

TEST REPORT

FCC PART 15.247

Report Reference No...... CTL2105144022-WF03

Compiled by: (position+printed name+signature)

Happy Guo (File administrators)

Tested by: (position+printed name+signature)

Gary Gao (Test Engineer)

Approved by: (position+printed name+signature)

Ivan Xie (Manager)

Product Name..... tablet

Model/Type reference..... F-C10

List Model(s)...... KJM-T12, KJM-C10, KJM-T13, KJM-10C, KJM-10D

Trade Mark..... N/A

FCC ID...... 2ATFT-C10

Applicant's name...... Shenzhen Kejinming Electronic Co., Ltd

Test Firm...... Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm.....

Nanshan District, Shenzhen, China 518055

Test specification....:

Standard...... FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator...... Shenzhen CTL Testing Technology Co., Ltd.

Master TRF...... Dated 2011-01

Date of receipt of test item.........: May. 21, 2021

Date of sampling...... May. 21, 2021

Date of Test Date...... May. 21, 2021-Sep. 13, 2021

Date of Issue...... Sep. 13, 2021

Result Pass

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. : CTL2105144022-WF03 Sep. 13, 2021

Date of issue

Equipment under Test : tablet

Sample No : CTL210514402-1-S002

Model /Type : F-C10

Listed Models : KJM-T12, KJM-C10, KJM-T13, KJM-10C, KJM-10D

Applicant : Shenzhen Kejinming Electronic Co., Ltd

Address : 1-6F, Block B7, Yintian Industrial Park Xixiang Street,

Bao'an Dist., Shenzhen, China.

Manufacturer : Shenzhen Kejinming Electronic Co., Ltd

Address : 1-6F, Block B7, Yintian Industrial Park Xixiang Street,

Bao'an Dist., Shenzhen, China.

Test result	Pass *
1001100011	- 6.00

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the issuing testing laboratory.

** Modified History **

Report No.: CTL2105144022-WF03

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2021-09-13	CTL2105144022-WF03	Tracy Qi
		10.	- 1	_
A 10		The state of the s	() () () () () () () () () ()	
100			Charles To Control of the Control of	
100				
	6.			
	W. Aller			
	W W co			4.4
	- A - W			
	W 76 W			W V

Table of Contents	Page
1. SUMMARY	5
1.1. TEST STANDARDS	5
1.2. Test Description.	
1.3. TEST FACILITY	6
1.4. STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	8
2.1. Environmental conditions	
2.2. GENERAL DESCRIPTION OF EUT	
2.3. DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.4. EQUIPMENTS USED DURING THE TEST	
2.5. Related Submittal(s) / Grant (s)	11
2.6. Modifications	
3. TEST CONDITIONS AND RESULTS	12
3.1. CONDUCTED EMISSIONS TEST	12
3.2. RADIATED EMISSIONS AND BAND EDGE	15
3.3. MAXIMUM CONDUCTED OUTPUT POWER	23
3.4. Power Spectral Density	24
3.5. 6dB Bandwidth	25
3.6. Out-of-band Emissions	26
3.7. Antenna Requirement	27
4. TEST SETUP PHOTOS OF THE EUT	28
5. PHOTOS OF THE FUT	29

V1.0 Page 5 of 29 Report No.: CTL2105144022-WF03

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10: 2020: American National Standard for Testing Unlicensed Wireless Devices

KDB 558074 D01 15.247 Meas Guidance v05r02 : Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.2. Test Description

THE CONTRACTOR OF THE CONTRACT	
AC Power Conducted Emission	PASS
6dB Bandwidth	PASS
Spurious RF Conducted Emission	PASS
Maximum Conducted Output Power	PASS
Power Spectral Density	PASS
Radiated Emissions	PASS
Band Edge	PASS
Antenna Requirement	PASS
	6dB Bandwidth Spurious RF Conducted Emission Maximum Conducted Output Power Power Spectral Density Radiated Emissions Band Edge

V1.0 Page 6 of 29 Report No.: CTL2105144022-WF03

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L7497

Shenzhen CTL Testing Technology Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 4343.01

Shenzhen CTL Testing Technology Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

IC Registration No.: 9618B

CAB identifier: CN0041

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements with Registration No.: 9618B on Jan. 22, 2019.

FCC-Registration No.: 399832

Designation No.: CN1216

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 399832, December 08, 2017.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)

Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. General Description of EUT

Product Name:	tablet	124
Model/Type reference:	F-C10	J 6
Power supply:	DC 3.8V from battery	W. B
Adapter information:	Model:KZ0502000 Input: 100-240V~, 50/60Hz, 0.3A MAX Output: 5V===2A 10W	Page 1
Hardware Version:	V1.0	
Software Version:	V1.0	
Bluetooth:		
Version:	Supported BR/EDR	
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	FPC Antenna	
Antenna gain:	1.0dBi	- 48
Bluetooth LE		
Supported type:	Bluetooth Low Energy	Bre to
Modulation:	GFSK	100
Operation frequency:	2402MHz to 2480MHz	
Channel number:	40	
Channel separation:	2 MHz	
Antenna type:	FPC Antenna	
Antenna gain:	1.0dBi	
2.4G WIFI		
Supported type:	802.11b/802.11g/802.11n(H20)	
Modulation:	802.11b: DSSS 802.11g/802.11n(H20): OFDM	
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz	
Channel number:	802.11b/802.11g/802.11n(H20): 11	

Channel separation:	5MHz
Antenna type:	FPC Antenna
Antenna gain:	1.0dBi

Note1: For more details, please refer to the user's manual of the EUT. Note2: Antenna gain provided by the applicant. Note3: This report is for 2.4G WIFI only.

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

There are 11 channels provided to the EUT and Channel 01/03/06/09/11 were selected for WIFI test.

Operation Frequency WIFI:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		20 1

Note: The line display in grey were the channel selected for testing

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power Power Spectral Density 6dB Bandwidth Spurious RF conducted emission Radiated Emission 9kHz~1GHz& Radiated Emission 1GHz~10th Harmonic	11b/DSSS	1 Mbps	1/6/11
	11g/OFDM	6 Mbps	1/6/11
	11n(20MHz)/OFDM	6.5Mbps	1/6/11
	11n(40MHz)/OFDM	13.5 Mbps	3/6/9
Band Edge	11b/DSSS	1 Mbps	1/11
	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5 Mbps	3//9

2.4. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.		Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ESH2-Z5		860014/010	2021/05/10	2022/05/09
Double cone logarithmic antenna	Schwarzbeck	VULB 9168		824	2020/04/07	2023/04/06
Horn Antenna	Ocean Microwave	OBH10	0400	26999002	2020/11/28	2021/11/27
EMI Test Receiver	R&S	ESC	Cl	1166.5950.03	2021/05/18	2022/05/17
Spectrum Analyzer	Agilent	E440	7B	MY41440676	2021/05/14	2022/05/13
Spectrum Analyzer	Agilent	N902	0A	US46220290	2021/05/19	2022/05/18
Spectrum Analyzer	Keysight	N902	0A	MY53420874	2021/05/19	2022/05/18
Controller	EM Electronics	EM 10	000	060859	2021/05/22	2022/05/21
Horn Antenna	Sunol Sciences Corp.	DRH-	118	A062013	2021/05/13	2022/05/12
Active Loop Antenna	Da Ze	ZN30900A		1	2021/05/24	2022/05/23
Amplifier	Agilent	8449)B	3008A02306	2021/05/13	2022/05/12
Amplifier	Agilent	8447	'D	2944A10176	2021/05/11	2022/05/10
Amplifier	Brief&Smart	LNA-4018		2104197	2021/05/19	2022/05/18
Temperature/Humi dity Meter	Gangxing	CTH-6	808	02	2021/05/16	2022/05/15
Power Sensor	Agilent	U2021	IXA	MY55130004	2021/05/19	2022/05/18
Power Sensor	Agilent	U2021	IXA	MY55130006	2021/05/19	2022/05/18
Power Sensor	Agilent	U2021	IXA	MY54510008	2021/05/19	2022/05/18
Power Sensor	Agilent	U2021	IXA	MY55060003	2021/05/19	2022/05/18
Spectrum Analyzer	RS	FSF	D	1164.4391.38	2021/05/19	2022/05/18
Test Software	7.90					
Namo	e of Software			Ve	ersion	
Т	ST-PASS				1.0.5	
ES-K1	(Below 1GHz)	V1.71				
e3(A	bove 1GHz)	6.111221a				
The callbacking internal						

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

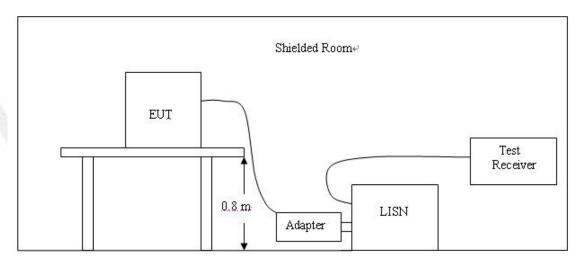
2.6. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 12 of 29 Report No.: CTL2105144022-WF03

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

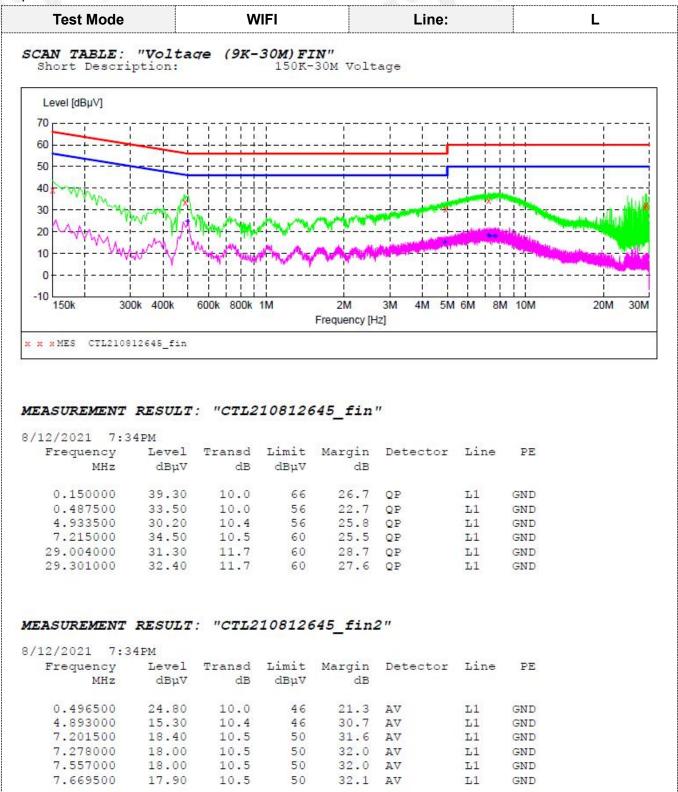

LIMIT

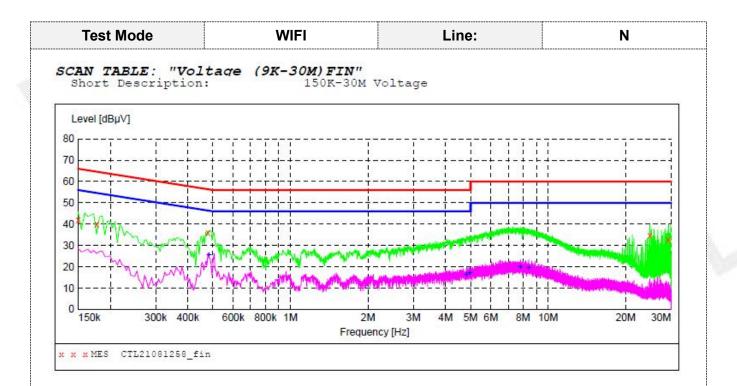
FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (d	lBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION




TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2020.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2020.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2020.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark:802.11b/802.11g/802.11n(H20)/802.11n(H40) mode all have been tested ,only worse case is reported.

MEASUREMENT RESULT: "CTL21081258_fin"

2PM						
Level	Transd	Limit	Margin	Detector	Line	PE
dΒμV	dB	dΒμV	dB			
41.80	10.0	66	24.2	QP	N	GND
40.10	10.0	65	24.5	QP	N	GND
35.90	10.0	56	20.5	QP	N	GND
34.90	11.5	60	25.1	QP	N	GND
32.60	11.7	60	27.4	QP	N	GND
	Level dBµV 41.80 40.10 35.90 34.90	Level Transd dB dB d1.80 10.0 40.10 10.0 35.90 10.0 34.90 11.5	Level Transd Limit dBμV dB dBμV 41.80 10.0 66 40.10 10.0 65 35.90 10.0 56 34.90 11.5 60	Level Transd Limit Margin dBμV dB dBμV dB 41.80 10.0 66 24.2 40.10 10.0 65 24.5 35.90 10.0 56 20.5 34.90 11.5 60 25.1	Level Transd dBμV Limit dBμV Margin dB Detector dB 41.80 10.0 66 24.2 QP 40.10 10.0 65 24.5 QP 35.90 10.0 56 20.5 QP 34.90 11.5 60 25.1 QP	Level Transd dBμV Limit Margin dB Detector Line dBμV Line dBμV 41.80 10.0 66 24.2 QP N 40.10 10.0 65 24.5 QP N 35.90 10.0 56 20.5 QP N 34.90 11.5 60 25.1 QP N

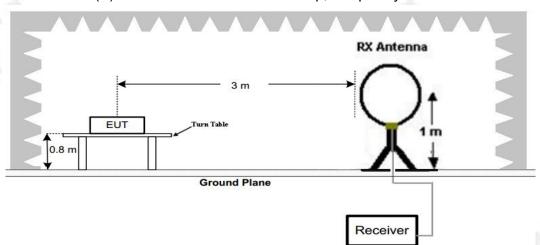
MEASUREMENT RESULT: "CTL21081258_fin2"

22PM						
Level	Transd	Limit	Margin	Detector	Line	PE
dΒμV	dB	dBµV	dB			
25.30	10.0	46	21.0	AV	N	GND
16.40	10.4	46	29.6	AV	N	GND
17.10	10.4	46	28.9	AV	N	GND
19.70	10.6	50	30.3	AV	N	GND
19.30	10.6	50	30.7	AV	N	GND
	Level dBµV 25.30 16.40 17.10 19.70	Level Transd dBμV dB 25.30 10.0 16.40 10.4 17.10 10.4 19.70 10.6	Level Transd Limit dBμV dB dBμV 25.30 10.0 46 16.40 10.4 46 17.10 10.4 46 19.70 10.6 50	Level Transd Limit Margin dBμV dB dBμV dB 25.30 10.0 46 21.0 16.40 10.4 46 29.6 17.10 10.4 46 28.9 19.70 10.6 50 30.3	Level Transd Limit Margin Detector dBμV dB dBμV dB 25.30 10.0 46 21.0 AV 16.40 10.4 46 29.6 AV 17.10 10.4 46 28.9 AV 19.70 10.6 50 30.3 AV	Level Transd dBμV Limit Margin dB Detector Line dBμV Line dBμV 25.30 10.0 46 21.0 AV N 16.40 10.4 46 29.6 AV N 17.10 10.4 46 28.9 AV N 19.70 10.6 50 30.3 AV N

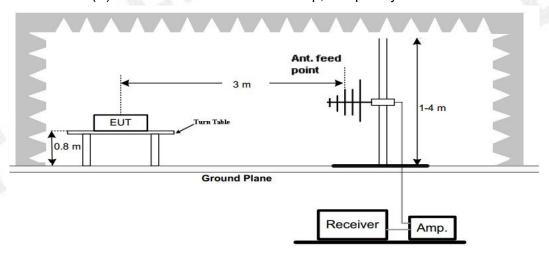
3.2. Radiated Emissions and Band Edge

Limit

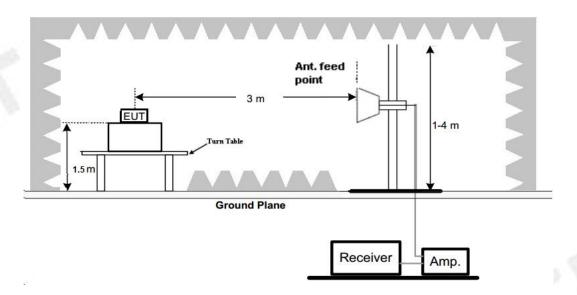
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

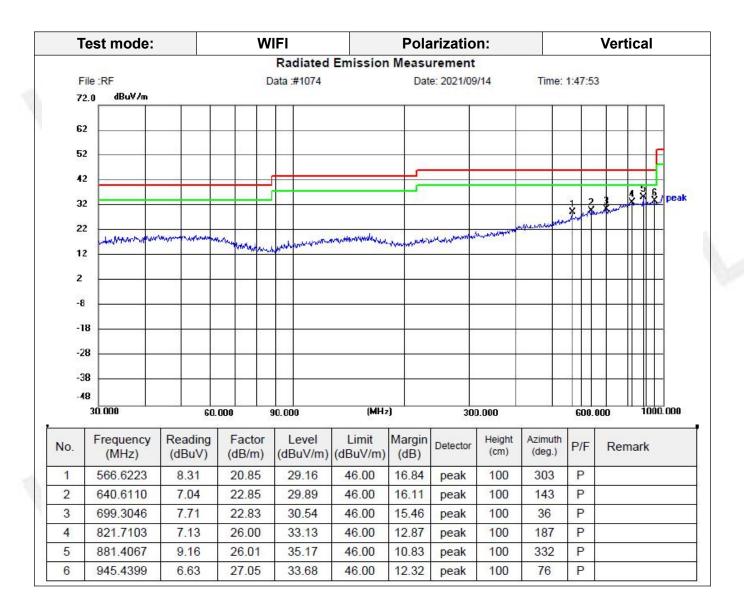

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.


TEST RESULTS

Remark:

- 1. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 2. All three channels (lowest/middle/highest) of each mode were measured above1GHz and recorded worst case at 802.11b mode.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, Found the emission level are attenuated 20dB below the limits from 9 kHz to 30MHz, so it does not recorded in report.

For 30MHz-1GHz

T	est mode:		,	WIFI		Po	larizati	ion:		ŀ	lori.	zon	ıtal	
				Radiated	Emission	Measu	rement							
Fil	e :RF		D	ata :#1073		Date	e: 2021/09	/14	Time:	1:46:43				
72.	0 dBuV/m			20 20							200			
62	1		-			-	-		-		-			
52				8 8							1000		F	
42									8					
						_						5 X	×	peal
32		9818							3	W.	no de la com	+	N. R. W.	100
22	-	1 2			and the second	7 344-54		wall below the	MARKAMPERIN	NA.				
12	- patricipal de la companya della companya de la companya della co	LANCTON BANKSON BLANCON	white speaker	alkades with finding	the infrared many market	manufactured the state of	appensor godful							
							3 .							
2				3									Н	
-8		- 4				35	-	-	(4)	-	-	-	Н	
-18														
-28			13 3	22			8	36	200	18 0		8:		
-38		- 4		8			3		50	- 42.7		131-	Н	
-48	7													
	30.000	60.	000 9	0.000	(MHz)	300	.000	200	600.0	100	1	000.	000
lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Re	mar	k	
1	49.7066	6.88	14.44	21.32	40.00	18.68	peak	100	21	Р				
2	60.0691	6.51	14.18	20.69	40.00	19.31	peak	100	8	Р				
3	539.4775	7.01	20.16	27.17	46.00	18.83	peak	100	8	Р				
4	658.8361	8.22	22.64	30.86	46.00	15.14	peak	100	204	Р				
5	836.2443	8.11	26.12	34.23	46.00	11.77	peak	100	281	Р				
5				4						4	12			

For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Note: 802.11b/802.11g/802.11n (H20) all have been tested, only worse case 802.11b is reported

Freq	uency(MH	lz):	24	12		Polarity:		HORIZ	HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction		
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor		
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4824.00	58.14	PK	74.00	15.86	53.59	33.52	6.92	35.89	4.55		
4824.00	45.02	AV	54.00	8.98	40.47	33.52	6.92	35.89	4.55		
5565.00	46.23	PK	74.00	27.77	39.03	34.38	7.10	34.28	7.20		
5565.00		AV	54.00	1			-				
7236.00	46.11	PK	74.00	27.89	34.84	37.1	9.19	35.02	11.27		
7236.00		AV	54.00	W -					-4		

Fred	quency(MH	lz):	24	12	Polarity:			VERTICAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor	
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4824.00	56.32	PK	74.00	17.68	51.77	33.52	6.92	35.89	4.55	
4824.00	46.59	AV	54.00	7.41	42.04	33.52	6.92	35.89	4.55	
5457.00	44.87	PK	74.00	29.13	37.67	34.38	7.10	34.28	7.20	
5457.00	1	AV	54.00	1	-		-	-		
7236.00	46.35	PK	74.00	27.65	35.08	37.1	9.19	35.02	11.27	
7236.00	W A	AV	54.00				77-			

	Freq	uency(MH	lz):	24	37		Polarity:		HORIZONTAL		
Fre	equency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
((MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor	
		(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
48	874.00	59.06	PK	74.00	14.94	52.82	33.59	6.95	34.30	6.24	
48	874.00	44.62	AV	54.00	9.38	38.38	33.59	6.95	34.30	6.24	
6′	152.00	45.05	PK	74.00	28.95	37.45	34.56	7.15	34.11	7.60	
6′	152.00		AV	54.00	1	-		_		-	
73	311.00	46.37	PK	74.00	27.63	34.71	37.44	9.22	35.00	11.66	
73	311.00		AV	54.00	-						

Freq	uency(MH	lz):	24	37		Polarity:		VER	VERTICAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor	
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4874.00	57.05	PK	74.00	16.95	50.71	33.59	6.95	34.20	6.34	
4874.00	46.35	AV	54.00	7.65	40.01	33.59	6.95	34.20	6.34	
6158.00	44.02	PK	74.00	29.98	37.12	34.07	7.05	34.22	6.90	
6158.00		AV	54.00	-			-	-		
7311.00	46.11	PK	74.00	27.89	34.45	37.44	9.22	35.00	11.66	
7311.00		AV	54.00	1		(3)2	70-20	-		

Freq	uency(MH	lz):	24	2462 Polarity:			HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4924.00	55.62	PK	74.00	18.38	53.55	33.71	6.98	35.91	4.78
4924.00	46.18	AV	54.00	7.82	43.73	33.71	6.98	35.91	4.78
6235.00	45.35	PK	74.00	28.65	41.24	34.34	7.09	34.27	7.17
6235.00	-	AV	54.00	-			-	-	
7386.00	46.15	PK	74.00	27.85	37.4	37.61	9.25	34.98	11.88
7386.00	-	AV	54.00	-			1	-	

Fred	quency(MH	lz):	24	62		Polarity:		VER	VERTICAL		
Frequency	Emission		Emission Limit Margin Ra		Raw	Antenna	Cable	Pre-	Correction		
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor		
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4924.00	56.28	PK	74.00	17.72	51.5	33.71	6.98	35.91	4.78		
4924.00	46.32	AV	54.00	7.68	41.54	33.71	6.98	35.91	4.78		
6859.00	44.89	PK	74.00	29.11	37.72	34.34	7.09	34.27	7.17		
6859.00	-	AV	54.00	-	-		-				
7386.00	45.26	PK	74.00	28.74	33.38	37.61	9.25	34.98	11.88		
7386.00		AV	54.00	-			-				

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. Other emissions are attenuated 20dB below the limits from 9 kHz to 30MHz, so it does not recorded in report.

Results of Band Edges Test (Radiated)

V1.0

Note: 802.11b/802.11g/802.11n (H20) all have been tested, only worse case 802.11b is reported

Freq	juency(MH	z):	24	12		Polarity:		HORIZONTAL			
Frequency	Emis	ssion	Limit	Margin	Raw	Antenna	Cable	Pre-	Correction		
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor		
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
2412.00	105.62	PK		-	72.23	28.78	4.61	0.00	33.39		
2412.00	95.63	AV		-	62.24	28.78	4.61	0.00	33.39		
2347.00	45.65	PK	74.00	28.35	12.57	28.52	4.56	0.00	33.08		
2347.00		AV	54.00	-		-	-				
2390.00	51.32	PK	74.00	22.68	18.00	28.72	4.60	0.00	33.32		
2390.00		AV	54.00	The sale		-	1		-		
2400.00	56.33	PK		-	22.94	28.78	4.61	0.00	33.39		
2400.00	48.25	AV			14.86	28.78	4.61	0.00	33.39		

Frequency(MHz):			2412		Polarity:			VERTICAL	
Frequency	Emis	Emission		Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Le	Level		(dB)	Value	Factor	Factor	amplifier	Factor
	(dBu	(dBuV/m)			(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
2412.00	106.48	PK			73.09	28.78	4.61	0.00	33.39
2412.00	100.95	AV			67.56	28.78	4.61	0.00	33.39
2359.00	44.62	PK	74.00	29.38	11.54	28.52	4.56	0.00	33.08
2359.00		AV	54.00	-		7 Y	1		
2390.00	50.26	PK	74.00	23.74	16.94	28.72	4.60	0.00	33.32
2390.00		AV	54.00	-		- "	I		
2400.00	55.84	PK			22.45	28.78	4.61	0.00	33.39
2400.00	48.36	AV		-	14.97	28.78	4.61	0.00	33.39

Frequency(MHz):			2462		Polarity:			HORIZONTAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
2462.00	108.91	PK			75.29	28.92	4.70	0.00	33.62
2462.00	98.69	AV		10-07	65.07	28.92	4.70	0.00	33.62
2483.50	56.25	PK	74.00	17.75	22.62	28.93	4.70	0.00	33.63
2483.50	46.68	AV	54.00	7.32	13.05	28.93	4.70	0.00	33.63
2488.00	45.51	PK	74.00	28.49	11.87	28.94	4.71	0.00	33.64
2488.00		AV	54.00		-		-	-	
2500.00	44.22	PK	74.00	29.78	10.54	28.96	4.72	0.00	33.68
2500.00		AV	54.00						

Frequency(MHz):			2462		Polarity:			VERTICAL	
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level		(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
	(dBuV/m)				(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
2462.00	106.33	PK		1	72.71	28.92	4.70	0.00	33.62
2462.00	97.02	AV		1	63.40	28.92	4.70	0.00	33.62
2483.50	56.18	PK	74.00	17.82	22.55	28.93	4.70	0.00	33.63
2483.50	46.36	AV	54.00	7.64	12.73	28.93	4.70	0.00	33.63
2492.00	46.32	PK	74.00	27.68	12.68	28.94	4.71	0.00	33.64
2492.00		AV	54.00	1			-		
2500.00	43.66	PK	74.00	30.34	9.98	28.96	4.72	0.00	33.68
2500.00		AV	54.00				-		

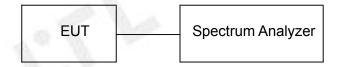
V1.0 Page 22 of 29 Report No.: CTL2105144022-WF03

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 6. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.
- 7. Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report.

V1.0 Page 23 of 29 Report No.: CTL2105144022-WF03

3.3. Maximum Conducted Output Power


Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum.

Test Configuration

Test Results

Raw data reference to Section 2 from Appendix03.

V1.0 Page 24 of 29 Report No.: CTL2105144022-WF03

3.4. Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

Raw data reference to Section 3 from Appendix03.

V1.0 Page 25 of 29 Report No.: CTL2105144022-WF03

3.5. 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Raw data reference to Section 1 from Appendix03.

V1.0 Page 26 of 29 Report No.: CTL2105144022-WF03

3.6. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

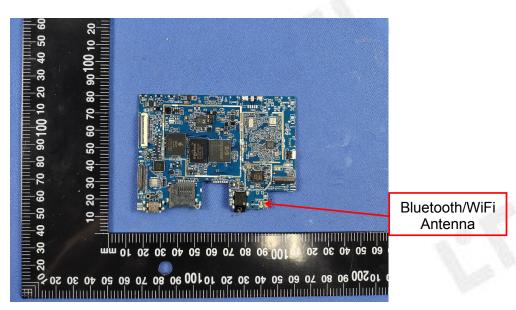
Raw data reference to Section 4 from Appendix03.

V1.0 Page 27 of 29 Report No.: CTL2105144022-WF03

3.7. Antenna Requirement

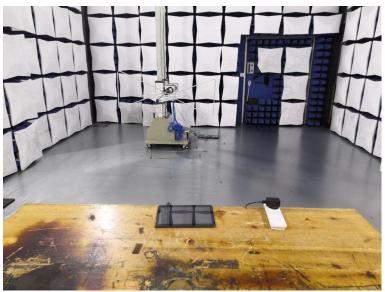
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


Test Result:

The maximum gain of antenna was 1.0dBi.

4. Test Setup Photos of the EUT

5. Photos of the EUT

Reference to the test report No. CTL2105144022-WF01