

FCC TEST REPORT

Test report On Behalf of New Times Global Limited For Bluetooth Speaker Model No.: NT-B804 FCC ID: 2ATG5-B804

Prepared for :	New Times Global Limited			
	RM3410, Hong Kin House, Tsz Hong EST, Tsz Wan Shan, Kowloon, HK			
Prepared By :	Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China			
Date of Test: Date of Report: Report Number:	May. 28, 2019 ~ Jul. 04, 2019 Jul. 04, 2019 HK1905291216E2			

TEST RESULT CERTIFICATION

Applicant's name	New Times Global Limited
Address	RM3410, Hong Kin House, Tsz Hong EST, Tsz Wan Shan, Kowloon, HK
Manufacture's Name	Dongguan Voices Electronic Technology Co., Ltd
Address	Block 2, Luyuan Road, Lubian Village, Chashan Town, Dongguan City, China
Product description	
Trade Mark:	TIFORU
Product name:	Bluetooth Speaker
Model and/or type reference .:	NT-B804
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	May. 28, 2019 ~ Jul. 04, 2019
Date of Issue	Jul. 04, 2019
Test Result	Pass

2

Testing Engineer

Gog Gian) (Gary Qian) Edan Mu (Eden Hu)

Technical Manager

Authorized Signatory:

Jason Zhou

(Jason Zhou)

Table of Contents

Page

1. TEST SUMMARY	4
2 . GENERAL INFORMATION	4
2.1 GENERAL DESCRIPTION OF EUT	5
2.2Operation of EUT during testing	6
2.3DESCRIPTION OF TEST SETUP	7
2.4MEASUREMENT INSTRUMENTS LIST	8
3 . CONDUCTED EMISSIONS TEST	9
3.1 Conducted Power Line Emission Limit	9
3.2 Test Setup	9
3.3 Test Procedure	9
3.4 Test Result	9
4 RADIATED EMISSION TEST	12
4.1 Radiation Limit	12
4.2 Test Setup	12
4.3 Test Procedure	13
4.4 Test Result	13
5 BAND EDGE	20
5.1 Limits	20
5.2 Test Procedure	20
5.3 Test Result	20
6 OCCUPIED BANDWIDTH MEASUREMENT	24
6.1 Test Setup	24
6.2 Test Procedure	24
6.3 Measurement Equipment Used	24
6.4 Test Result	24
7 ANTENNA REQUIREMENT	26
8 PHOTOGRAPH OF TEST	27
8.1Radiated Emission	27
8.2Conducted Emission	28

1.1TEST PROCEDURES AND RESULTS

FCC Rule	Description of Test	Result
15.207	. Conducted Emission	Pass
15.205 15.209 15.249	. Radiated Emission	Pass
15.215(c)	. 20dB Bandwidth	Pass
15.205 15.249	Band Edge And Restricted Frequency Bands	Pass

1.2 TEST FACILITY

Test Firm : Shenzhen HUAK Testing Technology Co., Ltd.

Address 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

1.3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty		
Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

Equipment	Bluetooth Speaker
Model Name	NT-B804
Serial No	N/A
Model Difference	N/A
FCC ID	2ATG5-B804
Antenna Type	PCB onboard antenna
Antenna Gain	0 dBi
BT Operation frequency	2402-2480MHz
Number of Channels	40CH
Modulation Type	GFSK
PowerSource	DC3.7V From Battery or DC 5V from adapter with
PowerSource	AC 120V/60Hz
Deven Detien	DC3.7V From Battery or DC 5V from adapter with
Power Rating	AC 120V/60Hz

2.1.1 Carrier Frequency of Channels

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

2.2Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode Low Channel: 2402MHz

Low Channel: 2402MHz Middle Channel: 2440MHz High Channel: 2480MHz

2.3DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

Operation of EUT during Radiation and Above 1GHz Radiation testing:

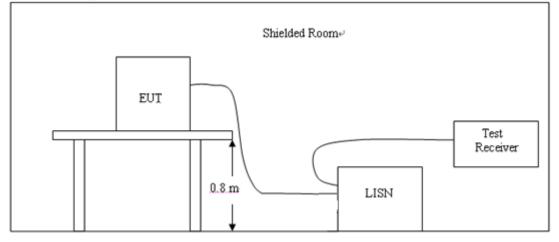
Adapter
Model: PL0652
Input: 100-240V~, 50/60Hz, 0.5A
Output: 5VDC, 1A

2.4MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2018	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2018	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 28, 2018	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2018	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2018	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2018	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2018	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2018	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2018	3 Year

3. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Eroguopou	M	Maximum RF Line Voltage (dBμV)					
Frequency (MHz)	CLAS	SS A	CLASS B				
(11112)	Q.P.	Ave.	Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	<mark>5</mark> 6	46			
5.00 - 30.0	73	60	60	50			

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

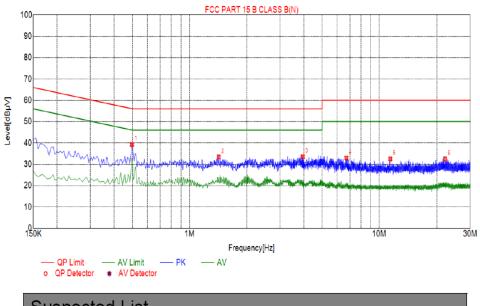
3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user'smanual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and wasgrounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUTusing a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has twomonitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

PASS

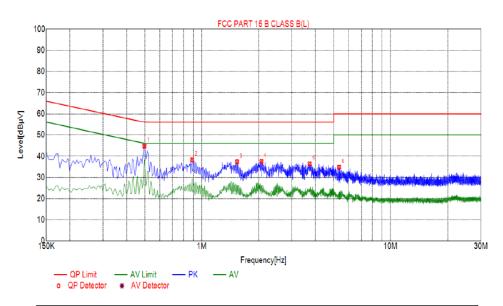

All the test modes completed for test.

Test Specification: Line

EUT:	Bluetooth Speaker	Model Name. :	NT-B804		
Temperature :	26 ℃	Relative Humidity:	54%		
Pressure:	1010hPa	Test Date :	2019-06-13		
Test Mode:	ВТ	Phase :	L		
Test Voltage :	DC 5V by Adapter AC 120V/60Hz				

Test Graph

Suspected List							
10	Freq.	Level	Factor	Limit	Margin	Detector	
NO.	[MHz]	[dBµV]	[dB]	[dBµV]	[dB]	Detector	
1	0.4965	39.25	10.04	56.06	16.81	PK	
2	1.4235	33.45	10.11	56.00	22.55	PK	
3	3.9525	33.57	10.25	56.00	22.43	PK	
4	6.7065	32.96	10.21	60.00	27.04	PK	
5	11.4225	32.49	10.00	60.00	27.51	PK	
6	22.0650	32.49	10.16	60.00	27.51	PK	


Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

Test Specification: Neutral

EUT:	Bluetooth Speaker	Model Name. :	NT-B804		
Temperature :	26 ℃	Relative Humidity:	54%		
Pressure:	1010hPa	Test Date :	2019-06-13		
Test Mode:	вт	Phase :	N		
Test Voltage 🗄	DC 5V by Adapter AC 120V/60Hz				

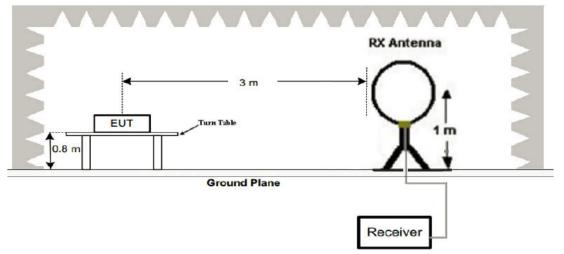
Test Graph

Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector		
1	0.4965	44.73	10.04	56.06	11.33	PK		
2	0.8880	38.34	10.06	56.00	17.66	PK		
3	1.5360	37.43	10.11	56.00	18.57	PK		
4	2.0715	37.58	10.15	56.00	18.42	РК		
5	3.7275	36.49	10.25	56.00	19.51	РК		
6	5.3430	34.88	10.26	60.00	25.12	PK		

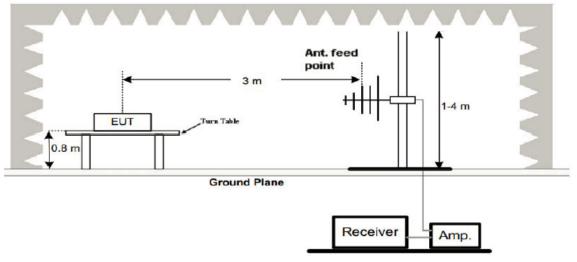
Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit - Level

4 RADIATED EMISSION TEST

4.1 Radiation Limit

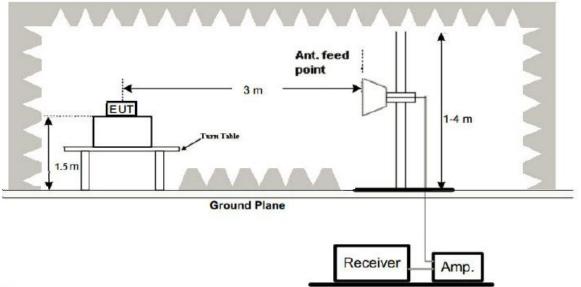

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength ofradiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the followingvalues:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiatedemissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

(1) Radiated Emission Test-Up Frequency Below 30MHz



(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

4.3 Test Procedure

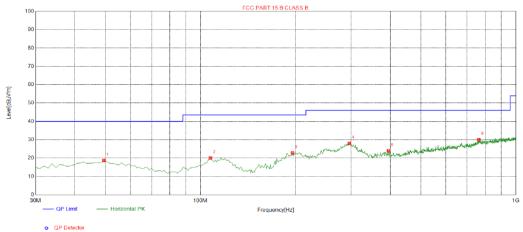
- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highestemissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna bothhorizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS


All the test modes completed for test. The worst case of Radiated Emission is CH 2402; the test data of this mode was reported.

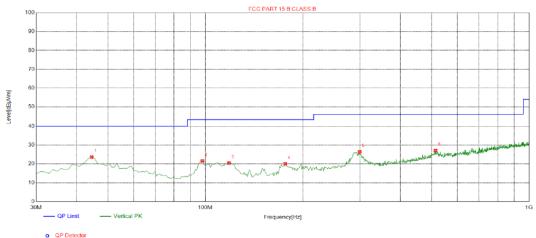
Below 1GHz Test Results:

EUT:	Bluetooth Speaker	Model Name :	NT-B804
Temperature :	24 °C	Relative Humidity:	54%
Pressure:	1010 hPa	Test Date :	2019-06-13
Test Mode :	ВТ	Polarization :	Horizontal
Test Power :	DC 5V by Adapter AC 120V/60H	łz	

Test Graph

Suspected List

Susp	Suspected List										
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Delority			
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	49.4000	18.74	-13.65	40.00	21.26	100	205	Horizontal			
2	107.600	20.00	-15.42	43.50	23.50	100	190	Horizontal			
3	195.870	22.81	-15.45	43.50	20.69	100	357	Horizontal			
4	296.750	28.04	-12.77	46.00	17.96	100	231	Horizontal			
5	394.720	23.91	-10.53	46.00	22.09	100	259	Horizontal			
6	763.320	29.98	-3.41	46.00	16.02	100	275	Horizontal			


Final Data List

Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

EUT:	Bluetooth Speaker	Model Name :	NT-B804
Temperature :	24 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Test Date :	2019-06-13
Test Mode :	BT	Polarization :	Vertical
Test Power :	DC 5V by Adapter AC 120V/60H	łz	

Test Graph

Suspected List

Susp	Suspected List										
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Delority			
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	44.5500	23.59	-13.73	40.00	16.41	100	94	Vertical			
2	97.9000	21.59	-15.75	43.50	21.91	100	233	Vertical			
3	118.270	20.45	-16.81	43.50	23.05	100	272	Vertical			
4	176.470	20.06	-17.01	43.50	23.44	100	205	Vertical			
5	299.660	26.40	-12.74	46.00	19.60	100	345	Vertical			
6	514.030	27.09	-7.90	46.00	18.91	100	348	Vertical			

Final Data List

Remark: Transd = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

Remark:

(1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHzwas verified, and no any emission was found except system noise floor.

(2) * denotes emission frequency which appearing within the Restricted Bands specified in

provision of 15.205, then the general radiated emission limits in 15.209 apply.

(3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz

for measuring above 1 GHz, below 30MHz was 10KHz.

CH Low (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type
2402	102.56	-5.84	96.72	114	-17.28	Peak
2402	80.25	-5.84	74.41	94	-19.59	AVG
4804	60.54	-3.64	56.9	74	-17.1	Peak
4804	41.29	-3.64	37.65	54	-16.35	AVG
7206	59.75	-0.95	58.8	74	-15.2	Peak
7206	41.06	-0.95	40.11	54	-13.89	AVG
Remark:Factor	-Antenna Factor+C	able Loss-Pre-	amplifier			

Frequency	Reading Result	Factor	Emission Level	Limits	Margin			
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type		
2402	102.38	-5.84	96.54	114	-17.46	Peak		
2402	80.36	-5.84	74.52	94	-19.48	AVG		
4804	60.19	-3.64	56.55	74	-17.45	Peak		
4804	41.74	-3.64	38.1	54	-15.9	AVG		
7206	60. 28	-0.95	59.33	74	-14.67	Peak		
7206	40. 52	-0.95	39. 57	54	-14.43	AVG		
Remark:Factor=	emark:Factor=Antenna Factor+Cable Loss-Pre-amplifier							

CH Middle (2440MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type
2440	103. 51	-5.71	97.8	114	-16.2	Peak
2440	80.82	-5.71	75.11	94	-18.89	AVG
4880	59.76	-3.51	56.25	74	-17.75	Peak
4880	41.02	-3.51	37.51	54	-16.49	AVG
7320	58.62	-0.82	57.8	74	-16.2	Peak
7320	40.15	-0.82	39. 33	54	-14.67	AVG
Remark:Factor	=Antenna Factor+C	able Loss-Pre-	amplifier			

Frequency	Reading Result	Factor	Emission Level	Limits	Margin			
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type		
2440	102.46	-5.71	96.75	114	-17.25	Peak		
2440	81.86	-5.71	76.15	94	-17.85	AVG		
4880	59.28	-3.51	55.77	74	-18.23	Peak		
4880	42.07	-3.51	38.56	54	-15.44	AVG		
7320	61.37	-0.82	60.55	74	-13.45	Peak		
7320	41.89	-0.82	41.07	54	-12.93	AVG		
emark:Factor=	mark:Factor=Antenna Factor+Cable Loss-Pre-amplifier							

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type
2480	103.65	-5.56	98.09	114	-15.91	Peak
2480	82.07	-5.56	76. 51	94	-17.49	AVG
4960	60.85	-3.43	57.42	74	-16.58	Peak
4960	43.09	-3.43	39.66	54	-14.34	AVG
7440	61.28	-0.75	60. 53	74	-13.47	Peak
7440	42.36	-0.75	41.61	54	-12.39	AVG
Remark:Factor	=Antenna Factor+C	able Loss-Pre-	amplifier			

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	D		
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type		
2480	103.37	-5.56	97.81	114	-16.19	Peak		
2480	82.46	-5.56	76.9	94	-17.1	AVG		
4960	59.78	-3.43	56.35	74	-17.65	Peak		
4960	43.02	-3. 43	39.59	54	-14.41	AVG		
7440	61.49	-0.75	60.74	74	-13.26	Peak		
7440	42.67	-0.75	41.92	54	-12.08	AVG		
Remark:Factor	emark:Factor=Antenna Factor+Cable Loss-Pre-amplifier							

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz -

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detectorat frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7)All modes of operation were investigated and the worst-case emissionsare reported.

5 BAND EDGE

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emissionlimits in §15.209, whichever is the lesser attenuation.

RESTRICTED BANDS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110 \\ 10.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \\ 12.57675 - 12.57725 \\ 13.36 - 13.41 \end{array}$	$\begin{array}{c} 16.42 - 16.423 \\ 16.69475 - 16.69525 \\ 16.80425 - 16.80475 \\ 25.5 - 25.67 \\ 37.5 - 38.25 \\ 73 - 74.6 \\ 74.8 - 75.2 \\ 108 - 121.94 \\ 123 - 138 \\ 149.9 - 150.05 \\ 156.52475 - 156.52525 \\ 156.7 - 156.9 \\ 162.0125 - 167.17 \\ 167.72 - 173.2 \\ 240 - 285 \\ 322 - 335.4 \end{array}$	$\begin{array}{r} 399.9 - 410 \\ 608 - 614 \\ 960 - 1240 \\ 1300 - 1427 \\ 1435 - 1626.5 \\ 1645.5 - 1646.5 \\ 1645.5 - 1646.5 \\ 1660 - 1710 \\ 1718.8 - 1722.2 \\ 2200 - 2300 \\ 2310 - 2390 \\ 2483.5 - 2500 \\ 2655 - 2900 \\ 3260 - 3267 \\ 3332 - 3339 \\ 3345.8 - 3358 \\ 3600 - 4400 \end{array}$	$\begin{array}{c} 4.5 - 5.15 \\ 5.35 - 5.46 \\ 7.25 - 7.75 \\ 8.025 - 8.5 \\ 9.0 - 9.2 \\ 9.3 - 9.5 \\ 10.6 - 12.7 \\ 13.25 - 13.4 \\ 14.47 - 14.5 \\ 15.35 - 16.2 \\ 17.7 - 21.4 \\ 22.01 - 23.12 \\ 23.6 - 24.0 \\ 31.2 - 31.8 \\ 36.43 - 36.5 \\ \binom{2}{} \end{array}$

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSIC63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT issituated in three orthogonal planes (if appropriate), adjusting the measurement antenna height andpolarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and setRBW to 11MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Radiated Band Edge Test: Operation Mode: TX CH Low (2402MHz) Horizontal (Worst case)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin				
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type			
2310	54.68	-5.81	48.87	74	-25.13	Peak			
2310	41.59	-5.81	35. 78	54	-18.22	AVG			
2390	53.69	-5.84	47.85	74	-26.15	Peak			
2390	43.72	-5.84	37.88	54	-16.12	AVG			
2400	52.91	-5.95	46.96	74	-27.04	Peak			
2400	43.68	-5.95	37.73	54	-16.27	AVG			
Remark:Factor	Remark:Factor=Antenna Factor+Cable Loss-Pre-amplifier								

Frequency	Reading Result	Factor	Emission Level	Limits	Margin				
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type			
2310	53.92	-5.81	48.11	74	-25.89	Peak			
2310	43.76	-5.81	37.95	54	-16.05	AVG			
2390	56.35	-5.84	50. 51	74	-23.49	Peak			
2390	43.86	-5.84	38.02	54	-15.98	AVG			
2400	55.28	-5.95	49.33	74	-24.67	Peak			
2400	43.06	-5.95	37.11	54	-16.89	AVG			
Remark:Factor=	emark:Factor=Antenna Factor+Cable Loss-Pre-amplifier								

Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type
2483.5	57.16	-5.81	51.35	74	-22.65	Peak
2483.5	43.07	-5.81	37.26	54	-16.74	AVG
2500	56.28	-6.06	50.22	74	-23. 78	Peak
2500	42.53	-6.06	36.47	54	-17.53	AVG

Frequency	Reading Result	Factor	Emission Level	Limits	Margin			
(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Detector Type		
2483.5	56.85	-5.81	51.04	74	-22.96	Peak		
2483.5	43.72	-5.81	37.91	54	-16.09	AVG		
2500	54.31	-6.06	48.25	74	-25.75	Peak		
2500	2500 41.08 -6.06 35.02 54 -18.98							
Remark:Factor=	emark:Factor=Antenna Factor+Cable Loss-Pre-amplifier							

Conduction

\sim	4	<u>^</u>		

		2402			
Keysight Spectrum Analyzer - Swept SA		ENSE:PULSE	ALIGN AUTO	05:08:41 PM Jul 02, 2019	
Marker 3 2.390195000000	GHz PNO: East Trig:	Av	Type: Log-Pwr Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	Trace/Detector
10 dB/div Ref 10.00 dBm	Ir Gam. Low		Mkr3	2.390 195 GHz -69.367 dBm	Select Trace
-10.0				1	Clear Write
-20.0 -30.0 -40.0 -50.0				\$ ² /	Trace Average
-60.0 -70.0 	an frank and an	alter and a spectra second	production and a specific data of the specific data	anti-u-mail	Max Hold
Start 2.30000 GHz #Res BW 100 kHz	#VBW 300 k	FUNCTION	Sweep 10	Stop 2.40500 GHz 0.07 ms (1001 pts)	Min Hold
2 N 1 f 2.400 3 N 1 f 2.390 4 5 6 6	955 GHz -7.240 065 GHz -57.262 195 GHz -69.367				View Blank Trace On
7 8 9 10 11				-	More 1 of 3
MSG			STATUS		

2480

		-	- 100				
📕 Keysight Spectrum Analyzer - Swept SA							
RF 50 Ω AC		SENSE:PULS		ALIGN AUTO	05:26:52 PM Jul TRACE		Trace/Detector
Marker 3 2.5000320000	PNO: Fast	Trig: Free Run		Hold:>100/100	TYPE M	wwwww	
	IFGain:Low	Atten: 20 dB			DET	NNNNN	Select Trace
				Mke2	2.500 032	Telle	Selectifiace
				WIKIS	-66.606	dBm	1
10 dB/div Ref 10.00 dBm					-00.000	авт	
0 00 A1							
U.00 Y							Clear Write
-10.0							Cicai Mint
-20.0							
-30.0							
-40.0							Trace Average
-50.0 4 42							
	.3						
-60.0							
-70.0 6 have been and the second second	handly-filter-theory and	and and the second and a second	standel and a state	mere have marked by	aprilation terms had	www.warhyl	Max Hold
-80.0							
Start 2.47800 GHz					Stop 2.5500	0 GHz	
#Res BW 100 kHz	#VB\	№ 300 kHz		Sweep 6	.933 ms (100		Min Hold
MKR MODE TRC SCL			FUNCTION		FUNCTION V		
	79 826 GHz	-4.064 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION V	ALUE A	
	483 698 GHz	-55.260 dBm					
3 N 1 f 2.	500 032 GHz	-66.606 dBm					View Blank
4						_	Trace On
6						-	
7							
8							Mor
9							1 of 3
11						-	
< -		m				•	
MSG				STATUS	3		

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Setup

Same asRadiated Emission Measurement

- 6.2 Test Procedure
 - 1. The EUT was placed on a turn table which is 0.8m above ground plane.
 - 2. Set EUT as normal operation.
 - 3. Based on ANSI C63.10 section 6.9.2: RBW= 30KHz. VBW= 100 KHz, Span=2MHz.
 - 4. The useful radiated emission from the EUT was detected by the spectrum analyser with peak detector.

6.3 Measurement Equipment Used

Same asRadiated Emission Measurement

6.4 Test Result

PASS

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.105	PASS
2440 MHz	1.193	PASS
2480 MHz	1.083	PASS

CH: 2402MHz

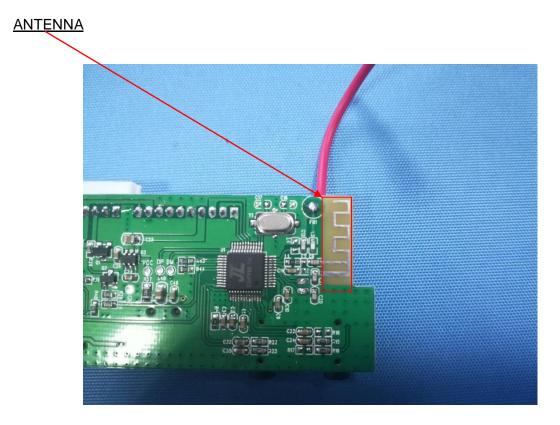
📕 Keysight Spectrum Analyzer - Occupied BV		1	1		
KF 50 Ω AC Center Freq 2.402000000	GHz Cente	SENSE:PULSE er Freq: 2.402000000 GH:	z Radio St	AM Jun 03, 2019 d: None	Trace/Detector
	Trig:	Free Run Avg Ho n: 30 dB	old:>10/10 Radio De	evice: BTS	
	sh Gameon				
15 dB/div Ref 20.00 dBr	n				
Log					
-10.0	m	mmmmm			Clear Write
	man when a start	and the second s	\sim		
-25.0 -40.0 -55.0			Mar		
-55.0				www.	Average
-70.0					
-85.0					
-100					Max Hold
-115					
Center 2.402 GHz			S	pan 3 MHz	
#Res BW 100 kHz	#	≇VBW 300 kHz		veep 1 ms	Min Hold
Occupied Bandwidt	b	Total Power	5.28 dBm		
					D. da atau
	0292 MHz				Detector Average ►
Transmit Freq Error	-42.890 kHz	OBW Power	99.00 %		<u>Auto</u> Man
x dB Bandwidth	1.105 MHz	x dB	-20.00 dB		
MSG			STATUS		

CH: 2440MHz

📕 Keysight Spectrum Analyzer - Occupied BV						
Center Freq 2.440000000	GHz Center Trig: F	ENSE:PULSE r Freq: 2.440000000 GH: Free Run Avg He 1: 30 dB	ALIGN AUTO	Radio Dev		Frequency
15 dB/div Ref 20.00 dBn						
-25.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmm				Center Fred 2.440000000 GHz
-40.0			- Marine Contraction	margan	·///	
-70.0 -86.0 -100						
-115 Center 2.44 GHz #Res BW 100 kHz	#	VBW 300 kHz			an 3 MHz ep 1 ms	CF Step
Occupied Bandwidt	h	Total Power	6.90) dBm	ep i llis	300.000 kHz <u>Auto</u> Mar
Transmit Freq Error	0591 MHz -123.75 kHz	OBW Power	99	.00 %		Freq Offse 0 Hz
x dB Bandwidth	1.193 MHz	x dB	-20.	00 dB		
MSG			STATUS	6		

CH: 2480MHz

Standard Applicable


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed toensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antennaexceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of astandard antenna jack or electrical connector is prohibited. Further, this requirement does not apply tointentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 0dBi.

8.1 Radiated Emission

8.2Conducted Emission

EUT Photo 1

Photo 2

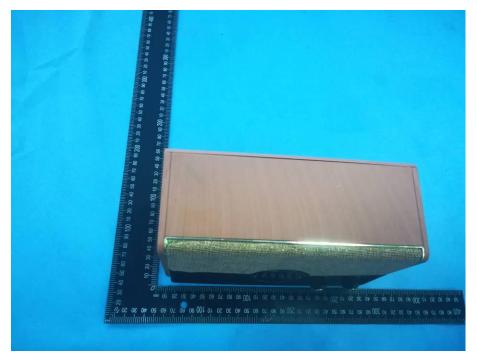
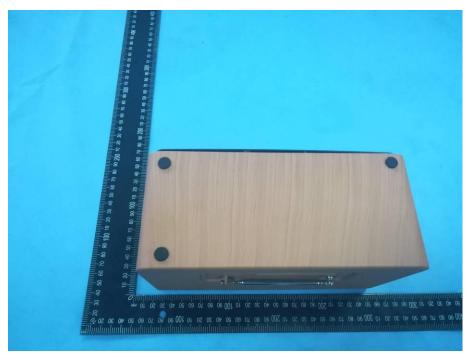
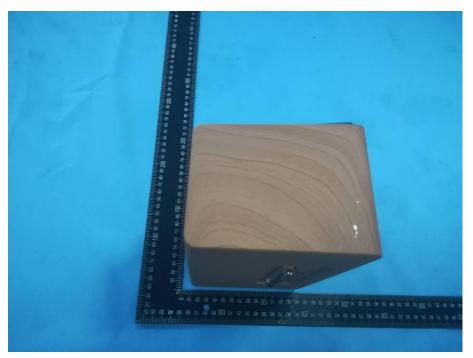
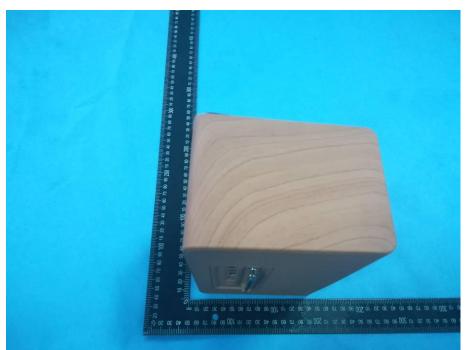
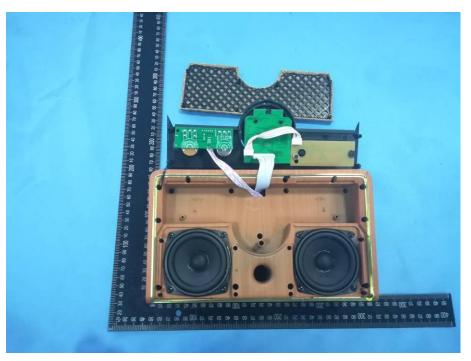



Photo 3

Photo 4

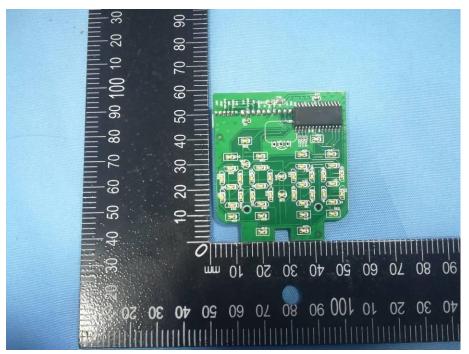

Photo 6



Photo 10

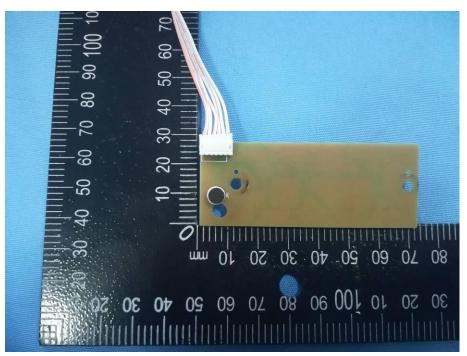


Photo 12

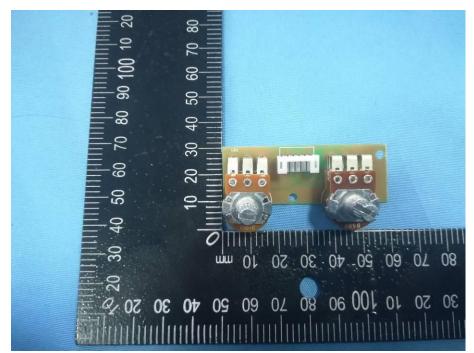


Photo 14

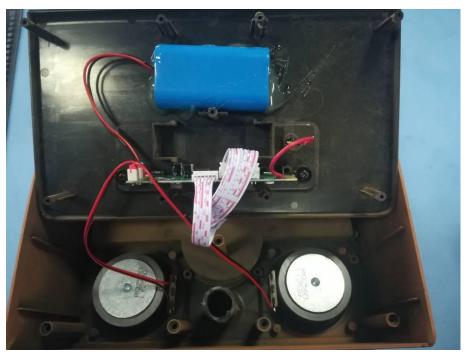


Photo 15

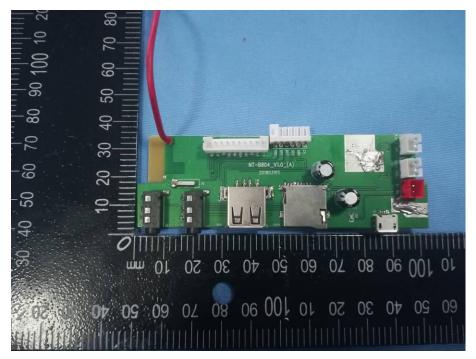
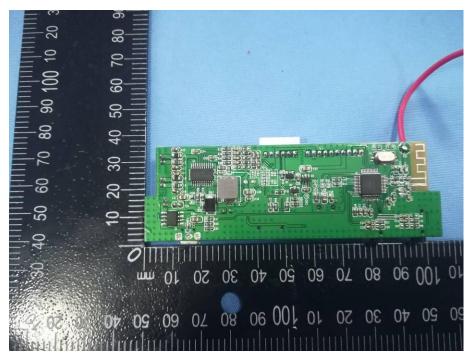
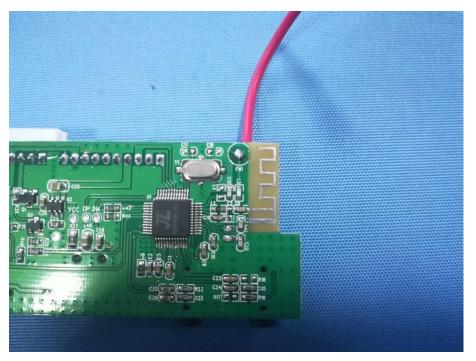
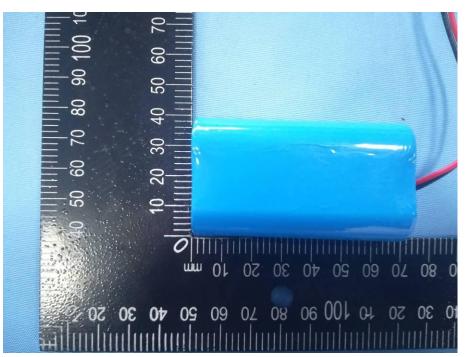




Photo 16



-----End of Report------