APPENDIX C **DASY** Calibration Certificate Z22-60197 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Client Audix Certificate No: CALIBRATION CERTIFICATE CALIBRATION SERVIN ICATE Object D750V3 - SN: 1159 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 6, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464 Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | Name Function Signature Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: June 13, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60197 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60197 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 300 | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | \$ | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 42.0 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.6 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | Condition | 8.41 W/kg ± 18.8 % (k=2) | |---------------------|-------------------------------------------------------------------| | | 1.37 W/kg | | 250 mvv input power | 1.37 W/kg | | | normalized to 1W Condition 250 mW input power normalized to 1W | Certificate No: Z22-60197 Page 3 of 6 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.0Ω- 1.19jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 30.0dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.942 ns | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| | The state of s | | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z22-60197 Page 4 of 6 Date: 2022-06-06 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1159 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.876$ S/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.30 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.10 W/kg SAR(1 g) = 2.08 W/kg; SAR(10 g) = 1.37 W/kg Smallest distance from peaks to all points 3 dB below = 17.9 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 2.76 W/kg 0 dB = 2.76 W/kg = 4.41 dBW/kg Certificate No: Z22-60197 Page 5 of 6 ### Impedance Measurement Plot for Head TSL Certificate No: Z22-60197 Page 6 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn audix Client **Certificate No:** J23Z60241 #### CALIBRATION CERTIFICATE Object D900V2 - SN: 1d088 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 23, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | **Function** Name Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan SAR Project Leader Issued: May 30, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Page 1 of 6 Certificate No: J23Z60241 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60241 Page 2 of 6 ## Measurement Conditions DASY system configuration, as | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 900 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.97 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.6 ± 6 % | 0.95 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 10.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.73 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.99 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60241 Page 3 of 6 #### Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.2Ω- 7.76jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.8dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.313 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | manadata by | | Certificate No: J23Z60241 Page 4 of 6 Date: 2023-05-23 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China #### DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d088 Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; σ = 0.948 S/m; ϵ_r = 40.57; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.68, 9.68, 9.68) @ 900 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.60 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 4.24 W/kg SAR(1 g) = 2.67 W/kg; SAR(10 g) = 1.73 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 63.5% Maximum value of SAR (measured) = 3.66 W/kg 0 dB = 3.66 W/kg = 5.63 dBW/kg Certificate No: J23Z60241 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: J23Z60241 Page 6 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Client **Certificate No:** J23Z60242 #### CALIBRATION CERTIFICATE audix Object D1800V2 - SN: 2d186 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 23, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | Calibrated by: **Function** Zhao Jing SAR Test Engineer Reviewed by: Lin Hao Name **SAR Test Engineer** Issued: May 30, 2023 Approved by: Qi Dianyuan SAR Project Leader This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60242 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60242 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60242 Page 3 of 6 #### Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.6Ω- 3.07jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 32.1dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.121 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: J23Z60242 Page 4 of 6 Date: 2023-05-23 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d186 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.423$ S/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN3617; ConvF(8.4, 8.4, 8.4) @ 1800 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.77 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.28 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55% Maximum value of SAR (measured) = 15.4 W/kg Certificate No: J23Z60242 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: J23Z60242 Page 6 of 6 ## AUDIX Technology (Shenzhen) Co., Ltd. Add: No.52 Hua Yuan
Bei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn audix Client **Certificate No:** J23Z60243 #### **CALIBRATION CERTIFICATE** Object D2000V2 - SN: 1055 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 24, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | **Function** Name Calibrated by: **Zhao Jing SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 30, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60243 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60243 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|---------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2000 MHz ± 1 MHz | 1 1 1 1 1 1 1 1 1 1 | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 41.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60243 Page 3 of 6 #### Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.8Ω- 1.76jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 33.3dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) 1.098 ns | |---| |---| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: J23Z60243 Page 4 of 6 Date: 2023-05-24 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2000 MHz; Type: D2000V2; Serial: D2000V2 - SN: 1055 Communication System: UID 0, CW; Frequency: 2000 MHz Medium parameters used: f = 2000 MHz; $\sigma = 1.384 \text{ S/m}$; $\varepsilon_r = 41.11$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN3617; ConvF(8.2, 8.2, 8.2) @ 2000 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.74 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 19.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.16 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 52.7% Maximum value of SAR (measured) = 16.1 W/kg 0 dB = 16.1 W/kg = 12.07 dBW/kg Certificate No: J23Z60243 Page 5 of 6 #### Impedance Measurement Plot for Head TSL Certificate No: J23Z60243 Page 6 of 6