SAR Test Report

Report No.: AGC07782190502FH01

FCC ID	:	2ATFVBTAB-7Q2
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Tablet pc
BRAND NAME	:	Bible-Pad
MODEL NAME	:	BTAB-7Q2
CLIENT	:	KOU-ZONE ELECTRONICS COMPANY LIMITED
DATE OF ISSUE	:	June 10,2019
STANDARD(S)	:	IEEE Std. 1528:2013 FCC 47 CFR Part 2§2.1093:2013 IEEE C95.1TM:2005
REPORT VERSION	:	V1.0

Attestation of Global Compliance(Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	June 10,2019	Valid	Initial Release

Test Report Certification				
Applicant Name	KOU-ZONE ELECTRONICS COMPANY LIMITED			
Applicant Address	KINGSWELL COMM TOWER NO.171-173 LOCKHART RD WANCHAI HK			
Manufacturer Name	KOU-ZONE ELECTRONICS COMPANY LIMITED			
Manufacturer Address	KINGSWELL COMM TOWER NO.171-173 LOCKHART RD WANCHAI HK			
Factory Name	KOU-ZONE ELECTRONICS COMPANY LIMITED			
Factory Address	KINGSWELL COMM TOWER NO.171-173 LOCKHART RD WANCHAI HK			
Product Designation	Tablet pc			
Brand Name	Bible-Pad			
Model Name	BTAB-7Q2			
EUT Voltage	DC3.7V by battery			
Applicable Standard	IEEE Std. 1528:2013 FCC 47 CFR Part 2§2.1093:2013 IEEE C95.1TM:2005			
Test Date	May 18,2018			
Report Template	AGCRT-US-2.4G/SAR (2018-01-01)			

Note: The results of testing in this report apply to the product/system which was tested only.

Thea Huang Tested By Thea Huang (Huang Qianqian) May 18,2018 Angola li Checked By Angela Li(Li Jiao) June 10,2019 Forversto en Authorized By

Forrest Lei(Lei Yonggang) Authorized Officer

June 10,2019

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
 3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWIN 3.2. COMOSAR E-FIELD PROBE 3.3. ROBOT 3.4. VIDEO POSITIONING SYSTEM 3.5. DEVICE HOLDER 3.6. SAM TWIN PHANTOM 	
4. SAR MEASUREMENT PROCEDURE	11
4.1. SPECIFIC ABSORPTION RATE (SAR) 4.2. SAR MEASUREMENT PROCEDURE 4.3. RF EXPOSURE CONDITIONS	
5. TISSUE SIMULATING LIQUID	15
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID 5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS 5.3. TISSUE CALIBRATION RESULT	
6. SAR SYSTEM CHECK PROCEDURE	17
6.1. SAR System Check Procedures 6.2. SAR System Check	
7. EUT TEST POSITION	19
7.1. BODY PART POSITION	
8. SAR EXPOSURE LIMITS	20
9. TEST FACILITY	21
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	
12. CONDUCTED POWER MEASUREMENT	
13. TEST RESULTS	
13.1. SAR TEST RESULTS SUMMARY	
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	
APPENDIX D. CALIBRATION DATA	41

1. SUMMARY OF MAXIMUM SAR VALUE

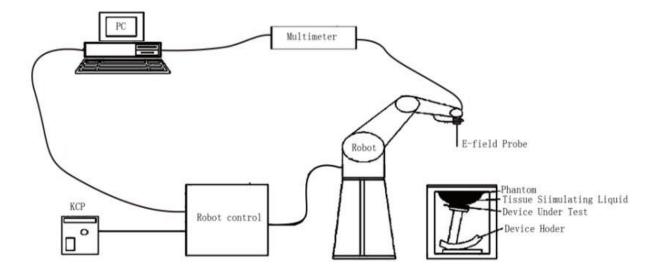
The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Frequency Band	Highest Reported 1g-SAR(W/Kg) Body-worn(with 0mm separation)	SAR Test Limit (W/Kg)	
WIFI 2.4G	1.339	1.6	
SAR Test Result	PASS		

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

2. GENERAL INFORMATION


2.1. EUT Description

General Information	
Product Designation	Tablet pc
Test Model	BTAB-7Q2
Hardware Version	YKQ8W-RK3326-V0.1(BGA 2019.01.23)
Software Version	Android 9.0
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
Bluetooth	
Operation Frequency	2402~2480MHz
Antenna Gain	1.0dBi
Bluetooth Version	V4.1
Type of modulation	BR/EDR: GFSK, 11/4-DQPSK, 8-DPSK; BLE: GFSK
EIRP	BR/EDR: 5.907dBm; BLE: 3.233dBm
WIFI	
WIFI Specification	□802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) ⊠802.11n(40)
Operation Frequency	2412~2462MHz
Avg. Burst Power	11b:15.14dBm,11g:13.57dBm,11n(20):11.25dBm,11n(40):10.83dBm
Antenna Gain	1.0dBi
Battery	Brand name: JKJ Model No. : 357095 Voltage and Capacitance: 3.7 V & 3000mAh

Note: The sample used for testing is end product.

Product	Туре				
Product	Production unit	Identical Prototype			

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5			
Manufacture	MVG			
Identification No.	SN 22/12 EP159			
Frequency	0.45GHz-3GHz Linearity:±0.11dB(0.45GHz-3GHz)			
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.11dB			
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm			
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precisin of better 30%.			

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used. The XL robot series have many features that are important for

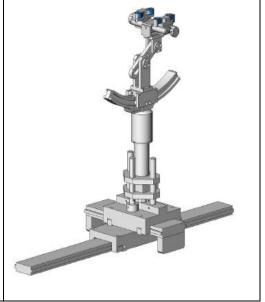
our application:

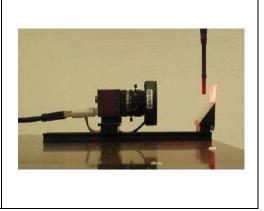
- □ High precision (repeatability 0.02 mm)
- □ High reliability (industrial design)
- □ Jerk-free straight movements
- □ Low ELF interference (the closed metallic
- construction shields against motor control fields)
- □ 6-axis controller

3.4. Video Positioning System

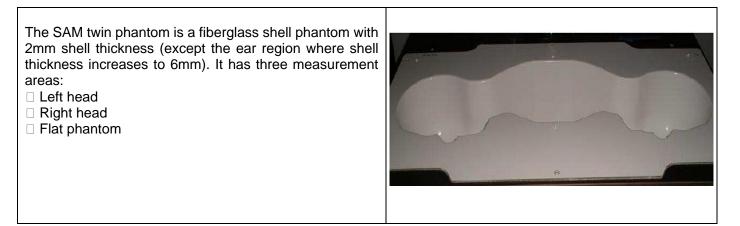
The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts.The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.


The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.


3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).


Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

3.6. SAM Twin Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELLI39 Phantom

The Flat phantom is a fiberglass shellphantom with 2mm+/- 0.2 mm shell thickness. It has only one measurement area for Flat phantom

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

- E is the r.m.s. value of the electric field strength in the tissue in volts per meter; σ is the conductivity of the tissue in siemens per metre;
- ρ is the density of the tissue in kilograms per cubic metre;
- ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30°±1°	20°±1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

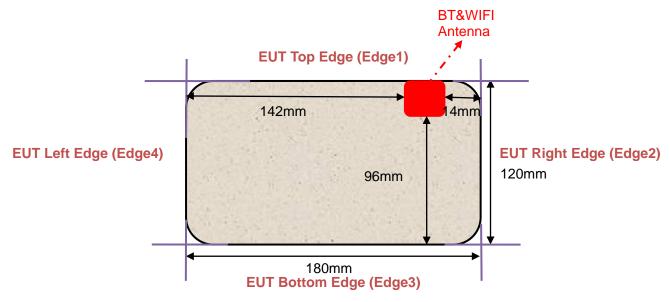
Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

			· · · · · · · · · · · · · · · · · · ·		
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$			$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume x, y, z			$ \ge 30 \text{ mm} \qquad \qquad 3 - 4 \text{ GHz} : \ge 28 \text{ mm} \\ 4 - 5 \text{ GHz} : \ge 25 \text{ mm} \\ 5 - 6 \text{ GHz} : \ge 22 \text{ mm} $		
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.					

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement


The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

4.3. RF Exposure Conditions

Test Configuration and setting:

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the back view)

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
2450 Head	71.88	0.16	0.0	7.99	0.0	19.97
2450 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

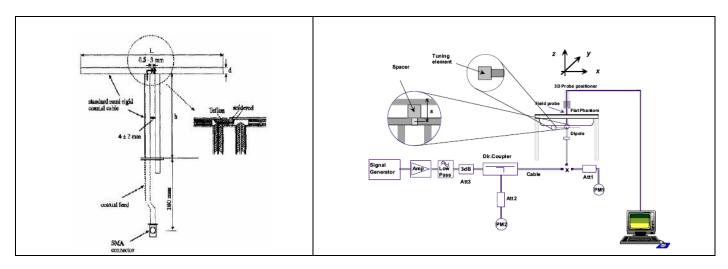
Target Frequency	he	ad	k	oody
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

Tissue Stimulant Measurement for 2450MHz										
	Fr.	Dielectric Par	ameters (±5%)	Tissue						
	(MHz)	er52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [ºC]	Test time					
Body	2412	53.88	1.86							
	2437	53.51	1.88	21.5	May					
	2450	52.23	1.89	21.5	18,2018					
	2462	52.06	1.90							


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

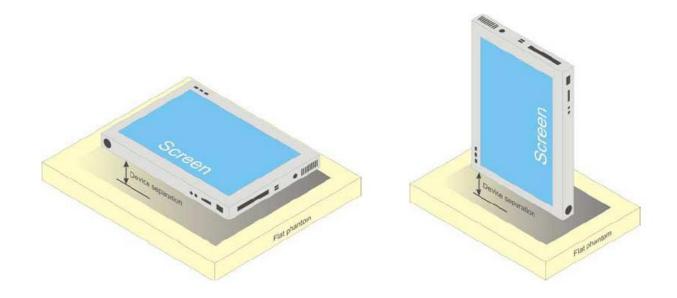
6.2. SAR System Check 6.2.1. Dipoles

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	51.5	30.4	3.6

6.2.2. System Check Result

System Performance Check at 2450MHz for Body											
Validation Kit: SN 29/15DIP 2G450-393											
Frequency		get W/Kg)		ce Result 0%)		sted (W/Kg)	Tissue Temp.	Test time			
[MHz]	1g	10g	1g	10g	1g	10g	[°C]				
2450	49.92	23.16	44.928-54.912	20.844-25.476	53.33	24.06	21.5	May 18,2018			

Note:


(1) We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.

7. EUT TEST POSITION

This EUT was tested in Body back, Body front and 4 edges.

7.1. Body Part Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to **0mm**

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

10. TEST EQUIPMENT LIST

Equipment	Manufacturer/	Identification No.	Current calibration	Next calibration	
description	Model		date	date	
SAR Probe	MVG	SN 22/12 EP159	Aug. 08,2018	Aug. 07,2019	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Phantom	SATIMO	SN_2316_ELLI39	N/A	N/A	
Liquid	SATIMO	-	Validated. No cal required.	Validated. No cal required.	
Multimeter	Keithley 2000	4114939	Sep. 20,2018	Sep. 19,2019	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	July 05,2016	July 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Nov. 01,2018	Oct. 31,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Feb. 27,2019	Feb. 26,2020	
Network Analyzer	Rhode & Schwarz ZVL6	SN101443	Nov. 01,2018	Oct. 31,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Feb. 27,2019	Feb. 26,2020	
Directional Couple	Werlatone/ C5571-10	SN99463	Jun. 12,2018	Jun. 11,2019	
Directional Couple	Werlatone/ C6026-10	SN99482	Jun. 12,2018	Jun. 11,2019	
Power Sensor	NRP-Z21	1137.6000.02	Sep. 20,2018	Sep. 19,2019	
Power Sensor	NRP-Z23	US38261498	Feb. 19,2019	Feb. 18,2020	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;

2. System validation with specific dipole is within 10% of calibrated value;

3. Return-loss is within 20% of calibrated measurement;

4. Impedance is within 5Ω of calibrated measurement.

11. MEASUREMENT UNCERTAINTY

	easurement ur		r Dipole a	averaged or	ver 1 gram	/ 10 gram			
				e		/ To gram	h	i	
а	b	С	d	f(d,k)	f	g	c×f/e	c×g/e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	•			•					•
Probe calibration	E.2.1	5.831	Ν	1	1	1	5.83	5.83	8
Axial Isotropy	E.2.2	0.579	R	√3	√0.5	√0.5	0.24	0.24	∞
Hemispherical Isotropy	E.2.2	0.813	R	$\sqrt{3}$	√0.5	√0.5	0.33	0.33	∞
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	8
Linearity	E.2.4	1.26	R	√3	1	1	0.73	0.73	8
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Response Time	E.2.7	0.021	R	√3	1	1	0.021	0.021	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•	E.2.8	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
Integration Time									
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	8
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	∞
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	∞
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	8
Test sample Related				r				1	
Test sample positioning	E.4.2	2.6	N	1	1	1	2.6	2.6	8
Device holder uncertainty	E.4.1	3	Ν	1	1	1	3	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SAR scaling	E.6.5	5	R	√3	1	1	2.89	2.89	∞
Phantom and tissue parameter	s			r					
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	ø
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	Ν	1	1	0.84	1.90	1.60	œ
Liquid conductivity measurement	E.3.3	4	Ν	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	Ν	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	×
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS				9.807	9.608	
Expanded Uncertainty (95% Confidence interval)			K=2				19.614	19.216	

Report No.: AGC07782190502FH01 Page 24 of 41

System	Validation	uncertainty	for Dipole	e averaged	over 1 grar	m / 10 gram	•		
а	b	С	d	e f(d,k)	f	g	h c×f/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System									
Probe calibration	E.2.1	5.831	Ν	1	1	1	5.83	5.83	∞
Axial Isotropy	E.2.2	0.579	R	√3	1	1	0.33	0.33	×
Hemispherical Isotropy	E.2.2	0.813	R	√3	0	0	0.00	0.00	×
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	×
Linearity	E.2.4	1.26	R	√3	1	1	0.73	0.73	×
System detection limits	E.2.4	1.0	R	√3	1	1	0.58	0.58	×
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	×
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	8
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	×
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	×
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	×
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	×
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	ø
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	8
System check source (dipole)									
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	1	1	1	5.00	5.00	8
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	ø
Dipole axis to liquid distance	8,E.6.6	2.0	R	√3	1	1	1.15	1.15	∞
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	1	1	2.31	2.31	ø
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4.0	Ν	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS				9.735	9.534	
Expanded Uncertainty (95% Confidence interval)			K=2				19.470	19.069	

Report No.: AGC07782190502FH01 Page 25 of 41

Sys	stem check ur	ncertainty fo	r Dipole a	veraged ov	ver 1 gram	/ 10 gram.			
а	b	с	d	e	f	g	h	i	k
		Tol	Prob.	f(d,k)	0:(4.)		c×f/e 1g Ui	c×g/e 10g Ui	
Uncertainty Component	Sec.	(+- %)	Dist.	Div.	Ci (1g)	Ci (10g)	(+-%)	(+-%)	vi
Measurement System		1							
Probe calibration drift	E.2.1.3	0.5	N	1	1	1	0.50	0.50	8
Axial Isotropy	E.2.2	0.579	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Hemispherical Isotropy	E.2.2	0.813	R	√3	0	0	0.00	0.00	∞
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	8
Linearity	E.2.4	1.26	R	$\sqrt{3}$	0	0	0.00	0.00	8
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	∞
Modulation response	E2.5	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	8
Readout Electronics	E.2.6	0.021	N	1	0	0	0.00	0.00	8
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	∞
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	8
RF ambient conditions-Noise	E.6.1	3.0	R	√3	0	0	0.00	0.00	×
RF ambient conditions-reflections	E.6.1	3.0	R	√3	0	0	0.00	0.00	8
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	8
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	2	N	1	1	1	2	2	8
Input power and SAR drift measurement	8,6.6.4	5	R	√3	1	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2	R	√3	1	1	1.15	1.15	∞
Phantom and tissue parameter	s	1							
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	$\sqrt{3}$	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	Ν	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS				5.564	5.205	
Expanded Uncertainty (95% Confidence interval)			K=2				11.128	10.410	

12. CONDUCTED POWER MEASUREMENT

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)					
		01	2412	14.86					
802.11b	1	06	2437	15.14					
		11	2462	14.63					
		01	2412	13.23					
802.11g	6	06	2437	13.57					
		11	2462	12.75					
		01	2412	11.25					
802.11n(20)	6.5	06	2437	11.12					
		11	2462	11.08					
		03	2422	10.83					
802.11n(40)	13.5	06	2437	10.06					
		09	2452	10.25					

Bluetooth_V4.1 (BR/EDR)

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	3.283
GFSK	39	2441	3.990
	78	2480	3.485
	0	2402	3.150
π /4-DQPSK	39	2441	4.811
	78	2480	5.469
	0	2402	3.547
8-DPSK	39	2441	5.187
	78	2480	5.907

Bluetooth_ V4.1 (BLE)

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	2.057
GFSK	19	2440	3.233
	39	2480	2.986

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Body SAR was performed with the device 0mm from the phantom

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- Per KDB 865664 D01 v01r04, for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is $\geq 0.8W/Kg$, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is \ge 1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is \geq 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is \geq 1.20.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 4. Per KDB 248227 D01 v02r02 Chapter 5.2.2, when SAR measurement is required for 2.4GHz 802.11g/n OFDM configurations, the measurement and test reducing procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - (1) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - (2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is≤1.2 W/Kg,
- 5. Per KDB 248227 D01 v02r02 Chapter 5.3.4, SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.
 - (1) When SAR test exclusion provisions of KDB Publication 447498 D01 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
 - (2) When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements,

is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required for that subsequent test configuration.

- 6. Bluetooth and WIFI have same antenna, and can't transmit simultaneously.
- 7. According to KDB 447498 D01, annex A, SAR is not required for bluetooth because its maximum output power is less than 10 mW.

13.1.3. Test Result

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 51.8									
Product: Tablet pc									
Test Mode: 802.11b									
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit W/kg
Body back	DTS	01	2412	-0.35	1.010	15.20	14.86	1.092	1.6
Body back	DTS	06	2437	1.10	1.067	15.20	15.14	1.082	1.6
Body back	DTS	11	2462	-0.27	0.990	15.20	14.63	1.129	1.6
Body front	DTS	01	2412	-1.32	1.189	15.20	14.86	1.286	1.6
Body front	DTS	06	2437	0.62	1.321	15.20	15.14	1.339	1.6
Body front	DTS	11	2462	-0.75	1.107	15.20	14.63	1.262	1.6
Edge 1 (Top)	DTS	06	2437	1.28	0.224	15.20	15.14	0.227	1.6
Edge 2 (Right)	DTS	06	2437	0.30	0.010	15.20	15.14	0.010	1.6
Edge 3 (Bottom)	DTS	06	2437	-0.29	0.019	15.20	15.14	0.019	1.6
Edge 4 (Left)	DTS	06	2437	0.18	0.120	15.20	15.14	0.122	1.6
Body front+Ear.	DTS	06	2437	-0.36	1.199	15.20	15.14	1.216	1.6

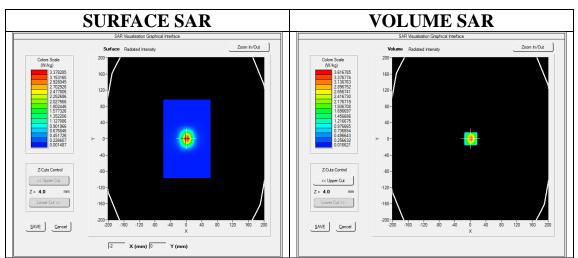
Note:

(1)When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 (2)According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels.

Repeated SAR										
Product: Ta	Product: Tablet pc									
Test Mode: 802.11b										
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±0.2 dB)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±0.2 dB)	Third SAR (1g) (W/kg)	Limit (W/kg)
Body front	DTS	06	2437	0.52	1.204					1.6
										1.6

APPENDIX A. SAR SYSTEM CHECK DATA

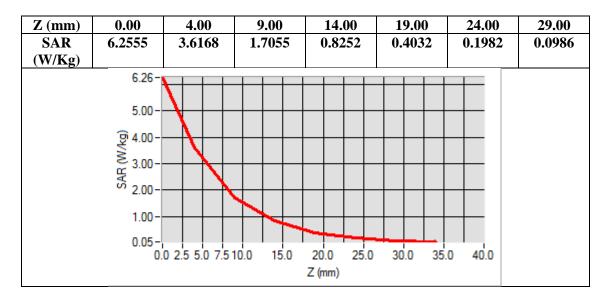
Test Laboratory: AGC Lab System Check Body 2450 MHz

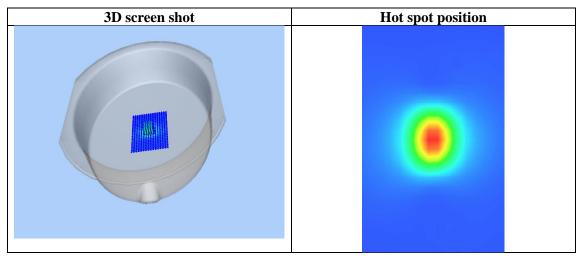

DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=5.04 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; σ =1.89 mho/m; ϵ r =52.23; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C):21.9, Liquid temperature (°C): 21.5

SATIMO Configuration

- Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35


Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/System Check 2450MHz Body/Zoom Scan:** Measurement grid: dx=5mm,dy=5mm, dz=5mm



Maximum location: X=1.00, Y=0.00 SAR Peak: 6.21 W/kg

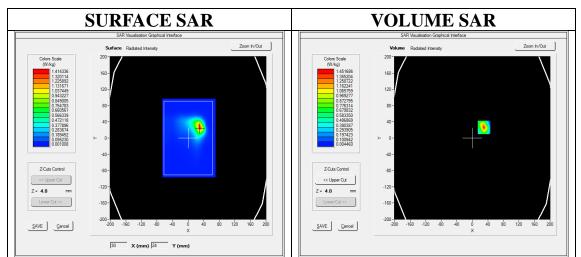
SAR 10g (W/Kg)	1.518156
SAR 1g (W/Kg)	3.364723

Date: May 18,2018

APPENDIX B. SAR MEASUREMENT DATA

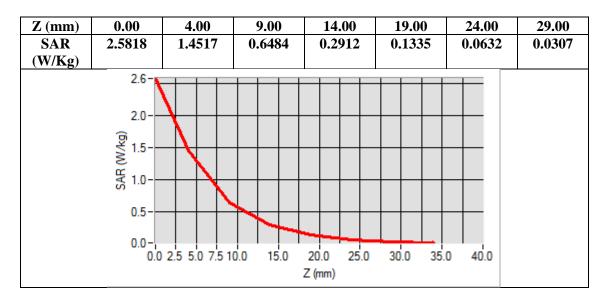
Date: May 18,2018

Test Laboratory: AGC Lab 802.11b Mid-Body- Worn- Front (DTS) DUT: Tablet pc; Type: BTAB-7Q2


Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.04; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; σ =1.88 mho/m; ϵ r =53.51; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35


Configuration/802.11b Mid- Body- Front /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/802.11b Mid- Body- Front /Zoom Scan:** Measurement grid: dx=5mm,dy=5mm, dz=5mm;

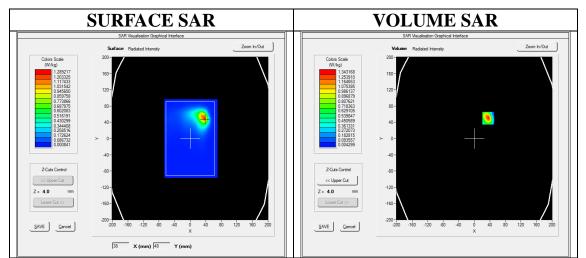

Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	ELLI
Device Position	Body Front
Band	2450MHz
Channels	Middle
Signal	Crest factor: 1.0

Maximum location: X=30.00, Y=26.00 SAR Peak: 2.58 W/kg

SAR 10g (W/Kg)	0.573264	
SAR 1g (W/Kg)	1.321431	

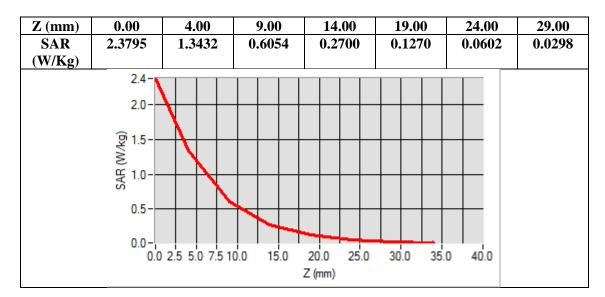
Repeated SAR Test Laboratory: AGC Lab 802.11b Mid-Body- Worn- Front (DTS) DUT: Tablet pc; Type: BTAB-7Q2

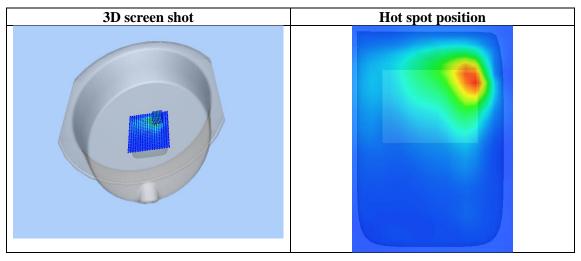
Date: May 18,2018


Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.04; Frequency: 2437 MHz; Medium parameters used: f = 2450 MHz; σ =1.88 mho/m; ϵ r =53.51; ρ = 1000 kg/m³; Phantom section: Flat Section Ambient temperature (°C): 21.9, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: ELLI39 Phantom
- Measurement SW: OpenSAR V4_02_35


Configuration/802.11b Mid- Body- Front /Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/802.11b Mid- Body- Front /Zoom Scan:** Measurement grid: dx=5mm,dy=5mm, dz=5mm;

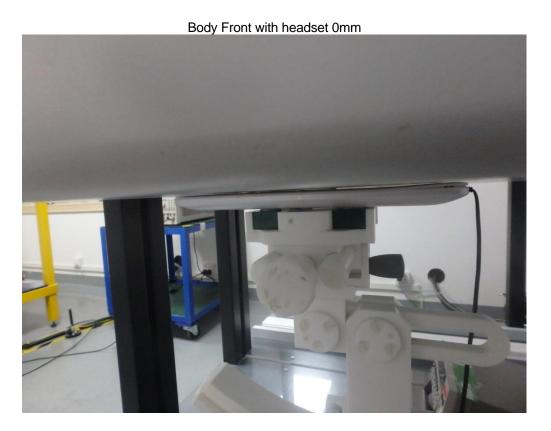

Area Scan	dx=8mm dy=8mm, h= 5.00 mm	
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm	
Phantom	ELLI	
Device Position	Body Front	
Band	2450MHz	
Channels	Middle	
Signal	Crest factor: 1.0	

Maximum location: X=36.00, Y=50.00 SAR Peak: 2.35 W/kg

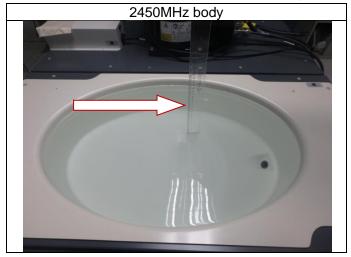
SAR 10g (W/Kg)	0.542531	
SAR 1g (W/Kg)	1.203567	

APPENDIX C. TEST SETUP PHOTOGRAPHS

Body Front 0mm


Report No.: AGC07782190502FH01 Page 37 of 41

Report No.: AGC07782190502FH01 Page 38 of 41



Report No.: AGC07782190502FH01 Page 39 of 41

DEPTH OF THE LIQUID IN THE PHANTOM-ZOOM IN

Note : The position used in the measurement were according to IEEE 1528-2013

Report No.: AGC07782190502FH01 Page 41 of 41

APPENDIX D. CALIBRATION DATA

Refer to Attached files.