 21 2021	May 20 2022				
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 21 2021	May 20 2022				
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 21 2021	May 20 2022				
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 21 2021	May 20 2022				
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 21 2021	May 20 2022				
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022				
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022				
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022				
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022				
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 21 2021	May 20 2022				
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 21 2021	May 20 2022				
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 21 2021	May 20 2022				
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 21 2021	May 20 2022				
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 21 2021	May 20 2022				
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 21 2021	May 20 2022				
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 21 2021	May 20 2022				
20	Attenuator	Robinson	6810.17A	HTT-E007	May 21 2021	May 20 2022				
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 21 2021	May 20 2022				
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 21 2021	May 20 2022				
23	DC power supply	Agilent	E3632A	HTT-E023	May 21 2021	May 20 2022				
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 21 2021	May 20 2022				
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 21 2021	May 20 2022				
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 21 2021	May 20 2022				
27	Power sensor	Keysight	U2021XA	HTT-E027	May 21 2021	May 20 2022				
28	Temperature and humidity meter		TH10R	HTT-074	May 21 2021	May 20 2022				

6. Test results and Measurement Data

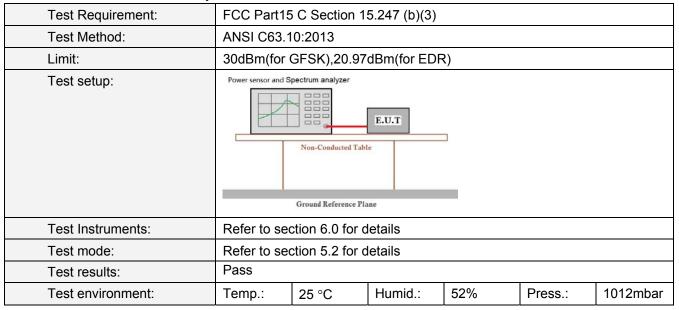
6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz				
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto				
Limit:	Francisco de la Contractica del Contractica de la Contractica de l	Limit	: (dBuV)			
	Frequency range (MHz)	Quasi-peak	Avera	ige		
	0.15-0.5	66 to 56*	56 to	-		
	0.5-5	56	46			
	5-30	m of the frequency	50			
Test setup:	* Decreases with the logarith	•				
Test procedure:	LISN 40cm 80cm Filter AC power Equipment E.U.T Test table/Insulation plane Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are LISN that provides a 500h termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fir positions of equipment and according to ANSI C63.10 	on network (L.I.S.N.). sedance for the meas e also connected to the m/50uH coupling imp to the block diagram checked for maximum and the maximum emis d all of the interface of	This provides uring equipme ne main power pedance with 5 of the test setum conducted asion, the relativables must be	a int. through a community and		
Test Instruments:	Refer to section 6.0 for detail	S				
Test mode:	Refer to section 5.2 for detail					
Test environment:		mid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					
7 001 1 0001101						

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

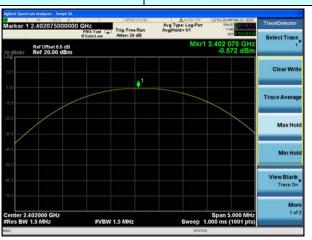
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1 *	0.1578	23.86	10.38	34.24	65.58	-31.34	QP
2	0.1578	4.91	10.38	15.29	55.58	-40.29	AVG
3	0.2163	20.34	10.39	30.73	62.96	-32.23	QP
4	0.2163	2.48	10.39	12.87	52.96	-40.09	AVG
5	0.5829	11.47	10.57	22.04	56.00	-33.96	QP
6	0.5829	-0.79	10.57	9.78	46.00	-36.22	AVG
7	2.5602	6.45	10.83	17.28	56.00	-38.72	QP
8	2.5602	-4.46	10.83	6.37	46.00	-39.63	AVG
9	7.5513	8.23	11.45	19.68	60.00	-40.32	QP
10	7.5513	0.10	11.45	11.55	50.00	-38.45	AVG
11	12.8241	11.17	11.84	23.01	60.00	-36.99	QP
12	12.8241	5.05	11.84	16.89	50.00	-33.11	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1	0.1617	24.68	10.26	34.94	65.38	-30.44	QP
2	0.1617	8.46	10.26	18.72	55.38	-36.66	AVG
3	0.2163	21.95	10.20	32.15	62.96	-30.81	QP
4	0.2163	6.49	10.20	16.69	52.96	-36.27	AVG
5 *	0.5868	18.21	10.48	28.69	56.00	-27.31	QP
6	0.5868	3.98	10.48	14.46	46.00	-31.54	AVG
7	2.6031	9.54	10.84	20.38	56.00	-35.62	QP
8	2.6031	-2.85	10.84	7.99	46.00	-38.01	AVG
9	6.5334	9.34	10.92	20.26	60.00	-39.74	QP
10	6.5334	3.86	10.92	14.78	50.00	-35.22	AVG
11	11.6190	11.71	11.72	23.43	60.00	-36.57	QP
12	11.6190	6.34	11.72	18.06	50.00	-31.94	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

6.2. Conducted Peak Output Power

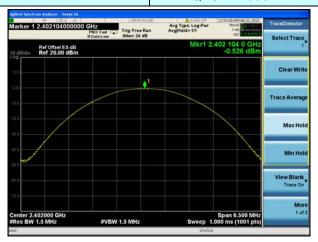

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-0.572		
GFSK	Middle	-0.502	30.00	Pass
	Highest	-0.573		
	Lowest	-0.526		
π/4-DQPSK	Middle	-0.500	20.97	Pass
	Highest	-0.579		
	Lowest	-0.422		
8QPSK	Middle	-0.417	20.97	Pass
	Highest	-0.467		

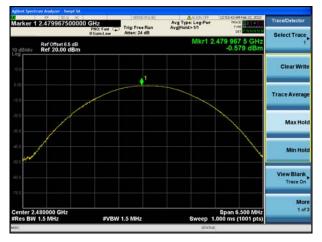
Test plot as follows:

Test mode: GFSK mode

Lowest channel


Middle channel

Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel

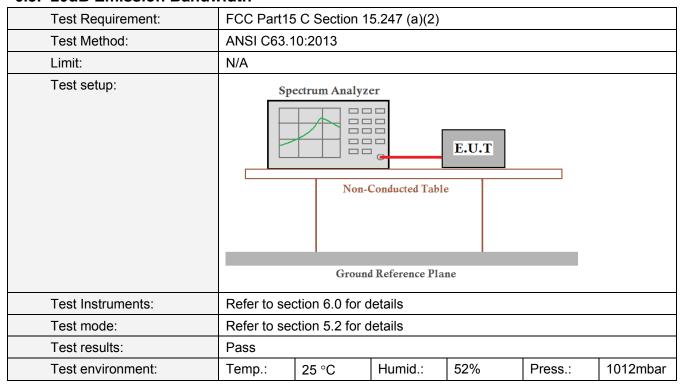
Middle channel

Highest channel

Test mode:

8QPSK mode

Lowest channel


Middle channel

Highest channel

6.3. 20dB Emission Bandwidth

Measurement Data

Mode	Test channel 20dB Emission Bandwidth (MHz)		Result	
	Lowest	0.874		
GFSK	Middle	0.874	Pass	
	Highest	0.875		
	Lowest	1.210		
8QPSK	Middle	1.213	Pass	
	Highest	1.211		

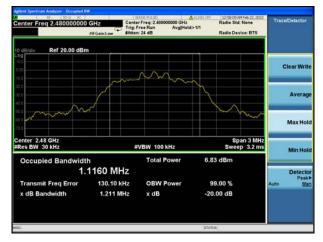
Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

Highest channel


Test mode: 8QPSK mode

Lowest channel

Middle channel

Highest channel

6.4. Frequencies Separation

•							
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)						
Test Method:	ANSI C63.	10:2013					
Receiver setup:	RBW=300h	KHz, VBW=1	MHz, detecto	r=Peak			
Limit:		B bandwidth K : 0.025MH	z or 2/3 of	the 20dB I	bandwidth	(whichever	is
Test setup:	Sp						
Test Instruments:	Refer to section 6.0 for details						
Test mode:							
	Refer to section 5.2 for details						
Test results:	Pass	T .			1	1	
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mb	ar

Measurement Data

Measurement Dat	a			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
	Low	1.002	25KHz or	
GFSK	Middle	1.008	2/3*20dB	Pass
	High	1.008	bandwidth	
	Low	1.002	25KHz or	
8QPSK	Middle	0.999	2/3*20dB	Pass
	High	1.002	bandwidth	

Test plot as follows:

Test mode: GFSK mode

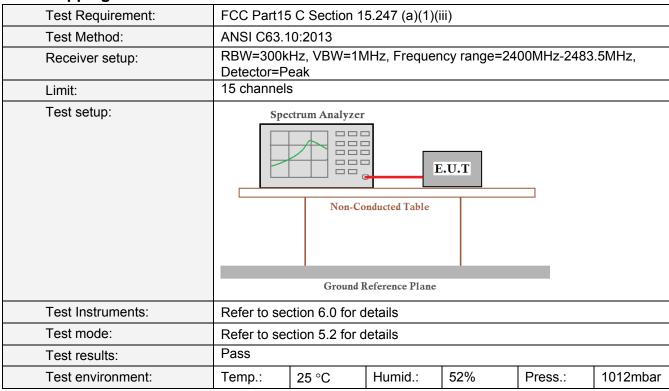
Lowest channel

Middle channel

Highest channel

Test mode: 8QPSK mode

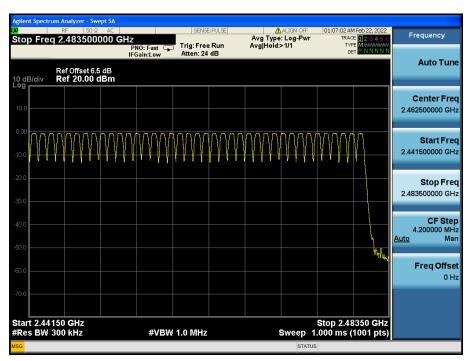
Lowest channel


Middle channel

Highest channel

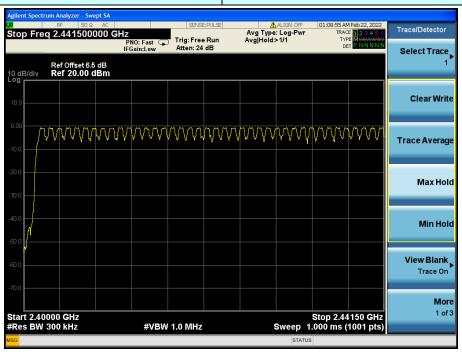
6.5. Hopping Channel Number

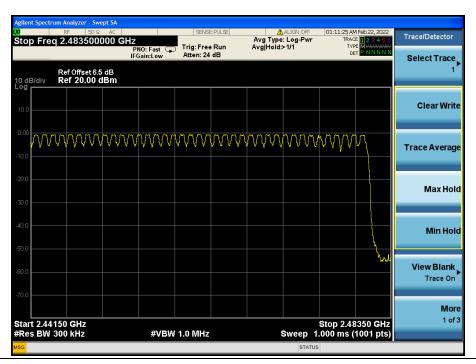

Measurement Data:


Mode	Hopping channel numbers	Limit	Result
GFSK	79	>1 5	Pass
8QPSK	79	≥15	Pass

Test plot as follows:

Test mode: GFSK





Test mode:

8QPSK

6.6. Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)					
Test Method:	ANSI C63.	10:2013				
Receiver setup:	RBW=1MH	z, VBW=1MH	lz, Span=0H	z, Detector=F	Peak	
Limit:	0.4 Second					
Test setup:	Sp					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.369	118	400	Pass
Hopping	DH3	1.617	259	400	Pass
Hopping	DH5	2.865	306	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at Low channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1

Dwell time=Pulse time (ms) × (1600 \div 4 \div 79) ×31.6 Second for DH3

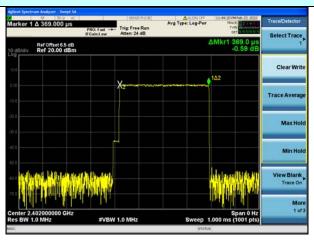
Dwell time=Pulse time (ms) × (1600 \div 6 \div 79) ×31.6 Second for DH5

8QPSK mode:

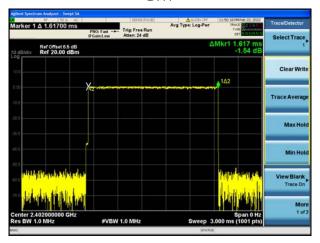
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.377	121	400	Pass
Hopping	3DH3	1.632	261	400	Pass
Hopping	3DH5	2.870	306	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at Low channel.

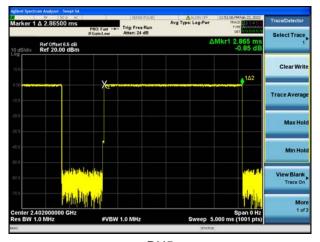
Dwell time=Pulse time (ms) × (1600 \div 2 \div 79) ×31.6 Second for 3-DH1


Dwell time=Pulse time (ms) × (1600 \div 4 \div 79) ×31.6 Second for 3-DH3

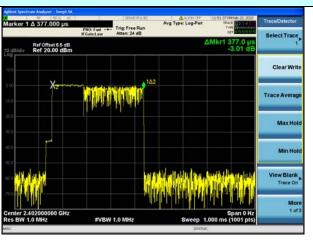
Dwell time=Pulse time (ms) × (1600 \div 6 \div 79) ×31.6 Second for 3-DH5



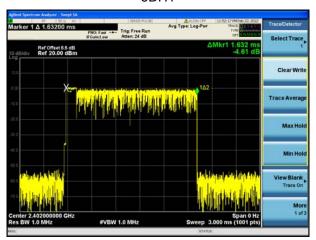
Test plot as follows:

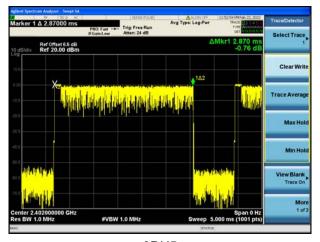

GFSK mode

DH1



DH3




8QPSK mode

3DH1

3DH3

6.7. Band Edge

6.7.1. Conducted Emission Method

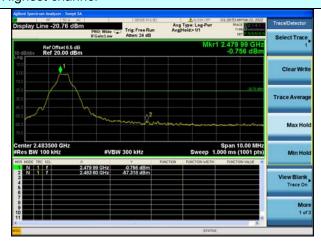
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.	10:2013						
Receiver setup:	RBW=100k	Hz, VBW=30	00kHz, Detec	tor=Peak				
Limit:	spectrum ir is produced the 100 kH: the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spec	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to se	Refer to section 6.0 for details						
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass	Pass						
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result			
GFSK Non-hopping						
2400	57.03	20	Pass			
2483.5	56.56	20	Pass			

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result			
GFSK hopping						
2400	56.93	20	Pass			
2483.5	58.92	20	Pass			

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result					
8DPSK Non-hopping								
2400 57.06		20	Pass					
2483.5	57.95	20	Pass					

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result						
8DPSK hopping									
2400	56.08	20	Pass						
2483.5	58.12	20	Pass						


Test plot as follows: GFSK Mode:

Lowest channel

| Agint | Spectrum Analyzer | Surget | Agint | Spectrum | Agint | Agi

No-hopping mode

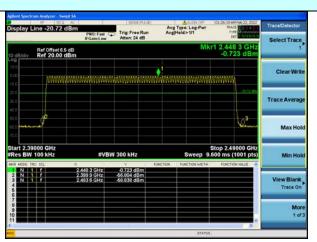
Highest channel

No-hopping mode

Hopping mode

8QPSK Mode:

Lowest channel


| Activated Squestrant Analyzer's New York | Activated Squestrant | Activated

No-hopping mode

Highest channel

No-hopping mode

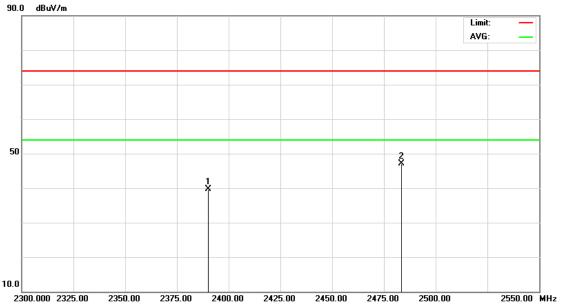
Hopping mode

6.7.2. Radiated Emission Method

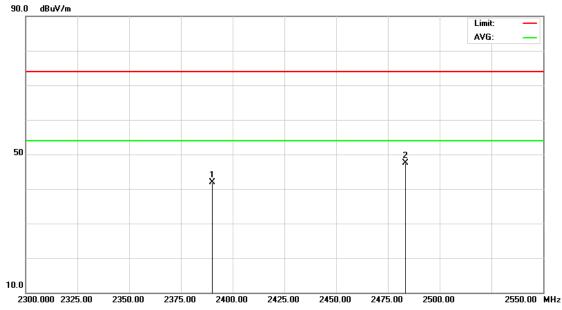
Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.1	0:2013								
Test Frequency Range:		estrict bands lata was sho		ested, only	the wo	rst band's (2	2310MHz to			
Test site:		nt Distance:								
Receiver setup:	Frequenc			RBW	VBW	/ Re	emark			
	Above 1GI	Pas		1MHz 1MHz	3MHz 10Hz		k Value ge Value			
Limit:	Fre	quency	L	imit (dBuV	/m @3m	ı) Re	emark			
	Abo	ve 1GHz		54.0 74.0			ge Value k Value			
Test setup:	Tum Table < 1m 4m > < 1m 4m > <									
Test Procedure:	1 The FUT	was placed			ating tab	ole 1.5 meter	s above the			
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 									
Test Instruments:	Refer to sec	tion 6.0 for c	letails							
Test mode:	Refer to sec	tion 5.2 for c	letails							
Test results:	Pass		1	T			ı			
Test environment:	Temp.:	25 °C	Humi	d.: 52%	6	Press.:	1012mbar			

Measurement Data

Remark: GFSK, Pi/4 DQPSK, 8QPSK all have been tested, only worse case 8QPSK is reported.

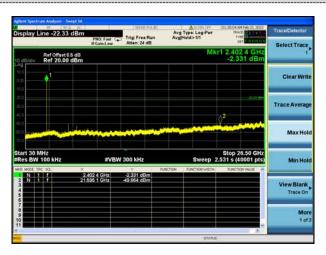

Operation Mode: 8QPSK TX Low channel

From Ant Dol		Read	ling	A = 1/0F	А	ct	Lir		
Freq. (MHz)	Ant.Pol. H/V	Peak	AV	Ant/CF CF(dB)	Peak	AV	Peak	AV	Note
(1011 12)	1 1/ V	(dBuv)	(dBuv)	CF(db)	(dBuv/m)	(dBuv/m)	(dBuv/m)	(dBuv/m)	
2390.00	Н	46.10		-5.79	40.31		74.00	54.00	CH00
2390.00	V	48.07		-5.79	42.28		74.00	54.00	CH00
2483.50	Н	52.50		-4.98	47.52		74.00	54.00	CH78
2483.50	V	53.11		-4.98	48.13		74.00	54.00	CH78

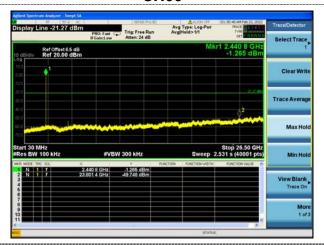

Corr.Factor = Antenna Factor + Cable Loss – Pre-amplifier.

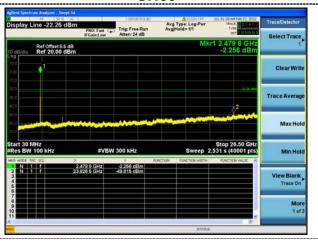
Horizontal

Vertical

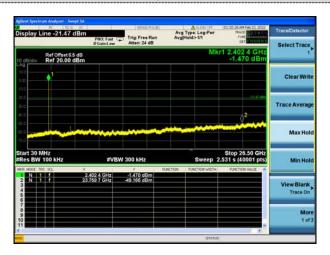

6.8. Spurious Emission

6.8.1. Conducted Emission Method

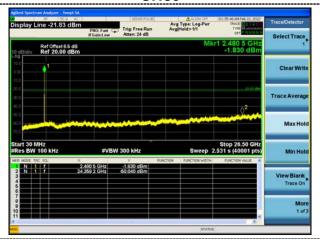

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							


GFSK

CH00

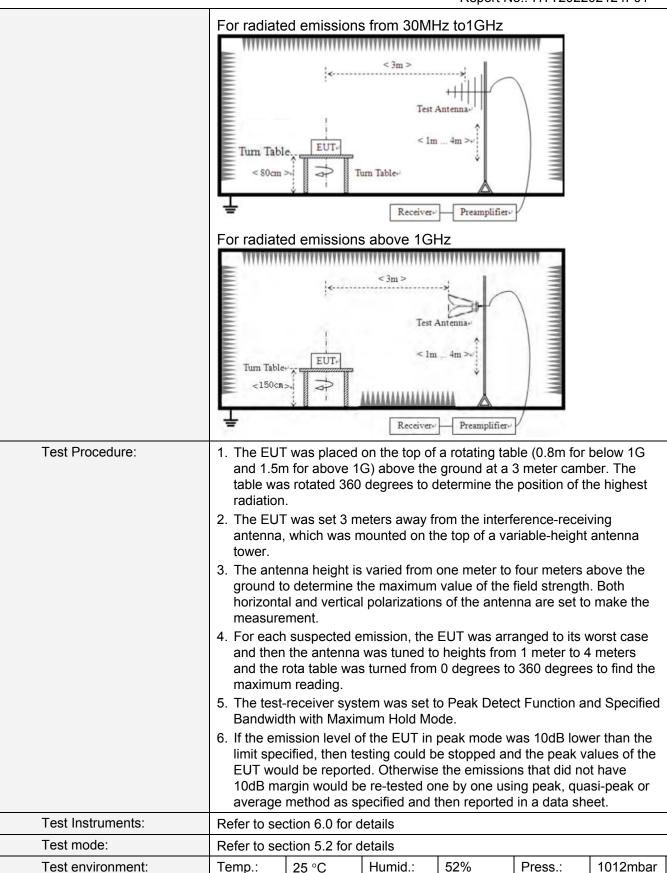

CH39

CH78


8QPSK

CH00

CH39


CH78

6.8.2. Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	1	Value	
	9KHz-150KHz	Q	ıasi-peak	200H	Ηz	600H	Z	Quasi-peak	
			ıasi-peak	9KH	łz	30KH	Z	Quasi-peak	
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KF	łz	Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	Z	Peak	
	Above 10112		Peak	1MF	Ιz	10Hz	<u>-</u>	Average	
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	Hz	24000/F(I	KHz)		QP		30m	
	1.705MHz-30MHz		30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz		150		QP				
	216MHz-960MHz		200			QP		3m	
	960MHz-1GHz		500		QP			5111	
	Above 1GHz		500		Average				
	7,5000 10112		5000		Peak				
Test setup:	For radiated emiss		< 3m >	ntenna)	z	***************************************		

Shenzhen HTT Technology Co.,Ltd.

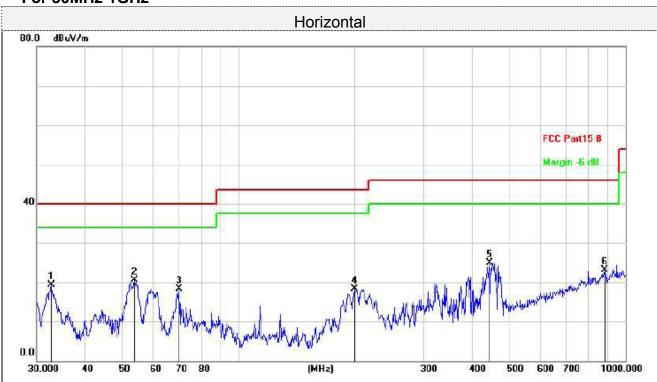
Tel: 0755-23595200 Fax: 0755-23595201

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Test voltage:	AC 120V, 60Hz
Test results:	Pass

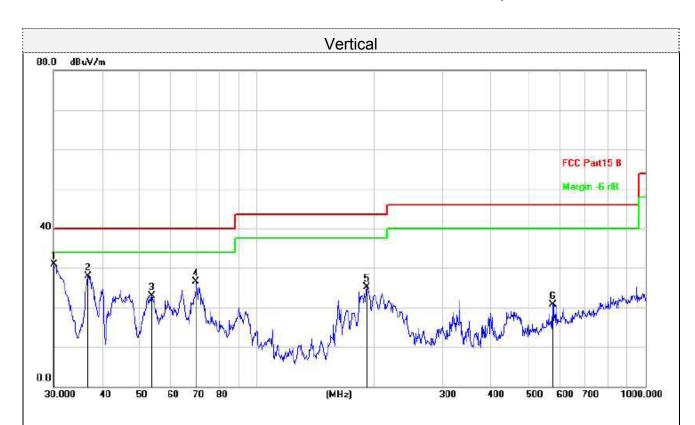
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		32.6340	37.53	-18.32	19.21	40.00	-20.79	QP
2	*	53.6931	38.06	-17.54	20.52	40.00	-19.48	QP
3		70.0902	38.30	-19.99	18.31	40.00	-21.69	QP
4		199.9856	39.35	-20.99	18.36	43.50	-25.14	QP
5		443.2943	38.98	-14.01	24.97	46.00	-21.03	QP
6		881.4067	28.28	-5.19	23.09	46.00	-22.91	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	30.0000	49.43	-18.59	30.84	40.00	-9.16	QP
2		36.7661	45.71	-17.84	27.87	40.00	-12.13	QP
3		53.6931	40.49	-17.54	22.95	40.00	-17.05	QP
4		69.8450	46.39	-19.94	26.45	40.00	-13.55	QP
5		192.4183	45.59	-20.56	25.03	43.50	-18.47	QP
6		576.6443	30.96	-10.21	20.75	46.00	-25.25	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK and Pi/4 DQPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	50.16	31.40	8.18	31.50	58.24	74.00	-15.76	peak
4804	36.62	31.40	8.18	31.50	44.70	54.00	-9.30	AVG
7206	42.03	35.80	10.83	31.40	57.26	74.00	-16.74	peak
7206	26.47	35.80	10.83	31.40	41.70	54.00	-12.30	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.02	31.40	8.18	31.50	59.10	74.00	-14.90	peak
4804	35.77	31.40	8.18	31.50	43.85	54.00	-10.15	AVG
7206	43.36	35.80	10.83	31.40	58.59	74.00	-15.41	peak
7206	28.52	35.80	10.83	31.40	43.75	54.00	-10.25	AVG
Remark: Fact	or = Antenna Fac	ctor + Cable Los	ss – Pre-amplifie	er.				

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin				
rrequericy	weter reading	1 actor	Cable Loss	i actor	LIIIISSIOII LEVEI	LIIIIII	iviargiii	Detector			
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
4882	51.02	31.40	9.17	32.10	59.49	74.00	-14.51	peak			
4882	36.65	31.40	9.17	32.10	45.12	54.00	-8.88	AVG			
7323	41.02	35.80	10.83	31.40	56.25	74.00	-17.75	peak			
7323	27.65	35.80	10.83	31.40	42.88	54.00	-11.12	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.										

Vertical:

_		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	Dotootor
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	50.05	31.40	9.17	32.10	58.52	74.00	-15.48	peak
4882	36.62	31.40	9.17	32.10	45.09	54.00	-8.91	AVG
7323	40.02	35.80	10.83	31.40	55.25	74.00	-18.75	peak
7323	26.88	35.80	10.83	31.40	42.11	54.00	-11.89	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960	50.13	31.40	9.17	32.10	58.6	74	-15.4	peak
4960	36.23	31.40	9.17	32.10	44.7	54	-9.3	AVG
7440	41.19	35.80	10.83	31.40	56.42	74	-17.58	peak
7440	27.05	35.80	10.83	31.40	42.28	54	-11.72	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

	Voltical.									
		Antenna		Preamp						
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin			
-								Detector		
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
4960	49.88	31.40	9.17	32.10	58.35	74	-15.65	peak		
4960	36.62	31.40	9.17	32.10	45.09	54	-8.91	AVG		
7440	41.52	35.80	10.83	31.40	56.75	74	-17.25	peak		
7440	27.74	35.80	10.83	31.40	42.97	54	-11.03	AVG		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

