

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200609205

FCC REPORT

Applicant: Ubio Labs, Inc.

Address of Applicant: 2821 Northup Way, Suite 250 Bellevue, WA 98004 USA

Equipment Under Test (EUT)

Product Name: Wireless Speaker & Charging Hub

Model No.: WSP1001

Trade mark: ubiolabs

FCC ID: 2ATGY-WSP1001

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 23 Jun., 2020

Date of Test: 23 Jun., to 16 Jul., 2020

Date of report issued: 17 Jul., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	17 Jul., 2020	Original

Mike.OU

Test Engineer

Winner thang

Project Engineer Tested by: 17 Jul., 2020 Date:

Reviewed by: Date: 17 Jul., 2020

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4		EST SUMMARY	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	5
	5.4	Measurement Uncertainty	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	Related Submittal(s) / Grant (s)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	
	5.10		
	5.11	TEST INSTRUMENTS LIST	7
6	TI	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
8	E	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	Ubio Labs, Inc.		
Address:	2821 Northup Way, Suite 250 Bellevue, WA 98004 USA		
Factory:	SHENZHEN JUNLAN ELECTRONIC LTD.		
Address:	No.277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China.		

5.2 General Description of E.U.T.

Product Name:	Wireless Speaker & Charging Hub	
Model No.:	WSP1001	
AC adapter:	Model: CHG1147SG	
	Input: AC110-240V, 50-60Hz, 1.3A	
	Output: DC 18.0V, 3.5A	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

5.3 Test Mode

Operating mode	Detail description
Full Loadmode	Keep the EUT in Playing + WPT Working + USB Output mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

Report No: CCISE200609205

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Apple	Mobile phone	iPhone 11 Pro	MWDE2CH/A	Doc

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
N/A	N/A	N/A	N/A	N/A

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

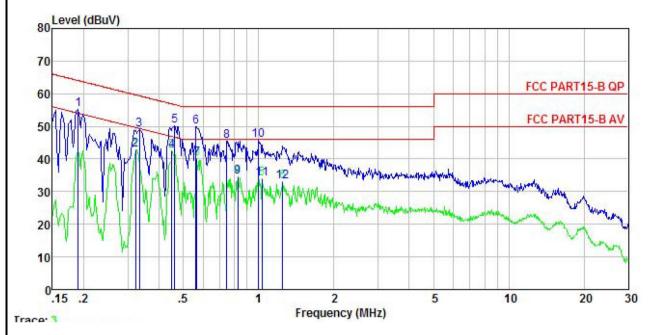
Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

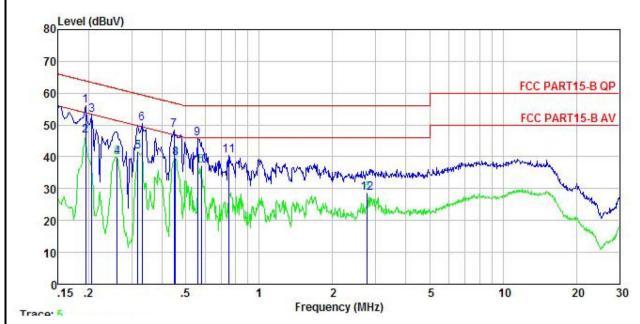
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107				
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz) Quasi-peak Average				
	0.15-0.5 66 to 56* 56 to 46*				
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarithm	of the frequency.			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 				
Test Instruments:	Refer to section 5.11 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

Product name:	Wireless Speaker & Charging Hub	Product model:	WSP1001
Test by:	Mike	Test mode:	Full Load mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Kead Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∇	<u>ab</u>		<u>dB</u>	dBu∀	dBu∀	<u>dB</u>	
1	0.190	45.24	-0.59	10.76	-0.14	55.27	64.02	-8.75	QP
1 2 3 4 5 6 7 8	0.322	32.60	-0.53	10.74	-0.09	42.72	49.66	-6.94	Average
3	0.334	38.83	-0.52	10.73	-0.01	49.03	59.35	-10.32	QP
4	0.449	32.29	-0.45	10.74	0.02	42.60	46.89	-4.29	Average
5	0.461	40.05	-0.45	10.74	-0.06	50.28	56.67	-6.39	QP
6	0.561	39.87	-0.46	10.76	-0.37	49.80	56.00	-6.20	QP
7	0.567	30.20	-0.47	10.76	-0.37	40.12	46.00	-5.88	Average
8	0.747	35.56	-0.55	10.79	-0.24	45.56	56.00	-10.44	QP
9	0.826	24.16	-0.57	10.82	-0.01	34.40	46.00	-11.60	Average
10	1.000	35.11	-0.62	10.87	0.46	45.82	56.00	-10.18	QP
11	1.032	23.35	-0.61	10.87	0.42	34.03	46.00	-11.97	Average
12	1.249	22.62	-0.59	10.90	0.21	33.14	46.00	-12.86	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Wireless Speaker & Charging Hub	Product model:	WSP1001
Test by:	Mike	Test mode:	Full Load mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

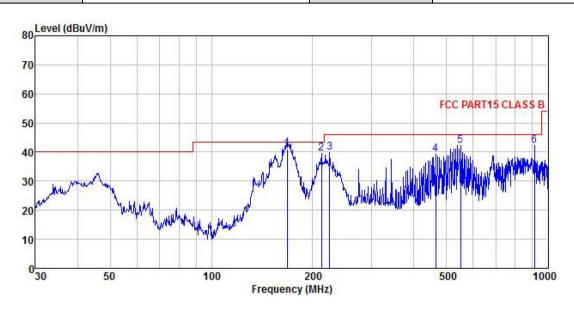
	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
3:41	MHz	dBu∜	<u>ab</u>		<u>ab</u>	dBu∀	dBu∜	<u>dB</u>	
1	0.194	46.00	-0.67	10.76	0.00	56.09	63.84	-7.75	QP
2	0.194	36.50	-0.67	10.76	0.00	46.59	53.84	-7.25	Average
3	0.206	42.94	-0.67	10.76	0.00	53.03	63.36	-10.33	QP
4	0.262	29.91	-0.67	10.75	0.01	40.00	51.38	-11.38	Average
1 2 3 4 5 6 7 8	0.318	31.45	-0.66	10.74	-0.01	41.52	49.75	-8.23	Average
6	0.330	40.31	-0.66	10.73	-0.01	50.37	59.44	-9.07	QP
7	0.447	38.40	-0.64	10.74	-0.02	48.48	56.93	-8.45	QP
8	0.454	29.59	-0.64	10.74	-0.01	39.68	46.80	-7.12	Average
9	0.558	35.74	-0.65	10.76	0.03	45.88	56.00	-10.12	QP
10	0.579	27.06	-0.65	10.76	0.03	37.20	46.00	-8.80	Average
11	0.751	30.17	-0.65	10.79	0.05	40.36	56.00	-15.64	QP
12	2.779	18.09	-0.66	10.93	0.28	28.64	46.00	-17.36	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.2 Radiated Emission

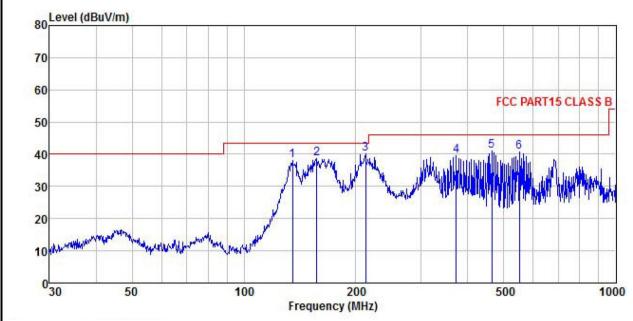
Test Requirement:	FCC Part 15 B Se	ection 15.10	9						
Test Frequency Range:	30MHz to 6000MI	Hz							
Test site:	Measurement Dis	tance: 3m ((Sem	i-Anechoic (Chamber)				
Receiver setup:	Frequency	Detecto	r	RBW	VBW	Remark			
, , , , , , , , , , , , , , , , , , ,	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Z Quasi-peak Value			
	Above 1GHz	Peak		1MHz 3MHz		Peak Value			
	Above 1GHz	RMS		1MHz	3MHz	Average Value			
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark			
	30MHz-88N			40.0		Quasi-peak Value			
	88MHz-216			43.5		Quasi-peak Value			
	216MHz-960			46.0		Quasi-peak Value			
	960MHz-1G	ÞΗΖ		54.0 54.0		Quasi-peak Value			
	Above 1GI	Hz		74.0		Average Value Peak Value			
Test setup:	Below 1GHz Tum Table Table	4m							
	Ground Plane Above 1GHz								
	AE (Turnt	IV V V	3m	Pra	Antenna Tow	rer			
Test Procedure:	ground at a 3 ndegrees to detect 2. The EUT was swhich was mound 3. The antenna hours ground to detect to detect the street and the street the street and the street the street and the street the street the street and the street the	neter semi- ermine the p set 3 meters unted on the eight is vari rmine the m	aneclositi s awa top ed from	hoic camber on of the hig by from the in of a variable om one mete um value of	The tab ghest radi nterference height a er to four the field	ce-receiving antenna, intenna tower. meters above the			


	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Product Name:	Wireless Speaker & Charging Hub	Product Model:	WSP1001
Test By:	Mike	Test mode:	Full Load mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Intenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	−dBuV	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	167.824	53.30	16.10	0.65	0.00	29.07	40.98	43.50	-2.52	QP
2	212.270	49.37	18.35	0.73	0.00	28.75	39.70	43.50	-3.80	QP
3	224.519	49.33	18.40	0.74	0.00	28.68	39.79	46.00	-6.21	QP
4	463.970	47.90	19.26	1.06	0.00	28.89	39.33	46.00	-6.67	QP
5	550.948	50.49	19.60	1.16	0.00	29.10	42.15	46.00	-3.85	QP
6	912.862	46.02	22.65	1.50	0.00	27.84	42.33	46.00	-3.67	QP

Pomark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Wireless Speaker & Charging Hub	Product Model:	WSP1001	
Test By:	Mike	Test mode:	Full Load mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57	′%
	·	·	·	

			Antenna Factor					Limit Line	Over Limit	Remark
-	MHz	—dBu∜	— <u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dB}\overline{u}\overline{V}/\overline{m}$	<u>ab</u>	
1	135.032	53.33	13.50	0.59	0.00	29.30	38.12	43.50	-5.38	QP
2 3	157.007	52.35	14.89	0.63	0.00	29.16	38.71	43.50	-4.79	QP
3	212.270	49.87	18.35	0.73	0.00	28.75	40.20	43.50	-3.30	QP
4 5	372.005	48.30	18.93	0.96	0.00	28.66	39.53	46.00	-6.47	QP
5	463.970	49.46	19.26	1.06	0.00	28.89	40.89	46.00	-5.11	QP
6	550.948	48.97	19.60	1.16	0.00	29.10	40.63	46.00	-5.37	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

rodu	oduct Name: Wireless Speak				ker & Charging Hub Product Model:						WSP1001			
est E	Зу:		Mike	e Tes					ode:	Ful	I Load mo	de		
est F	Frequency	y:	1 GH	z ~ 6 GHz	6 GHz Polarization: Vertical									
est \	/oltage:		AC 12	20/60Hz				Environ	ment:	Ter	mp: 24 ℃		Huni: 57%	
	Level (dBu	V/m)	N.											
80											FCC F	PART 15	(PK)	
70														
60														
											FCC F	PART 15	5 (AV)	
50										N 1824	1	Confident Hart	popular district	
40						1116	مالىلىدى بىلىدى	Manage have	AND MARKET PRINCIPLES	Whater her had	2	4		
30	de la companya de la	ramely.	parthaupter	s. Mary to proper and h	wywylowan-m	The Marini Mandada.		anti-out						
30														
20														
10													E section	
0														
1	1000 12	200	1	1500	2	2000 Ero	quency (f	MU-1				5000	6000	
						rie	quency (i	viriz)						
	Fr	eq		Intenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark			
	<u>H</u>	Hz -	dBu₹	<u>dB</u> /m	āB	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	āB				
1 2	4291.7 4291.7	75	48.53 40.30 49.50	29.78 29.78 31.57	5.99 5.99 6.71	2.29 2.55	41.94	48.39	54.00 74.00	-25.61	Average Peak			
3 4 5	5161.6 5161.6		41.04	31.57	6.71	2.55 2.72		39.93	54.00	-14.07	Average			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduc	t Name:	Wirel	less Spea	ker & Cł	narging H	ub	Produc	ct Model	: W	WSP1001			
st By	/ :	Mike	Mike Test mode: Full Load mode						Full Load mode				
st Fre	equency:	1 GH	lz ~ 6 GHz	Polarization: Horizont				Horizontal					
st Vo	oltage:	AC 1	20/60Hz				Enviro	nment:	Te	emp: 24 ℃	Н	luni: 57%	
	Level (dBuV	//m)											
80										FCC	PART 15	(PK)	
70													
60													
5											PART 15	_	
50	mylar tarakan dan yapak									1	3 Just March	HAMM	
40							1.15.00.00	Mary Market Harry	hydron depotent	Andrew Property and	4	6	
	. A A do	North and the state of the stat	MAN Aprophism	A PHARMANAN	Head to be seen to	the 1884 white the	Proposition and			1			
30	Alfan allegan and a												
20													
10													
10													
0	1000 120	00	1500		2000			*			5000	6000	
					F	requenc	y (MHz)						
	Freq		Antenna Factor			Preamp Factor	Level	Limit Line	Over Limit	Remark			
-	MHz	dBu₹	<u>dB</u> /m			<u>d</u> B	dBu√/m	dBuV/m	<u>dB</u>		-		
	4345.943 4345.943 4926.683	48.89 40.57 49.30 41.29	29.86 29.86 31.05 31.05	6.02 6.02 6.50 6.50 7.05	2.48	41.92 41.86 41.86	45.16 36.84 47.47 39.46 49.56	54.00 74.00 54.00	-26.53	Average Peak Average			