

RADIO TEST REPORT FCC ID: 2ATH4-ROLLCALL

Castificate \$1208.0

Product: Smart Phone Trade Mark: ROLLCALL Model No.: DT D1 Family Model: DT Report No.: STR211029002002E Issue Date: Dec 07. 2021

Prepared for

Alliance International group, Inc

43337 Isle Royal Street Fremont CA 94538 USA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	FACILITIES AND ACCREDITATIONS	
-		
3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	
3	MEASUREMENT UNCERTAINTY	
4	GENERAL DESCRIPTION OF EUT	
5	DESCRIPTION OF TEST MODES	
6	ETUP OF EQUIPMENT UNDER TEST	10
6	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
6	SUPPORT EQUIPMENT	11
6	EQUIPMENTS LIST FOR ALL TEST ITEMS	12
7	TEST REQUIREMENTS	14
7	CONDUCTED EMISSIONS TEST	
,	1.1 Applicable Standard	
	1.2 Conformance Limit	
	1.3 Measuring Instruments	14
	2.1.4 Test Configuration	
	1.5 Test Procedure	
-	1.6 Test Results	
7		
	V.2.1 Applicable Standard V.2.2 Conformance Limit	
	2.2 Conjormance Limit	
	2.4 Test Configuration	
	2.5 Test Procedure	
	2.6 Test Results	20
7		
	3.1 Applicable Standard	
	3.2 Conformance Limit	
	V.3.3 Measuring Instruments	
	3.4 Test Setup	
	V.3.6 Test Results	
7	DUTY CYCLE	
	4.1 Applicable Standard	
	4.2 Conformance Limit	27
	V.4.3 Measuring Instruments	
	.4.4 Test Setup	
	4.5 Test Procedure	
7	7.4.6 Test Results	
/	<i>I.S.1 Applicable Standard</i>	
	5.1 Applicable Standard	
	5.3 Measuring Instruments	
	7.5.4 Test Setup	29
	7.5.5 Test Procedure	
	7.5.6 Test Results	29

	7.6 P	OWER SPECTRAL DENSITY	30
	7.6.1	Applicable Standard	30
	7.6.2	Conformance Limit	30
	7.6.3	Measuring Instruments	30
	7.6.4	Test Setup	30
	7.6.5	Test Procedure	30
	7.6.6	Test Results	
	7.7 C	CONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	32
	7.7.3	Measuring Instruments	32
	7.7.4	Test Setup	
	7.7.5	Test Procedure	32
	7.7.6	Test Results	
		PURIOUS RF CONDUCTED EMISSIONS	
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	
	7.8.3	Test Setup	
	7.8.4	Test Procedure	
	7.8.5	Test Results	
		NTENNA APPLICATION	
	7.9.1	Antenna Requirement	
	7.9.2	Result	34
8	TEST	RESULTS	35
	8.1 N	AXIMUM CONDUCTED OUTPUT POWER	35
		Occupied Channel Bandwidth	
	8.3 N	AXIMUM POWER SPECTRAL DENSITY LEVEL	41
	8.4 E	SAND EDGE	43
		Conducted RF Spurious Emission	

ACCRE

Certificate #4298.01

1 TEST RESULT CERTIFICATION

Applicant's name:	Alliance International group, Inc
Address:	43337 Isle Royal Street Fremont CA 94538 USA
Manufacturer's Name:	Alliance International group, Inc
Address	43337 Isle Royal Street Fremont CA 94538 USA
Product description	
Product name:	Smart Phone
Model and/or type reference:	DT D1
Family Model:	DT

Measurement Procedure Used:

APPLICABLE STANDARDS				
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT			
FCC 47 CFR Part 2, Subpart J				
FCC 47 CFR Part 15, Subpart C	Complied			
ANSI C63.10-2013				
KDB 558074 D01 15.247 Meas Guidance v05r02				

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Testing Engineer

Authorized Signatory

Here

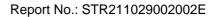
(Mukzi Lee)

Oct 29 . 2021 ~ Dec 07. 2021

What lee

(Alex Li)

2 SUMMARY OF TEST RESULTS


FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remark						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Peak Output Power	PASS				
15.209 (a) 15.205 (a)						
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

Certificate #4298.01

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment Smart Phone				
Trade Mark	ROLLCALL			
FCC ID	2ATH4-ROLLCALL			
Model No.	DT D1			
Family Model	DT			
Model Difference	All the model are the same circuit and RF module, except the Model names.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	1.22 dBi			
Adapter	Model: FX18U-090200J1 Input: AC 100-240V~50/60Hz 0.5A Output: DC 9V2A			
Battery	DC 3.85V, 4500mAh, 17.325Wh			
Power supply	DC 3.85V from battery or DC 9V from Adapter.			
HW Version	G1970U-PT-V2.1			
SW Version	G1970UPTV2_HF_Z6128_P_K_C01_FAC_OJ_R			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

ACO

Certificate #4298.01

Revision mistory					
Report No.	Version	Description	Issued Date		
STR211029002002E	Rev.01	Initial issue of report	Dec 07, 2021		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298 81

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases			
Test Item	Data Rate/ Modulation		
AC Conducted Emission	Mode 1: normal link mode		
	Mode 1: normal link mode		
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps		
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/		
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps		
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps		
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps		
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps		

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

Report No.: STR211029002002E

6.1 BLOCK DIA	AGRAM CONFIGURA	_	STEM	
For AC Conducted I		C-1 AE-1 Adapter	AC PLUG	
For Radiated Test C	ases			
For Conducted Test	EUT			
Measurement Instrument	C-2 EUT			
Note: The tempora tests and this temp	ry antenna connect orary antenna conn	tor is soldered on the ector is listed in the	ne PCB board in orde equipment list.	r to perform conducted

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	FX18U-090200J1	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	liona conducted	loot oquipmont					
Iter	n Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.11.19 2021.11.07	2021.11.18 2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.11.19 2021.11.07	2021.11.18 2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

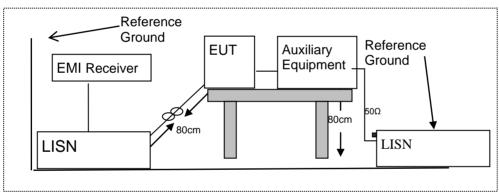
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit		
Frequency(IVILIZ)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

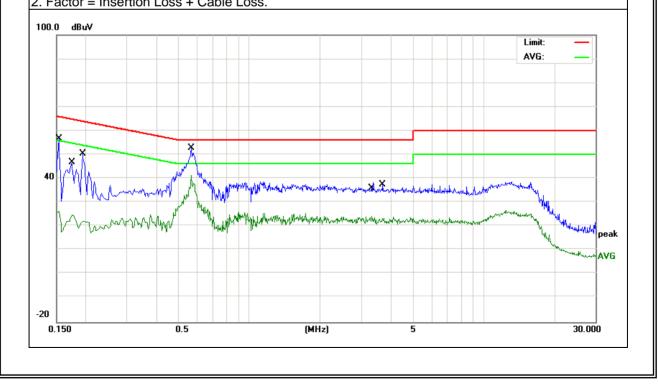
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

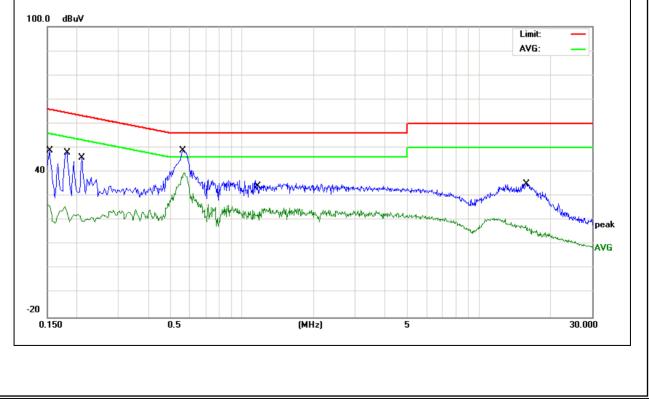

7.1.6 Test Results

EUT:	Smart Phone	Model Name :	DT D1
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 9V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domorte
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	46.92	9.72	56.64	65.78	-9.14	QP
0.1539	16.58	9.72	26.30	55.78	-29.48	AVG
0.1739	37.14	9.68	46.82	64.77	-17.95	QP
0.1739	14.93	9.68	24.61	54.77	-30.16	AVG
0.1940	40.60	9.64	50.24	63.86	-13.62	QP
0.1940	12.48	9.64	22.12	53.86	-31.74	AVG
0.5658	43.02	9.67	52.69	56.00	-3.31	QP
0.5658	31.55	9.67	41.22	46.00	-4.78	AVG
3.3220	26.11	9.70	35.81	56.00	-20.19	QP
3.3220	14.55	9.70	24.25	46.00	-21.75	AVG
3.7139	27.65	9.68	37.33	56.00	-18.67	QP
3.7139	13.79	9.68	23.47	46.00	-22.53	AVG

Remark:

All readings are Quasi-Peak and Average values.
Factor = Insertion Loss + Cable Loss.


EUT:	Smart Phone	Model Name :	DT D1
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 9V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demorik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	16.59	9.63	26.22	55.78	-29.56	AVG
0.1539	39.10	9.63	48.73	65.78	-17.05	QP
0.1819	14.48	9.63	24.11	54.39	-30.28	AVG
0.1819	38.18	9.63	47.81	64.39	-16.58	QP
0.2099	11.07	9.63	20.70	53.21	-32.51	AVG
0.2099	36.12	9.63	45.75	63.21	-17.46	QP
0.5699	39.30	9.70	49.00	56.00	-7.00	QP
0.5699	29.98	9.70	39.68	46.00	-6.32	AVG
1.1619	13.83	9.73	23.56	46.00	-22.44	AVG
1.1619	24.57	9.73	34.30	56.00	-21.70	QP
15.8619	25.47	9.73	35.20	60.00	-24.80	QP
15.8619	7.35	9.73	17.08	50.00	-32.92	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

Certificate #4298-01

According to 1 00 1 art 15.200, restricted bands				
MHz	MHz	GHz		
16.42-16.423	399.9-410	4.5-5.15		
16.69475-16.69525	608-614	5.35-5.46		
16.80425-16.80475	960-1240	7.25-7.75		
25.5-25.67	1300-1427	8.025-8.5		
37.5-38.25	1435-1626.5	9.0-9.2		
73-74.6	1645.5-1646.5	9.3-9.5		
74.8-75.2	1660-1710	10.6-12.7		
123-138	2200-2300	14.47-14.5		
149.9-150.05	2310-2390	15.35-16.2		
156.52475-156.52525	2483.5-2500	17.7-21.4		
156.7-156.9	2690-2900	22.01-23.12		
162.0125-167.17	3260-3267	23.6-24.0		
167.72-173.2	3332-3339	31.2-31.8		
240-285	3345.8-3358	36.43-36.5		
322-335.4	3600-4400	(2)		
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358		

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

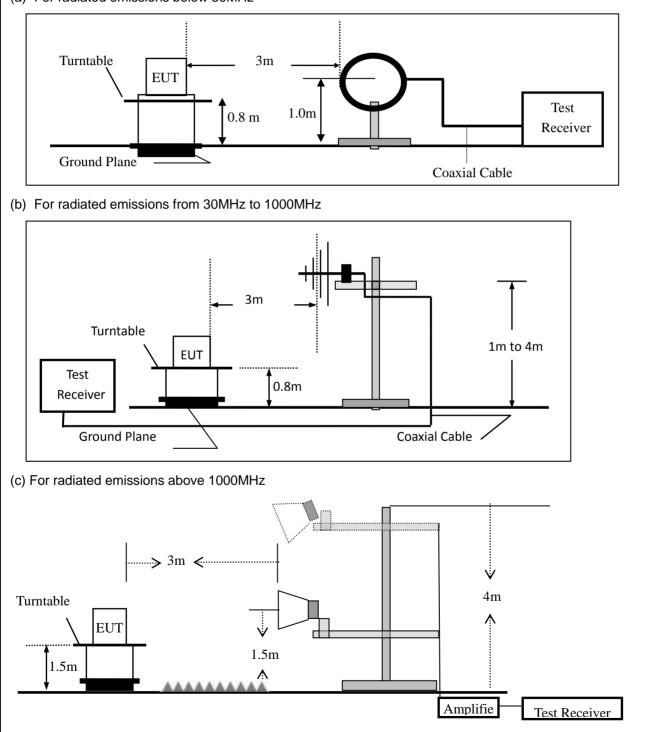
Fraguanay (MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298 ()

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

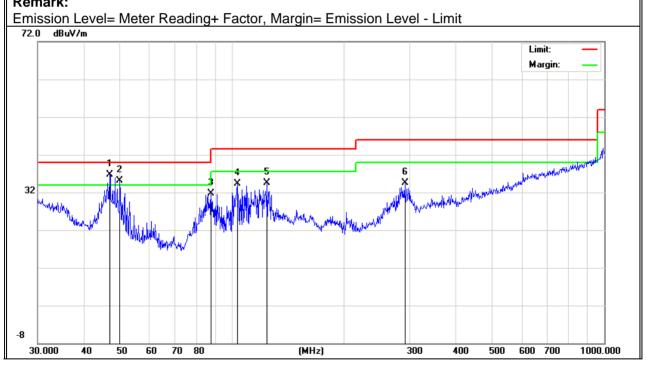
7.2.6 Test Results

	Spurious I	Emission	below	30MHz	(9KHz to 30MHz)
--	------------	----------	-------	-------	-----------------

EUT:	Smart Phone	Model No.:	DT D1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK AV		PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Phone	Model Name :	DT D1
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.85V		

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	46.8303	20.44	16.22	36.66	40.00	-3.34	QP
V	49.8813	20.37	14.76	35.13	40.00	-4.87	QP
V	87.7248	15.96	15.65	31.61	40.00	-8.39	QP
V	103.0798	17.19	17.15	34.34	43.50	-9.16	QP
V	124.1329	16.18	18.32	34.50	43.50	-9.00	QP
V	291.0360	12.87	21.58	34.45	46.00	-11.55	QP

Remark:

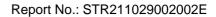
Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	31.0704	6.67	24.07	30.74	40.00	-9.26	QP
Н	124.1329	9.94	18.32	28.26	43.50	-15.24	QP
Н	103.8054	9.74	17.26	27.00	43.50	-16.50	QP
Н	284.9766	16.28	21.13	37.41	46.00	-8.59	QP
Н	372.0045	10.12	23.91	34.03	46.00	-11.97	QP
Н	782.3451	7.93	32.15	40.08	46.00	-5.92	QP
	n Level= Meter F BuV/m					Limit:	
						Margin:	_
					5	6 X	and the second
32	Anarthe and a state of the stat	June March M	2 X 4/4/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	harrow Arrow and a proper random with the	5 X Mary Marine	6 normalization	

ACCRE

Certificate #4298.01

Certificate #4298.01

Spurious	s Emiss	sion Above	1GHz (1G	Hz to	25G	Hz)						
EUT:		Smart Pho	ne		Mod	el No.:		DT D	D1			
Temperature: 20 °C					Relative Humidity: 48%							
				Test	By:		Muk	zi Lee				
	1					•						
Frequency	Jency Read Cable Antenna Prea Level loss Factor Fac			Emission Level	Limits		Margin	Remark		Comment		
(MHz)	(dBµ∨	/) (dB)	dB/m	(dl	3)	(dBµV/m)	(dBµ'	V/m)	(dB)			
			Low Cha	annel ((2402	MHz)(GFSK	()Abo	ve 1G	i i			
4804	69.38	3 5.21	35.59	44.	30	65.88	74.	00	-8.12	Pk		Vertical
4804	49.38	3 5.21	35.59	44.	30	45.88	54.	00	-8.12	AV		Vertical
7206	68.96	6.48	36.27	44.	60	67.11	74.	00	-6.89	Pk		Vertical
7206	45.85	6.48	36.27	44.	60	44.00	54.	00	-10.00	AV		Vertical
4804	70.63	3 5.21	35.55	35.55 44.		67.09	74.	00	-6.91	Pk	F	lorizontal
4804	49.98	3 5.21	35.55	44.	30	46.44	54.	00	-7.56	AV	H	lorizontal
7206	69.84	6.48	36.27 44.5		52	68.07	74.00		-5.93	Pk	H	lorizontal
7206	48.41	6.48	36.27 44		52 46.64 54.00		-7.36 AV			lorizontal		
	Mid Channel				2440	MHz)(GFSK)Abo	ve 1G				
4880	69.82	2 5.21	35.66	44.	20	66.49	74.	00	-7.51	Pk		Vertical
4880	45.09	5.21	35.66	44.	20	41.76	54.	00	-12.24	AV		Vertical
7320	68.92	2 7.10	36.50	44.	43	68.09	74.	00	-5.91	Pk		Vertical
7320	45.27	7.10	36.50	44.	43	44.44	54.	00	-9.56	AV		Vertical
4880	69.62	2 5.21	35.66	44.	20	66.29	74.	00	-7.71	Pk	H	lorizontal
4880	49.88	3 5.21	35.66	44.	20	46.55	54.	00	-7.45	AV	H	lorizontal
7320	69.52	2 7.10	36.50	44.	43	68.69	74.	00	-5.31	Pk	F	lorizontal
7320	48.59	7.10	36.50	44.	43	47.76	54.	00	-6.24	AV	H	lorizontal
			High Cha	annel (2480	MHz)(GFSK	() Abo	ove 10	3			
4960	70.27	7 5.21	35.52	44.	21	66.79	74.	00	-7.21	Pk		Vertical
4960	50.95	5 5.21	35.52	44.	21	47.47	54.	00	-6.53	AV		Vertical
7440	70	7.10	36.53	44.	60	69.03	74.	00	-4.97	Pk		Vertical
7440	50.82	2 7.10	36.53	44.	60	49.85	54.	00	-4.15	AV		Vertical
4960	69.95	5 5.21	35.52	44.	21	66.47	74.	00	-7.53	Pk	F	lorizontal
4960	48.79	5.21	35.52	44.	21	45.31	54.	00	-8.69	AV	F	lorizontal
7440	70.93	3 7.10	36.53	44.	60	69.96	74.	00	-4.04	Pk	H	lorizontal
7440	49.74	7.10	36.53	44.	60	48.77	54.	00	-5.23	AV	F	lorizontal


Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Spurious Er	Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz									
EUT:	Smart Phone	Model No.:	DT D1							
Temperature:	20 ℃	Relative Humidity:	48%							
Test Mode:	Mode2/ Mode4	Test By:	Mukzi Lee							

Certificate #4298.01

Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment					
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре						
	1Mbps(GFSK)													
2310.00	68.35	2.97	27.80	43.80	55.32	74	-18.68	Pk	Horizontal					
2310.00	45.68	2.97	27.80	43.80	32.65	54	-21.35	AV	Horizontal					
2310.00	70.3	2.97	27.80	43.80	57.27	74	-16.73	Pk	Vertical					
2310.00	50.92	2.97	27.80	43.80	37.89	54	-16.11	AV	Vertical					
2390.00	70.62	3.14	27.21	43.80	57.17	74	-16.83	Pk	Vertical					
2390.00	47.21	3.14	27.21	43.80	33.76	54	-20.24	AV	Vertical					
2390.00	70.42	3.14	27.21	43.80	56.97	74	-17.03	Pk	Horizontal					
2390.00	46.64	3.14	27.21	43.80	33.19	54	-20.81	AV	Horizontal					
2483.50	70.81	3.58	27.70	44.00	58.09	74	-15.91	Pk	Vertical					
2483.50	49.98	3.58	27.70	44.00	37.26	54	-16.74	AV	Vertical					
2483.50	68.54	3.58	27.70	44.00	55.82	74	-18.18	Pk	Horizontal					
2483.50	46.63	3.58	27.70	44.00	33.91	54	-20.09	AV	Horizontal					

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT: Smart Phone			Mod	Model No.:		DT D1				
Temperature: 20 °C		Rela	Relative Humidity:		48%					
Fest Mode: Mode2/ Mode4		Tes	Test By:		Mukzi Lee					
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
3260	69.99	4.04	29.57	44.70	58.90	74	4	-15.10	Pk	Vertical
3260	45.2	4.04	29.57	44.70	34.11	54	4	-19.89	AV	Vertical
3260	70.79	4.04	29.57	44.70	59.70	74	4	-14.30	Pk	Horizontal
3260	46.62	4.04	29.57	44.70	35.53	54	4	-18.47	AV	Horizontal
3332	70.9	4.26	29.87	44.40	60.63	74	4	-13.37	Pk	Vertical
3332	48.08	4.26	29.87	44.40	37.81	54	4	-16.19	AV	Vertical
3332	68.04	4.26	29.87	44.40	57.77	74	4	-16.23	Pk	Horizontal
3332	45.15	4.26	29.87	44.40	34.88	54	4	-19.12	AV	Horizontal
17797	57.94	10.99	43.95	43.50	69.38	74	4	-4.62	Pk	Vertical
17797	35.51	10.99	43.95	43.50	46.95	54	4	-7.05	AV	Vertical
17788	57.15	11.81	43.69	44.60	68.05	74	4	-5.95	Pk	Horizontal
17788	32.67	11.81	43.69	44.60	43.57	54	4	-10.43	AV	Horizontal

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298 01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	DT D1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

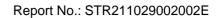
7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Castificate \$4398.03


The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\ge RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	DT D1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

ACI

Certificate #4298.01

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298 81

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Smart Phone	Model No.:	DT D1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

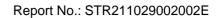
7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.


The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	DT D1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Certificate #4298.01

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

Certificate #4298 01

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

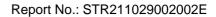
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.


Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	DT D1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mukzi Lee

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298 01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

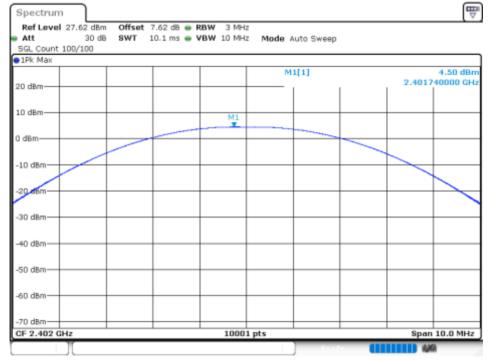
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 1.22 dBi). It comply with the standard requirement.


8 TEST RESULTS

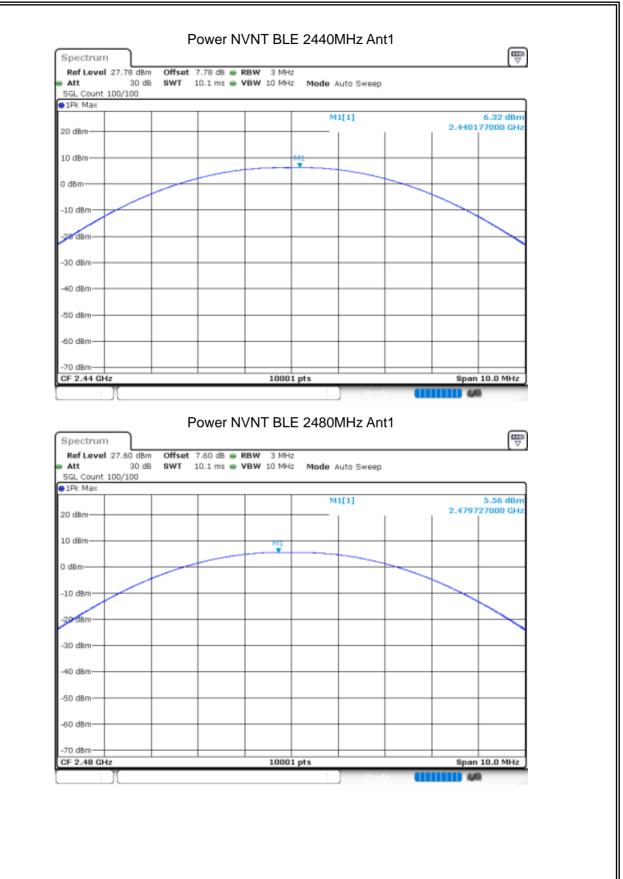
8.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	4.502	30	Pass
NVNT	BLE	2440	Ant 1	6.319	30	Pass
NVNT	BLE	2480	Ant 1	5.562	30	Pass

ACCRE

Certificate #4298.01

Power NVNT BLE 2402MHz Ant1



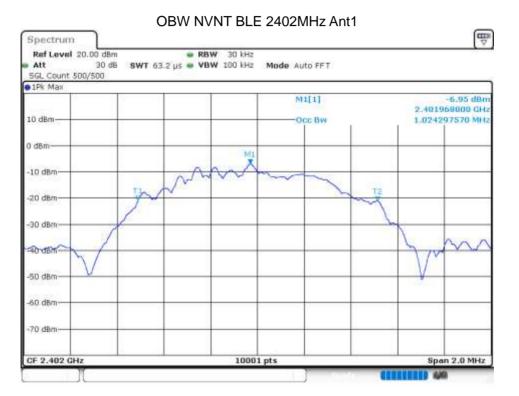
ac-

ACCRE

Certificate #4298.01

Report No.: STR211029002002E

NTEK 北测[®]

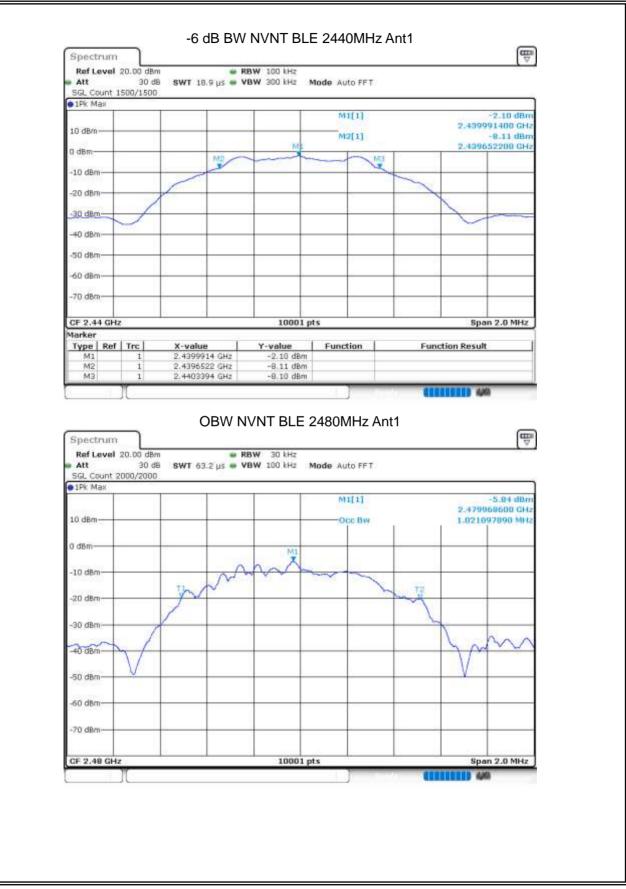

8.2 OCCUPIED CHANNEL BANDWIDTH

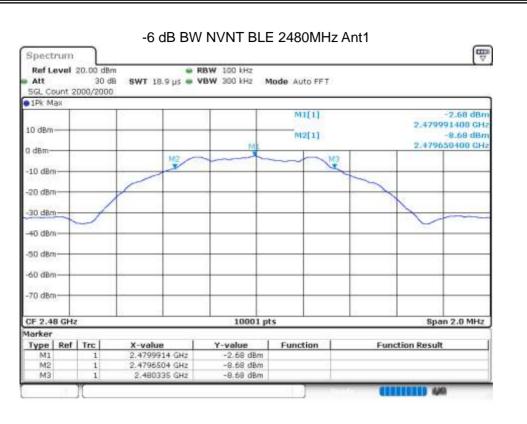
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	1.0243	0.6924	0.5	Pass
NVNT	BLE	2440	Ant 1	1.0225	0.6872	0.5	Pass
NVNT	BLE	2480	Ant 1	1.0211	0.6846	0.5	Pass

ACCRE

Certificate #4298.01

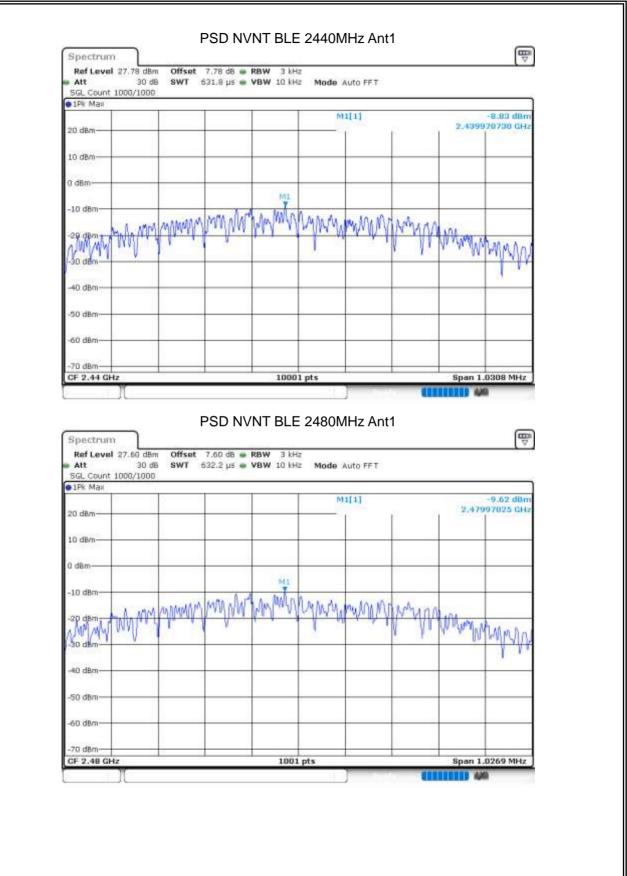
lac-N




ACCRED

ACCRED

ACCREDITED

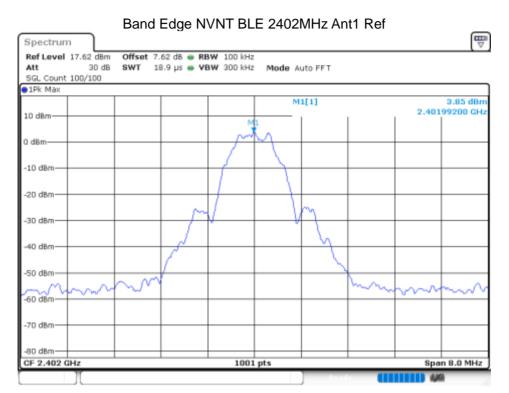

NTEK 北测

Report No.: STR211029002002E

Condition	Mode	Frequency (MHz)	Antenna	Max PS (dBm/3k	-		Limit m/3kHz)	Verdic
NVNT	BLE	2402	Ant 1	-10.64	3		8	Pass
NVNT	BLE	2440	Ant 1	-8.82	3		8	Pass
NVNT	BLE	2480	Ant 1	-9.62	3		8	Pass
	🖷 Att	el 27.62 dBm Offset 7. 30 dB SWT 633 ht 3000/3000	62 d8 ө RBW 3 k 1,8 µs ө VBW 10 k				()	
	20 dBm-			M1[1]	je s		10.64 dBm 70820 GHz	
	10 dBm-				-6 62			
	0 d8m		MI					
	-10 dBm	m.h. mm mount	molitimety	Manaman	MAMAA	101		
	Ab dem	MINN. A	a		W W	Mump	MMMAA	
	-40 dBm							
	-50 dBm							
	-70 d8m-	GHz	100	01 pts		Span 1	0386 MHz	
	01 2.402	Y	100	ar pra		apan 13	and the second	

ACCRE

ACCRE


8.4 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-55.23	-20	Pass
NVNT	BLE	2480	Ant 1	-56.74	-20	Pass

ACCREDITED

Certificate #4298.01


ilac-MR

ACCRE

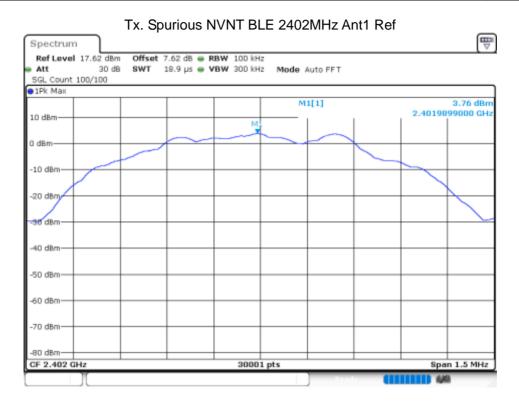
Att SGL Co		7.62 dBm 30 dB .00/100	Offset 7.62 dB SWT 227.5 μs			Mode #	uto FF1	2			
1Pk Ma	_										
10 dBm-							(1) (1)		2010	3.81 d 195000 f -53.69 p 100000 f	вп
-10 dBm		_			-		-	1			
-20 dBm	0	1 -16.150	dBm		+			-			-
-30 dBm	-				+					1	
40 dBm					+			_			
-S0 dBm	-			M4					-143	M	1
60 dBm	nders	and a stand of the	Indertain	about the way to the to	1 mai	Muliph	really and	will alles mary and	guery to have	churd	
70 dBm	-				+						
-80 dBm		10.27					_	1 1			
Start 2	306	GHz	100 - 10 h	100	1 pts	5	· ·		Stop	2.406 GH	HZ
tarker	Sector.		0.000 0.000 0.000						war an or other		
Type	Ref	Trc	X-value	Y-value	. 11	Funct	ian	Fun	ction Result	Ê.	
M1		1	2,40195 GHz	and the second se							
M2		1	2.4 GHz	~53.69 d							
M3		1	2.39 GHz	-55.17 d	Bm						

ACCRE

Att	nunt 1	30 dB 000/1000	SWT 227.5 µ	us 🖷 VBW 300 kHz	Mode Auto FF1	r	
1Pk M		000/1000					
10idBm 3 dBm-					M1[1] M2[1]		4.89 dBn 2,47995000 GHz -54,48 dBn 2,48350000 GHz
10 dBr 20 dBr	D	1 -15,774	dBm				
30 der 40 der	200				_		
şo da	WR. Col	nie Januar 194	n Recent	and an and the second	manyawaki	Mundandanaa	untertaintenten surdare
50 dBr							
70 dBr		_					
70 dBr 80 dBr	n	<i></i>		1001			Stop 2 536 OUt
70 dBr 80 dBr Start 2	n 2.476	GHz		1001 pt	5		Stop 2.576 GHz
70 dBr 80 dBr Rart 2 Jarker	n 2.476		X-value			Func	900 880 CO 1994
60 dBr 70 dBr 80 dBr Start 2 Iarker Type M1 M2	n 2.476		X-value 2.47995 GH 2.4835 GH	Y-value 4.89 dBm	s Function	Func	Stop 2.576 GHz tion Result

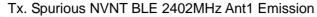
NTEK 北测[®]

Report No.: STR211029002002E

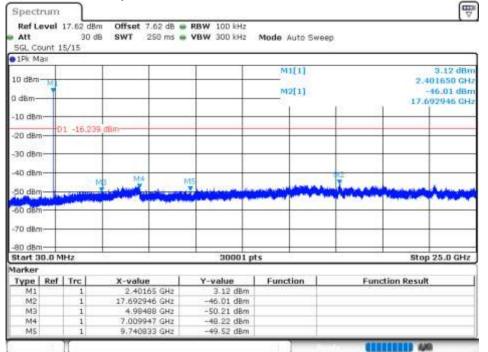

8.5 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-49.76	-20	Pass
NVNT	BLE	2440	Ant 1	-49.2	-20	Pass
NVNT	BLE	2480	Ant 1	-49.68	-20	Pass

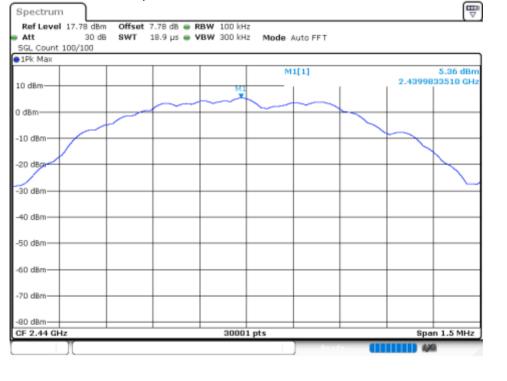
ACCRED

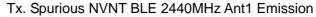

Certificate #4298.01

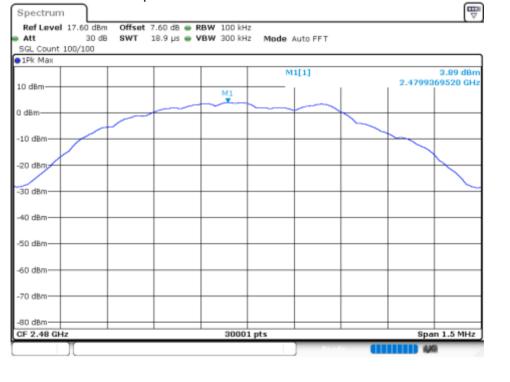
ac-N



Version.1.3




ACCREDITED



Certificate #4298.01

ACO

10000							E C C C C C C C C C C C C C C C C C C C
Ref Level	17.78 dB		78 dB 🖷	RBW 100 kHz			0.01
Att	30 d	培 SWT 2	50 ms 🖷	VBW 300 kHz	Mode Auto Sw	eep	
SGL Count 1	5/15			_		- 21	
●1Pk Max							
Anna an an An					M1[1]		4.61 dBn
10 dBm		1					2.439940 GH
0 dBm					M2[1]		-43.84 dBn 40.820 MH
					- F	15	40.820 MH
-10 dBm		+ +				-	
-20 dBm	1 -14.63	8 dBm					
-20 dBm							
-30 dBm							
12222000							
40 dBm		Ma M4		7.			1
-50 dBm	- 199810	Ma	and a second	AL	A Shine and a shine shine	the Analysian	An alman An Long
				and been seen to be		the state of the s	Manual And Star Anna Anna
-60 dBm	2000 (A.		100			-	
an in							
-70 dBm							
	IHz			30001 pt	s		Stop 25.0 GHz
Start 30.0 M Marker				30001 pt			
Start 30.0 M Marker Type Ref	Trc	X-value	I	Y-value	s Function	Fun	Stop 25.0 GHz
Start 30.0 M Marker Type Ref M1	Trc 1	2.4399		Y-value 4.61 dBm		Fun	
Start 30.0 M Narker Type Ref M1 M2	1 1	2.4399 40.82	2 MHz	Y-value 4.61 dBm -43.84 dBm		Fun	
Start 30.0 M Marker Type Ref M1 M2 M3	1 1 1	2.4399 40.82 \$.05063	2 MHz S GHz	Y-value 4.61 dBm -43.84 dBm -50.24 dBm		Fun	
Start 30.0 M Marker Type Ref M1 M2	1 1	2.4399 40.82	2 MHz S GHz 7 GHz	Y-value 4.61 dBm -43.84 dBm		Fun	

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

Certificate #4298.01

	n					E
Ref Leve		0.7599 OUT AND STORE OF ADD	dB - RBW 100 kHz	Mode Auto Sw	een	
SGL Count					eep.	
1Pk Max						
torogate toro		12		M1[1]		4,49 dBm
10 dBm	-					2.479890 GHa
dBm-				M2[1]		-45.79 dBm
0.000000				- T	15 8	22.754365 GHz
-10 dBm				-	-	
-20 dBm	D1 -16.	113 dBm			-	
CO UDIII-						
-30 dBm						
an draw						
-40 dBm		N35	MS	-11.7	31 22 3 - 2	42
		NS M4	MS	de la contration	-	
50 dBm-		N3 194	MS			-
-40 dBm		N3 M4	MS			
-50 dBm	-	N3 M4	MS		W MM	
-50 dBm		143 . 104	NS AND AND AND A		te tritori	
-50 dBm		n=3				
-50 dBm		n23	30001 p	ts		Stop 25.0 GHz
50 dBm 60 dBm 70 dBm 80 dBm Start 30.0 larker	MHz		30001 p			
50 dBm 60 dBm 70 dBm 80 dBm 81 dBm 81 dBm 10	MHz I Trc	X-value	30001 p	ts Function	Func	Stop 25.0 GHz
50 dBm -70 dBm -70 dBm -80 dBm -80 dBm -81 dBm	MHz ef Trc	X-value 2.47989 (30001 p Y-value GH2 4.49 dBm		Func	
50 dBm -60 dBm -70 dBm -80 dBm -80 dBm -81 ark Start 30.0 larker Type Ri	MHz I Trc	X-value 2.47999 22.754365 (30001 p Y-value GHz 4.49 d8m GHz -45.79 d8m		Fund	
50 dBm -60 dBm -70 dBm -80	MHz ef Trc	X-value 2.47989 (30001 p 30001 p SH2 4.49 dBm GH2 -45.79 dBm GH2 -50.35 dBm		Fund	

END OF REPORT