

JianYan Testing Group Co., Ltd.

JYT4b (E) -133-L

Report No.: JYTAB-R01-2100051

Applicant:

Ubio Labs. Inc.

Address of Applicant:

2821 Northup Way, Suite 250 Bellevue, WA 98004 USA

Equipment Under Test (EUT)

Product Name:

Wireless Charging Stand

Model No.:

AWC1102

Trade mark:

ubiolabs

FCC ID:

2ATGY-AWC1102

Applicable standards:

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Date of sample receipt: 05 Jan., 2021

Date of Test:

06 Jan., 2021 to 22 Jan., 2021

Date of report issue:

22 Feb., 2021

Test Result:

PASS*

In the configuration tested, the EUT complied with the standards specified above.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Jan., 2021	Original
01	22 Feb., 2021	 Update product name. Updated test data on page 11/12. Updated test setup of 9k~30MHz on page 9. Updated operation frequency on page 5.

Tested By: Date: 22 Feb., 2021

Test Engineer

Reviewed By: ______ **Date:** _____ 22 Feb., 2021

Project Engineer

3 Contents

		Page
1 COVE	ER PAGE	1
2 VERS	SION	2
3 CONT	TENTS	3
	SUMMARY	
	ERAL INFORMATION	
5 GENE	ERAL INFORMATION	5
5.1	CLIENT INFORMATION	5
5.2	GENERAL DESCRIPTION OF E.U.T	
5.3	TEST MODE AND TEST SAMPLES PLANS	
5.4	DESCRIPTION OF SUPPORT UNITS	5
5.5	MEASUREMENT UNCERTAINTY	5
5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	5
5.7	LABORATORY FACILITY	6
5.8	LABORATORY LOCATION	
5.9	TEST INSTRUMENTSLIST	
6 TEST	RESULTS AND MEASUREMENT DATA	8
6.1	ANTENNA REQUIREMENT	8
6.2	RADIATED EMISSION	
6.3	CONDUCTED EMISSION	15
6.4	20dB Bandwidth	
7 TEST	SETUP PHOTOS	20
9 EUT (CONSTRUCTIONAL PHOTOS	22

4 Test Summary

Test Item	Section in CFR 47	Result	
Spurious emissions	15.209	Pass	
20dB Bandwidth	15.215(c)	Pass	
Conducted Emission	15.207	Pass	

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.4-2014
ANSI C63.10-2013

5 General Information

5.1 Client Information

Applicant:	Ubio Labs, Inc.
Address:	2821 Northup Way, Suite 250 Bellevue, WA 98004 USA
Manufacturer/Factory:	SHENZHEN LANNENGSHITONG ELECTRONICS CO.,LTD.
Address:	Floor3 No.40, Xinhe Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen City, Guangdong Province, China

5.2 General Description of E.U.T.

OIZ CONTONAL DOCUMPAN	
Product Name:	Wireless Charging Stand
Model No.:	AWC1102
Operation Frequency:	127.7kHz
Modulation type:	ASK
Antenna Type:	Coil Antenna
Power supply (Wireless Charger):	Model: AWC1102 Input: DC 15V, 2.5A Output USB A: DC 5V, 2.4A 12W Output Wireless: 15W/ 10W/ 7.5W/ 5W
AC Adapter:	Model: CHG1151SG Input: AC 110-240V, 50-60 Hz0.8A Output: 15V / 2.5A
Test Sample Condition:	The test samples were provided in good working order with no visibled efects.

5.3 Test mode

Transmitting mode: Keep the EUT in transmitting mode with modulation			
Remark: Pre-scan input: 15V/2.5A, output Wire worse case mode. So the report only	eless: 15W, 10W, 7.5W, 5W of the Power supply, output Wireless: 15W was reflects the worse mode.		

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
Skytek	Wireless charging match load	N/A	N/A	N/A

5.5 Measurement Uncertainty

	-
Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150kHz)	±1.60 dB
Conducted Emission (150kHz ~ 30MHz)	±2.20 dB
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB
Radiated Emission (30MHz ~ 1000MHz)	±4.40 dB
Radiated Emission (1GHz ~ 18GHz)	±5.20 dB
Radiated Emission (18GHz ~ 26.5GHz)	±4.80 dB

5.6 Additions to, deviations, or exclusions from the method

0.0	Additions to, deviations, or exclusions from the mother	
	No	

No.760, FenglingRoad, Tong'anDistrict, Xiamen,Fujian, China Telephone: +86 (0) 5922273071Fax: +86 (0) 5922273700

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC - Designation No.: CN1279

Jianyan Testing Group Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 892155.

●ISED - CAB identifier.: CN0102

Jianyan Testing Group Co., Ltd. has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with ISED#:26114.

● A2LA - Registration No.: 5568.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/5568-01.pdf

5.8 Laboratory Location

JianYan Testing Group Co., Ltd.

Address: No.760, Fengling Road, Tong'an District, Xiamen, Fujian, China

Tel: +86-592-2273071, Fax:+86-592-2273700

Email: quality@xmabr.com, Website: http://www.lets.com/

5.9 Test Instruments list

Spurious emissions:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	BOST	CHC-966	966-1#	2019-12-27	2022-12-26	
3m SAC	BOST	CHC-966	966-2#	2019-12-27	2022-12-26	
EMI Test Receiver	Rohde & Schwarz	ESR 3	102330	2020-08-05	2021-08-04	
EMI Test Receiver	Rohde & Schwarz	ESR 3	102329	2020-08-06	2021-08-05	
EMI Test Receiver	Rohde & Schwarz	ESR 7	102259	2020-04-12	2021-04-11	
Spectrum Analyzer	Agilent	E4407B	MY45115531	2020-12-27	2021-12-26	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102175	2020-04-15	2021-04-14	
BiConiLog Antenna	SCHWARZBECK	VULB 9163	1105	2020-12-20	2021-12-19	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1066	2020-04-11	2021-04-10	
Horn Antenna	SCHWARZBECK	BBHA 9120 D	911	2020-04-01	2021-03-31	
Pre-amplifier	SCHWARZBECK	BBV9743	00009	2020-08-06	2021-08-05	
Pre-amplifier	SCHWARZBECK	BBV9744	162	2020-12-22	2021-12-21	
Pre-amplifier	SCHWARZBECK	BBV9718C	00014	2020-04-08	2021-04-07	
EMI Test Software	Farad	EZ-EMC	Version: V.EMCE-3A1			

Conducted Emssion:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date	
				(mm-dd-yy)	(mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR 3	102330	2020-08-05	2021-08-04	
EMI Test Receiver	Rohde & Schwarz	ESR 3	102329	2020-08-06	2021-08-05	
EMI Test Receiver	Rohde & Schwarz	ESR 7	102259	2020-04-12	2021-04-11	
LISN	Rohde & Schwarz	ENV 216	102240	2020-08-05	2021-08-04	
Voltage probe	Schwarzbeck	TK9420+VT9420	814	2020-08-05	2021-08-04	
ISN	Schwarzbeck	CAT3 8158	95	2020-08-05	2021-08-04	
EMI Test Software	Farad	EZ-EMC	Version: V.EMCE-3A1			

20dB Bandwidth:						
Test Equipment Manufacturer		Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Agilent	E4407B	MY45115531	2020-12-27	2021-12-26	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102175	2020-04-15	2021-04-14	

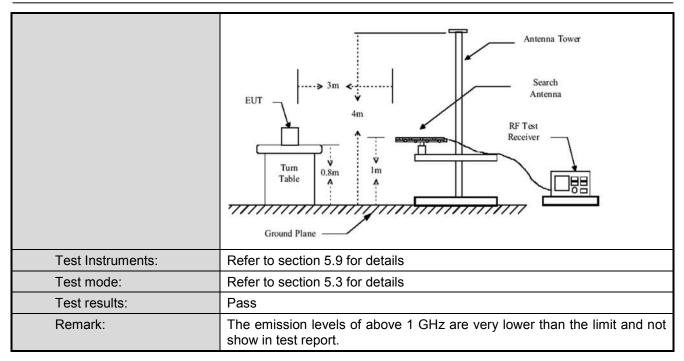
6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

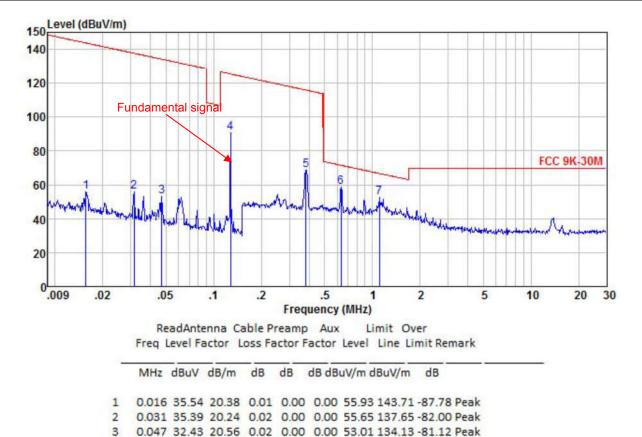
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


E.U.T Antenna:

6.2 Radiated Emission

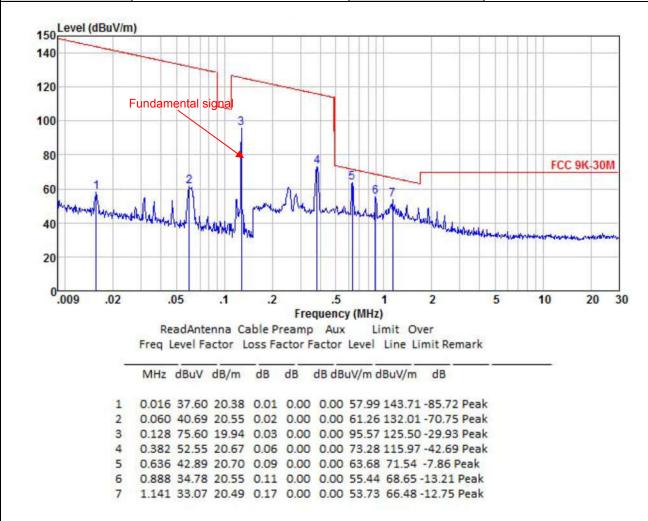
Test Requirement:	FCC Part15 C S	ection 15.	209					
TestFrequency Range:	9kHz to 1000MF	łz						
Test site:	Measurement Di	istance: 3ı	m(Sem	ni-Anechoic	Cham	ber)		
Receiver setup:	Frequency	Detec	tor	RBW	VB	W	Remark	
·	9kHz-150kHz	Quasi-p	eak	200Hz	600	Hz	Quasi-peak Value	
	150kHz- 30MHz	Quasi-p		9kHz	30k		Quasi-peak Value	
	30MHz-1GHz	Quasi-p		120kHz	300k		Quasi-peak Value	
	Above 1GHz	Peal		1MHz	3MI	∃Z I	Peak Value	
Limit:	Frequency (M			t (uV/m @3	m)		Distance (m)	
	0.009-0.49 0.490-1.70			400/F(kHz) ·000/F(kHz)	\		300 30	
	1.705-30	5	24	30)		30	
	30-88			100				
	88-216			150		3 3		
	216-960			200			3	
	Above 1GH	lz		500			3	
Test Procedure:	groundat a 3 degrees to de b. The EUT was whichwas mo c. The antennal to determine to vertical polarized. For each suspended to the test-received bandwidth with f. If the emission specified, the would be reported to the test-received bandwidth with the test-receiv	meter semi etermine the set 3 mete unted on the height is va the maximu zations of the cected emis ina was turne ding. iver system th Maximur in level of the n testing co ested one be	-anech- e position e position ers awa he top o he top o he ante he ante he d from he d from he BUT he buld be he wise the he one u	oic camber. on of the high y from the in f a variable-lim one mete e of the field inna are set one EUT was eights from 0 degrees to to Peak De Mode. In peak mode stopped and the emissions sing peak, q	The tabnest race terference in eight a rot four streng to make arrang 1 meter a 360 detect Fulle was the pethat di	0.8 meters above the ole was rotated 360		
Test setup:	EUT	3m - 4m	 		RF TC Recei		1	



Measurement Data:

Below 1GHz:

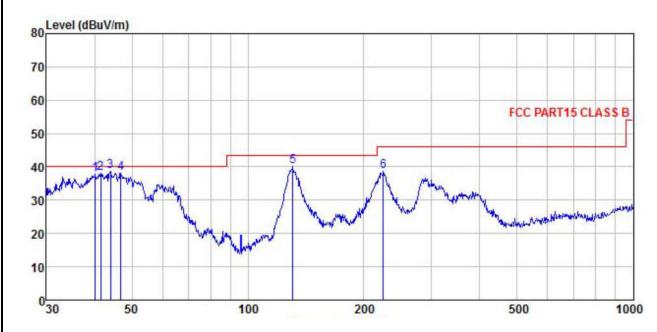
Product Name:	Wireless Charging Stand	Product Model:	AWC1102
Test By:	Miles Chen	Test mode:	Charing mode
Test Frequency:	9kHz~30MHz	Polarization:	Coxial
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%


0.128 70.78 19.94 0.03 0.00 0.00 90.75 125.50 -34.75 Peak 0.382 48.00 20.67 0.06 0.00 0.00 68.73 115.97 -47.24 Peak 0.636 37.61 20.70 0.09 0.00 0.00 58.40 71.54 -13.14 Peak 1.105 32.02 20.49 0.17 0.00 0.00 52.68 66.76 -14.08 Peak

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

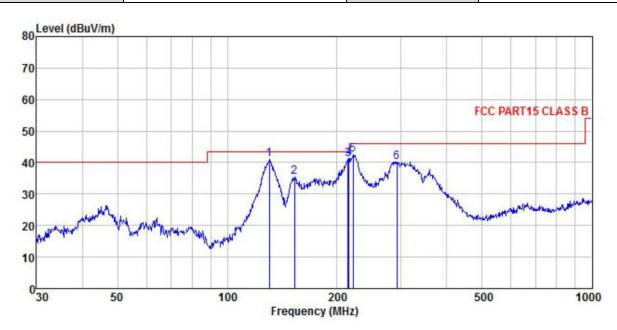
Product Name:	Wireless Charging Stand	Product Model:	AWC1102
Test By:	Miles Chen	Test mode:	Charing mode
Test Frequency:	9kHz~30MHz	Polarization:	Coplanar
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%



Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Wireless Charging Stand	Product Model:	AWC1102
Test By:	Miles Chen	Test mode:	Charing mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%


			Antenna					Limit	Over	
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Remark
_	MHz	dBu₹	<u>−−dB</u> /m	<u>d</u> B	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	40.135	54.58	12.80	0.35	0.00	29.90	37.83	40.00	-2.17	QP
2	41.422	54.66	12.83	0.36	0.00	29.89	37.96	40.00	-2.04	QP
2 3	43.966	55.24	12.88	0.37	0.00	29.87	38.62	40.00	-1.38	QP
4	46.830	54.41	13.01	0.38	0.00	29.85	37.95	40.00	-2.05	QP
5	130.837	56.80	12.11	0.59	0.00	29.32	40.18	43.50	-3.32	QP
6	224.519	48.18	18.40	0.74	0.00	28.68	38.64	46.00	-7.36	QP

Remark

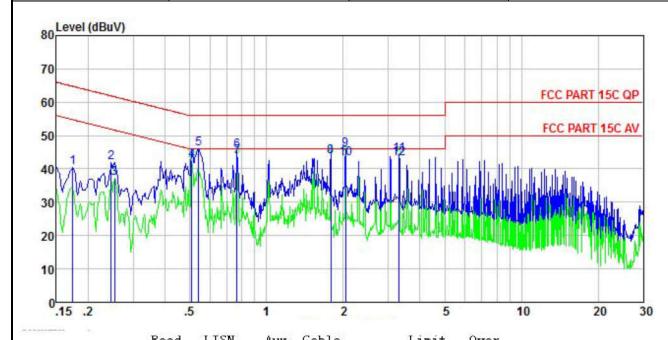
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Wireless Charging Stand	Product Model:	AWC1102
Test By:	Miles Chen	Test mode:	Charing mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor					Limit Line	Over Limit	
-	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	130.379	57.87	11.95	0.59	0.00	29.33	41.08	43.50	-2.42	QP
2	152.664	49.61	14.36	0.62	0.00	29.20	35.39	43.50	-8.11	QP
3	214.514	50.58	18.36	0.73	0.00	28.74	40.93	43.50	-2.57	QP
4	215.268	51.09	18.37	0.74	0.00	28.73	41.47	43.50	-2.03	QP
5	221.392	51.98	18.39	0.74	0.00	28.70	42.41	46.00	-3.59	QP
6	292.058	49.19	18.67	0.85	0.00	28.46	40.25	46.00	-5.75	QP

Remark:

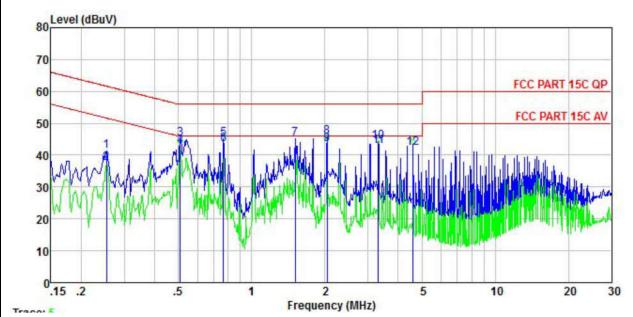
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.


6.3 Conducted Emission

Test Requirement:	FCC Part15 B Section 15.20	7					
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit	(dBµV)				
	, , ,	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	0.5-30	60	50				
	* Decreases with the logarith	m of the frequency.					
Test setup:	Reference Plan LISN 40cm 80cm 40cm 80cm E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter AC po					
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impedance. The peripheral devices are a LISN that provides a 500 termination. (Please refers photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.4: 	on network(L.I.S.N.). The pedance for the measure also connected to the ohm/50uH coupling imports to the block diagram are checked for maximum and the maximum emiss deall of the interface care.	the provide a ring equipment. The main power through pedance with 500hm of the test setup and the conducted sion, the relative ables must be changed				
Test environment:	Temp.: 23°C Hum	nid.: 56% Pr	ess.: 101kPa				
Test Instruments:	Refer to section 5.9 for detail	ls	·				
Test mode:	Refer to section 5.3 for detail	ls					
Test results:	Pass						

Measurement data:

Product name:	Wireless Charging Stand	Product Model:	AWC1102
Test by:	Miles Chen	Test mode:	Charing mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Kead Level		Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>1.0</u>	MHz	₫₿u₹	<u>ab</u>	<u>ab</u>	<u>ab</u>	—dBu⊽	─dBuV	<u>d</u> B	
1	0.174	30.42	-0.58	-0.11	10.77	40.50	64.77	-24.27	QP
2	0.246	32.09	-0.57	-0.21	10.75	42.06	61.91	-19.85	QP
3	0.253	27.31	-0.57	-0.22	10.75	37.27	51.64	-14.37	Average
4	0.510	32.52	-0.44	-0.35	10.76	42.49	46.00	-3.51	Average
5	0.541	36.11	-0.45	-0.36	10.76	46.06	56.00	-9.94	QP
6	0.767	35.28	-0.55	-0.19	10.80	45.34	56.00	-10.66	QP
1 2 3 4 5 6 7 8 9	0.767	33.74	-0.55	-0.19	10.80	43.80	46.00	-2.20	Average
8	1.790	33.39	-0.53	-0.20	10.95	43.61	46.00	-2.39	Average
9	2.044	35.63	-0.51	-0.31	10.96	45.77	56.00	-10.23	QP
10	2.044	33.02	-0.51	-0.31	10.96	43.16	46.00	-2.84	Average
11	3.310	34.02	-0.42	-0.15	10.91	44.36	56.00	-11.64	QP
12	3.310	32.71	-0.42	-0.15	10.91	43.05	46.00	-2.95	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

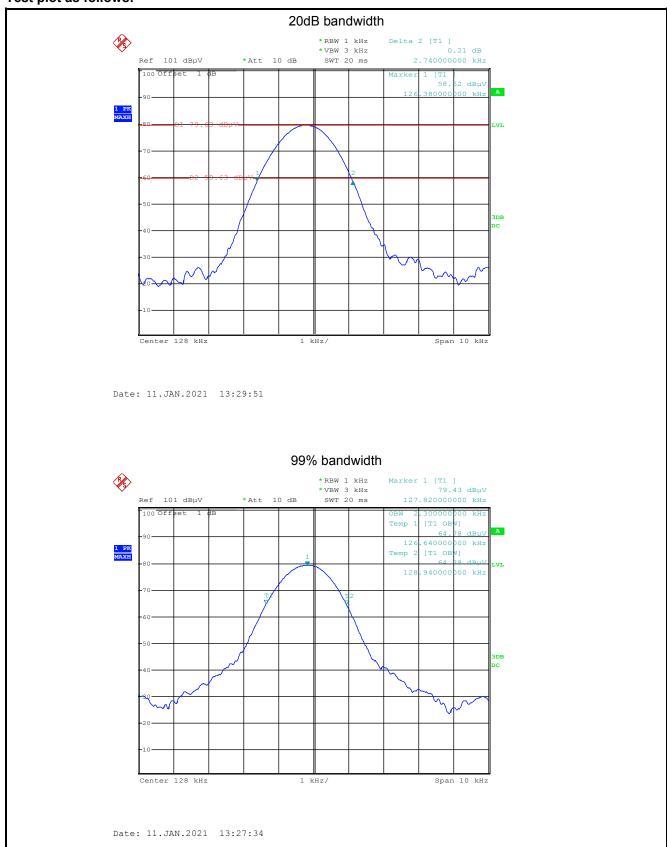
Product name:	Wireless Charging Stand	Product Model:	AWC1102
Test by:	Miles Chen	Test mode:	Charing mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2.2	MHz	dBu∀	<u>ab</u>	<u>ab</u>	<u>ab</u>	dBu₹	dBu∀	<u>ab</u>	
1	0.253	31.38	-0.67	0.01	10.75	41.47	61.64	-20.17	QP
1 2 3 4 5 6 7 8 9	0.253	27.43	-0.67	0.01	10.75	37.52	51.64	-14.12	Average
3	0.510	35.03	-0.65	0.03	10.76	45.17	56.00	-10.83	QP
4	0.510	32.69	-0.65	0.03	10.76	42.83	46.00	-3.17	Average
5	0.767	35.05	-0.65	0.05	10.80	45.25	56.00	-10.75	QP
6	0.767	33.12	-0.65	0.05	10.80	43.32	46.00	-2.68	Average
7	1.511	34.91	-0.70	0.13	10.92	45.26	56.00	-10.74	QP
8	2.044	35.41	-0.71	0.18	10.96	45.84	56.00	-10.16	QP
9	2.044	33.07	-0.71	0.18	10.96	43.50	46.00	-2.50	Average
10	3.310	33.66	-0.65	0.38	10.91	44.30	56.00	-11.70	
11	3.310	32.27	-0.65	0.38	10.91	42.91	46.00	-3.09	Average
12	4.598	31.34	-0.64	0.61	10.86	42.17	46.00		Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.4 20dB Bandwidth


Test Requirement:	FCC Part15 C Section 15.215 (c)		
Receiver setup:	RBW=1 kHz, VBW=3 kHz, detector: Peak		
Limit:	The fundamental emission be kept within at least the central 80% of the permitted band		
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

20dB bandwidth (kHz)	99% bandwidth (kHz)	Limits	
2.74	2.30	N/A	
Remark: For report purpose only.			

Test plot as follows:

