

FCC TEST REPORT

Test report On Behalf of AESGmbH

For

AES Multi frequency RFID Reader USB Device Model No.: SA2-Integrated

FCC ID: 2ATGK-SA2B-CAN

Prepared for: AES GmbH

Markt 14, 99310 Arnstadt, Germany

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,

Bao'an District, Shenzhen City, China

Date of Test: Jan. 01, 2020 ~Jan. 08, 2020

Date of Report: Jan. 09, 2020

Report Number: HK2001070057-1E

TEST RESULT CERTIFICATION

Applicant's name:	AES GmbH
Address:	Markt 14, 99310 Arnstadt, Germany

Manufacture's Name.....: AES GmbH

Address : Markt 14, 99310 Arnstadt, Germany

Product description

Trade Mark: Smart Access

Product name AES Multi frequency RFID Reader USB Device

Model and/or type reference : SA2-Integrated

Standards FCC Rules and Regulations Part 15 Subpart C (Section 15.209),

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date of Issue Jan. 09, 2020

Test Result..... Pass

Testing Engineer :

(Gary Qian)

Technical Manager :

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

	Table of Conten	nts	Page
1 . TEST SUMMAR	Y TESTING		4
1.1 TEST PRO	CEDURES AND RESULT	TS O HUM	6 ****** 4
1.2 TEST FACII	_ITY		9
1.3 MEASUREN	MENT UNCERTAINTY		1 M TESTING 4
2. GENERAL INFO	RMATION		5
2.1 General Des	scription of EUT		5
2.2. Carrier Free	quency of Channels		AN TESTING
2.3 Operation o	f EUT during testing		6
2.4 Description	of Test Setup		6
2.5 Measureme	nt Instruments List		ESTING T
3. CONDUCTED	EMISSION TEST		8
3.1 Block Diagra	am of Test Setup		8
3.2 Conducted I	Power Line Emission Lim	iit O	HUNK TES IN 8
3.3 Test Proced	ure		8
3.4 Test Result			8
4. Occupied Band	lwidth		Martin 9
4.1 Block Diagra	am of Test Setup		9
4.2 Rules and s	pecifications		9
4.3 Test Proced	ure		9
4.4 Test Result			9
5. RADIA TED EN	MISSIONS		11
5.1 Block Diagra	am of Test Setup		● HUAR 1
5.2 Rules and s	pecifications		12
5.3 Test Proced	ure		13
5.4 Test Resu	It		13
6 ANTENNA REQU	JIREMENT		16
7. PHOTOGRAPH	OF TEST		esting 17
7.1 Radiated Er	nission		17
8 PHOTOS OF TH	F FUT MG		9 18

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	section number	RESULT
CONDUCTED EMISSIONS TEST	15.207	N/A
RADIATED EMISSION TEST	15.209	COMPLIANT
OCCUPIED BANDWIDTH	15.215	COMPLIANT
MEASUREMENT		
ANTENNA REQUIREMENT	15.203	COMPLIANT

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2 TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai

Street, Bao'an District, Shenzhen City, China

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

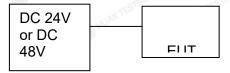
Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1 General Description of EUT

Equipment	AES Multi frequency RFID Reader USB Device
Model Name	SA2-Integrated
Serial No.	N/A
Model Difference	N/A
Trade Mark	Smart Access
FCC ID	2ATGK-SA2B-CAN
Antenna Type	Internal Antenna
Antenna Gain	0dBi
BT Operation frequency	125KHz
Number of Channels	1 TESTING TESTING
Modulation Type	ASK
Power Source	DC Voltage
Power Rating	DC 24V or DC 48V

Page 6 of 18 Report No.: HK2001070057-1E


2.2. Carrier Frequency of Channels

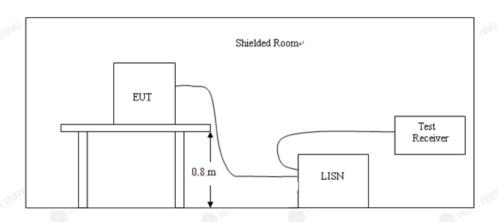
Operation I	Frequency each of channel	WAY TESTING - WAY TESTING	, AKTESTING	WAY TEST
Channel	Frequency	9,00	O ***	.
1	125KHz			

2.3 Operation of EUT during testing
Operating Mode
The mode is used: Transmitting mode

2.4 Description of Test Setup

Operation of EUT during conducted testing and Radiation and Above1GHz Radiation testing:

Page 7 of 18 Report No.: HK2001070057-1E


2.5 Measurement Instruments List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 26, 2019	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 26, 2019	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 26, 2019	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 26, 2019	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 26, 2019	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 26, 2019	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 26, 2019	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 26, 2019	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 26, 2019	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 26, 2019	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 26, 2019	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 26, 2019	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 26, 2019	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 26, 2019	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 26, 2019	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 26, 2019	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 26, 2019	3 Year

3. CONDUCTED EMISSION TEST

3.1 Block Diagram of Test Setup

3.2 Conducted Power Line Emission Limit

According to FCC Part 15.207(a)

F	M	Maximum RF Line Voltage (dΒμV)			
Frequency (MHz)	CLASS A		CLASS B		
(11112)	Q.P.	Ave.	Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

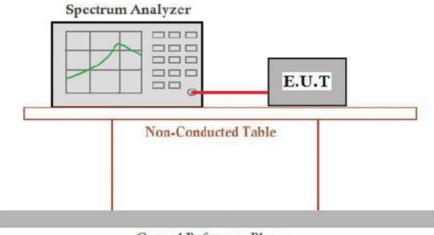
^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207Line Conducted Emission Limit is same as above table.

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

3.4 Test Result


Not applicable.

Note: EUT power supply by DC Power, so this test item not applicable.

4. Occupied Bandwidth

4.1 Block Diagram of Test Setup

Ground Reference Plane

4.2 Rules and specifications

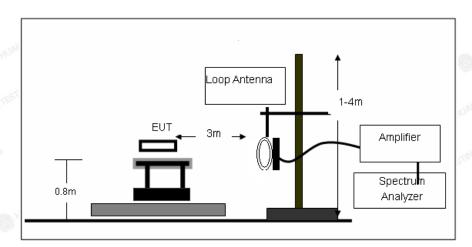
CFR 47 Part 15.215(c)

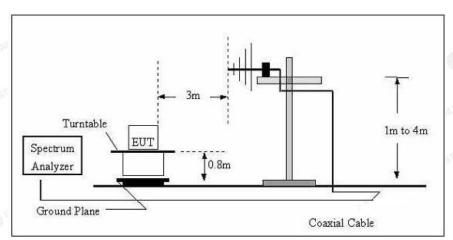
ANSI C63.10-2013

4.3 Test Procedure

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

4.4 Test Result PASS


Mode	Freq (KHz)	20dB Bandwidth (KHz)	Limit (kHz)	Conclusion
Tx Mode	125	2.704	PINTESTIN	PASS



5. RADIA TED EMISSIONS

5.1 Block Diagram of Test Setup

5.2 Rules and specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz
 0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
 13.36-13.41			

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

	Transmitter Spurious	Emissions 9KHz-30MH	Z
TESTING WAYTESIN D	9-150KHz	150-490KHz	490KHz-30MHz
Resolution Bandwidth	200Hz	9KHz	9KHz
Video Bandwidth	2KHz	100KHz	100KHz
Detector	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto

5.3 Test Procedure

Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31(f)(2), per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

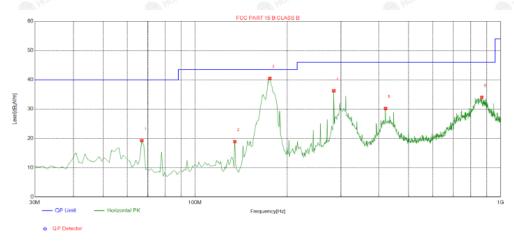
Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

5.4 Test Result

PASS

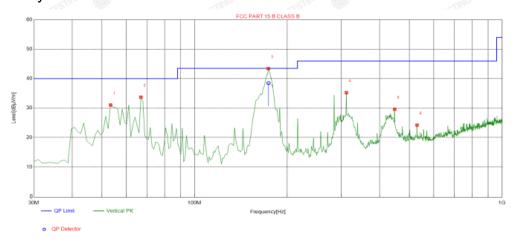
Note: this EUT was tested for all models and the worst case model (DC48V) data was reported.


For 9KHz-30MHz

	Freq. (MHz)	Detector Mode (PK/QP/AV)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)	
DK.	0.110	AV	22.80	24.8	47.6	106.78	59.18	
	0.125	AV	45.75	24.8	70.55	105.67	35.12	
	0.486	AV	26.46	25.03	51.49	93.87	42.38	
EST	0.500	Peak	27.14	25.03	52.17	73.62	21.45	

For 30MHz-1GHz

Antenna polarity: H


Suspected List

	•									
Suspected List										
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Folarity	
1	66.8969	-16.89	36.11	19.22	40.00	20.78	100	340	Horizontal	
2	134.8649	-18.87	37.75	18.88	43.50	24.62	100	233	Horizontal	
3	175.6456	-17.05	57.53	40.48	43.50	3.02	100	55	Horizontal	
4	284.3944	-13.07	49.29	36.22	46.00	9.78	100	85	Horizontal	
5	420.3303	-10.03	40.20	30.17	46.00	15.83	100	85	Horizontal	
6	867.9479	-2.29	36.31	34.02	46.00	11.98	100	12	Horizontal	

Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

Page 15 of 18 Report No.: HK2001070057-1E

Antenna polarity: V

Suspected List

Suspected List										
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dolorita	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	53.3033	-14.15	45.21	31.06	40.00	8.94	100	348	Vertical	
2	66.8969	-16.89	50.61	33.72	40.00	6.28	100	325	Vertical	
3	173.7037	-17.14	60.55	43.41	43.50	0.09	100	72	Vertical	
4	311.5816	-12.53	47.76	35.23	46.00	10.77	100	27	Vertical	
5	447.5175	-9.10	38.70	29.60	46.00	16.40	100	163	Vertical	
6	529.0791	-7.48	31.70	24.22	46.00	21.78	100	107	Vertical	

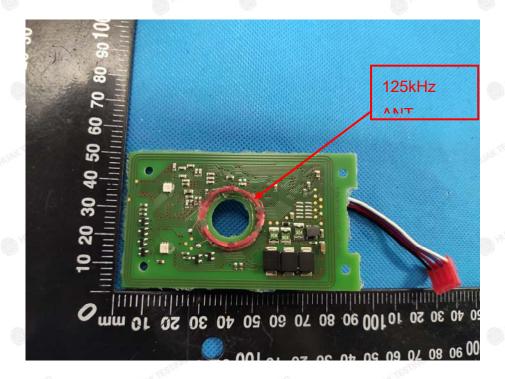
Final Data List

Final Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Polarity
1	173.9953	-17.12	55.61	38.49	43.50	5.01	180	35	Vertical

Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

6 ANTENNA REQUIREMENT

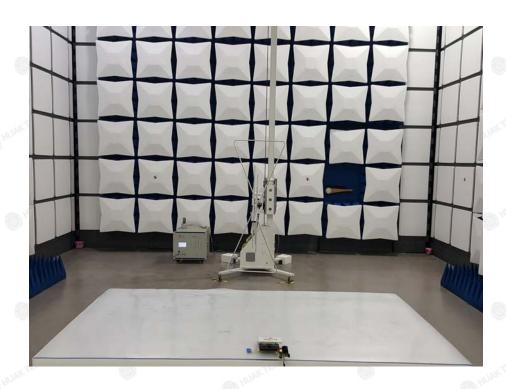
Standard Applicable

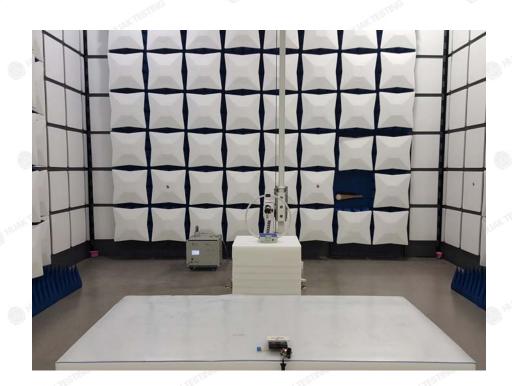

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction


The antenna used in this product is a Internal Antenna, The directional gains of antenna used for transmitting is 0dBi.



7. PHOTOGRAPH OF TEST

7.1 Radiated Emission

8 PHOTOS OF THE EUT Reference to the reporter: ANNEX A of external photos and ANNEX B of internal photos -End of test report-----