

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190511803v01

FCC REPORT (BLE)

Applicant: Jiangxi Lesia Technology Co., Limited

Address of Applicant: Yangjiahu District(South Of Xiangxing Avenue), Industrial Park,

Gao'An City, Jlangxi Province, China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: KT5021, K2

Trade mark: LESIA

FCC ID: 2ATFDLESIAK2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 23 May., 2019

Date of Test: 24 May., to 30 May., 2019

Date of report issued: 31 May., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	31 May., 2019	Original
01	13 Jun., 2019	Update test photo on page 33, The test program on page 9, PSD limit on page 16

Tested by: | | **Date**: 13 Jun., 2019

Test Engineer

Reviewed by: Date: 13 Jun., 2019

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	SPURIOUS EMISSION	
	6.7.		
	6.7.		
7	TES	ST SETUP PHOTO	32
R	FUT	CONSTRUCTIONAL DETAILS	3.0

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass
Pass: The EUT complies with the essential red	uirements in the standard.	

Pass: The EUT complies with the essential requirements in the standard N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Jiangxi Lesia Technology Co., Limited
Address:	Yangjiahu District(South Of Xiangxing Avenue), Industrial Park, Gao'An City, Jlangxi Province, China
Manufacturer:	Jiangxi Lesia Technology Co., Limited
Address:	Yangjiahu District(South Of Xiangxing Avenue), Industrial Park, Gao'An City, Jlangxi Province, China

5.2 General Description of E.U.T.

_	
Product Name:	Mobile phone
Model No.:	KT5021, K2
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.91dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2000mAh
AC adapter:	Model: SMART SERIES Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1.0A
Remarks:	item No.: KT5021, K2 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due date
				(mm-dd-yy)	(mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

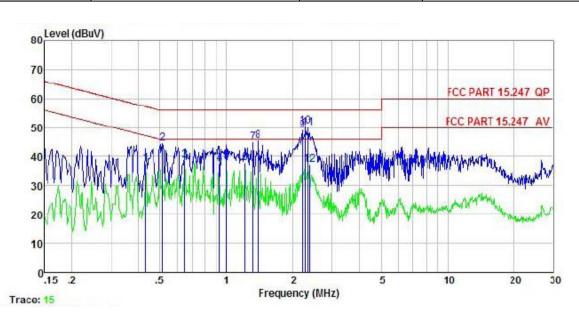
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

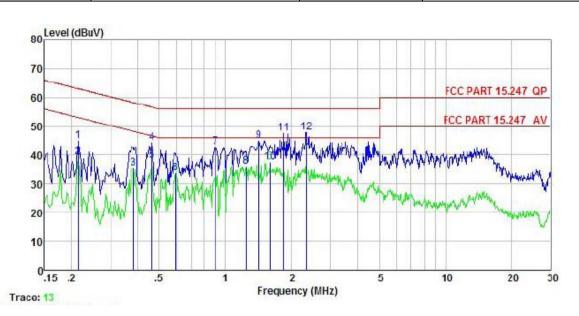
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.91dBi


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	·	Limit ((dBuV)		
	Frequency range (MHz)	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test setup:	LISN 40cm		AC power		
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for det	tails			
Test results:	Passed				

Measurement Data:

Product name:	Mobile Phone	Product model:	KT5021
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5°C Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
	MHz	₫₿u₹	₫B	₫B	dBu₹	dBu∇	<u>ab</u>	
1 2 3 4 5 6 7 8 9	0.431	26.68	0.12	10.73	37.53	47.24		Average
2	0.513	33.69	0.12	10.76	44.57	56.00	-11.43	QP
3	0.647	27.78	0.13	10.17	38.68	46.00	-7.32	Average
4	0.933	26.54	0.13	10.85	37.52	46.00	-8.48	Average
5	1.000	27.30	0.13	10.87	38.30	46.00	-7.70	Average
6	1.216	26.75	0.13	10.90	37.18	46.00	-8.22	Average
7	1.317	33.83	0.13	10.91	44.87	56.00	-11.13	QP
8	1.388	34.40	0.13	10.91	45.44	56.00	-10.56	QP
9	2.213	37.97	0.15	10.95	49.07	56.00	-6.93	QP
10	2.285	39.24	0.15	10.95	50.34	56.00		4 1 2 A 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11	2.346	38.69	0.15	10.94	49.78	56.00	-6.22	QP
12	2.371	26.16	0.15	10.94	37.25	46.00		Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

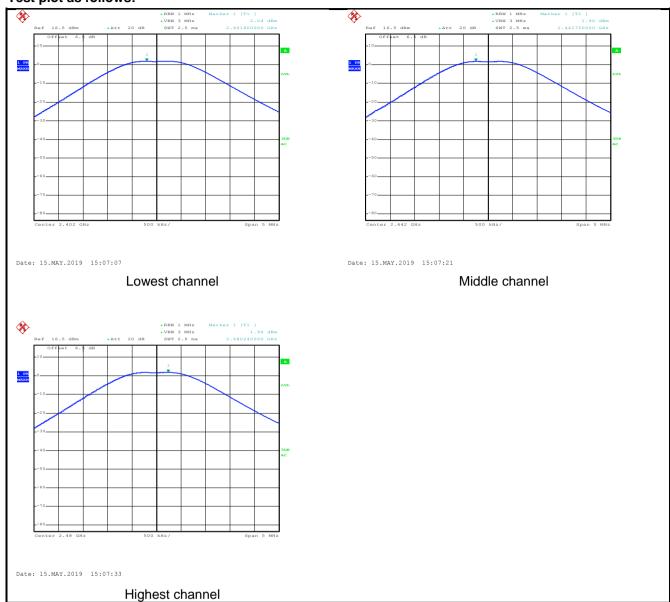
Product name:	Wi-Fi Media Streaming Module	Product model:	LS9-AC11DBT
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫₿uѶ	₫B	₫B	dBu∀	dBu∀	<u>ав</u>	3 <u>200 (10 10 10 10 10 10 10 10 10 10 10 10 10 </u>
1	0.214	33.04	0.93	10.76	44.73	63.05	-18.32	QP
2	0.214	27.55	0.93	10.76	39. 24	53.05	-13.81	Average
3	0.3B1	23.77	0.97	10.72	35.46	48.25	-12.79	Average
4	0.461	32.47	0.97	10.74	44.18	56.67	-12.49	QP
2 3 4 5 6	0.461	26.42	0.97	10.74	38.13	46.67	-8.54	Average
6	0.595	21.91	0.97	10.77	33.65	46.00	-12.35	Average
7 8 9	0.904	31.00	0.97	10.84	42.81	56.00	-13.19	QP
8	1.242	24.28	0.97	10.90	36.15	46.00	-9.85	Average
9	1.418	32.99	0.98	10.92	44.89	56.00	-11.11	QP
10	1.593	25.65	0.98	10.93	37.56	46.00	-8.44	Average
11	1.848	35.47	0.98	10.95	47.40	56.00	-8.60	QP
12	2.334	35.90	0.98	10.94	47.82	56.00	-8.18	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

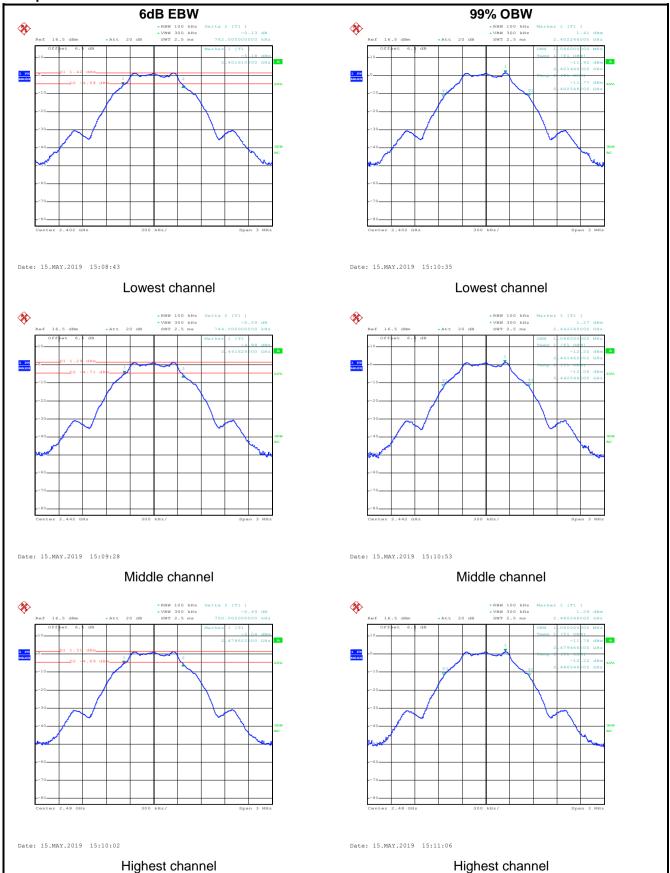

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	2.04		
Middle	1.90	30.00	Pass
Highest	1.94		

Test plot as follows:

6.4 Occupy Bandwidth

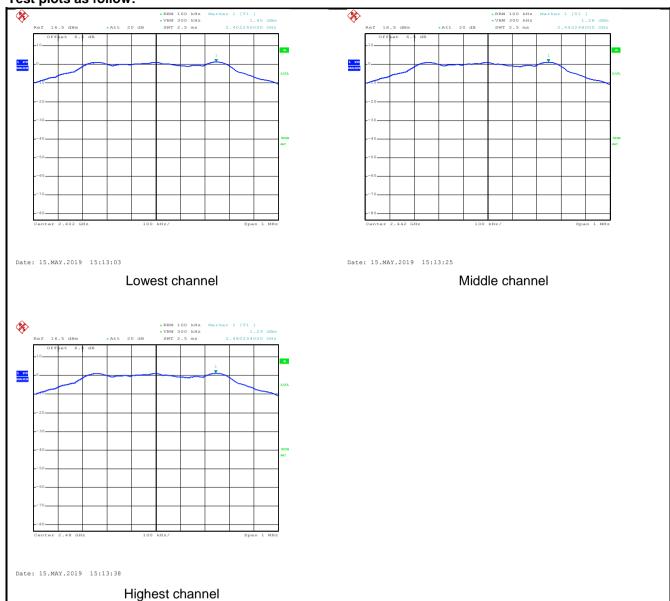

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074 D01 15.247 Meas Guidance v05r02
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	762		
Middle	744	>500	Pass
Highest	750		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1086		
Middle	1086	N/A	N/A
Highest	1080		

Test plot as follows:

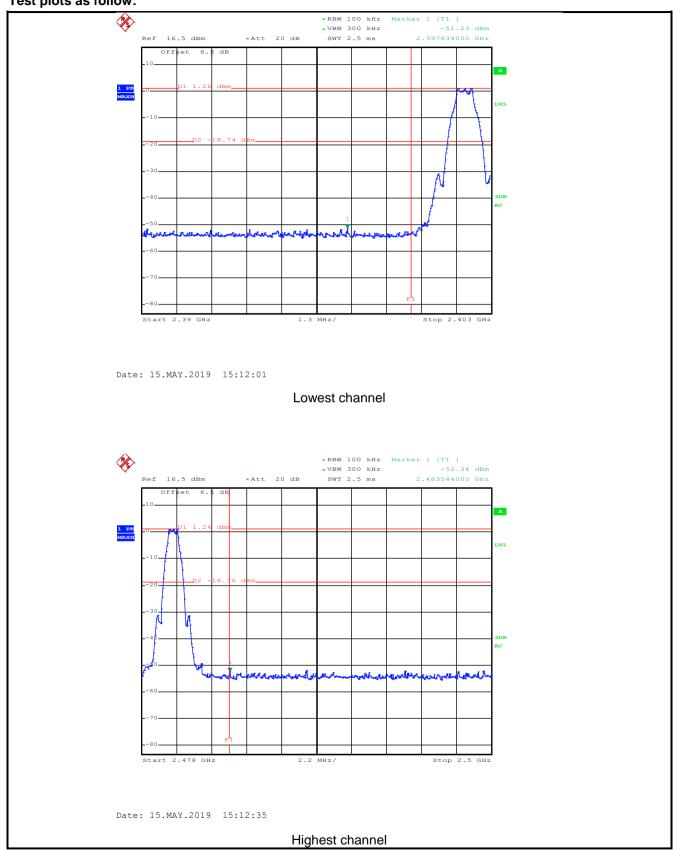
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074 D01 15.247 Meas Guidance v05r02
Limit:	8 dBm Per 3 kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	1.40		
Middle	1.28	8.00	Pass
Highest	1.29		

Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plots as follow:

6.6.2 Radiated Emission Method

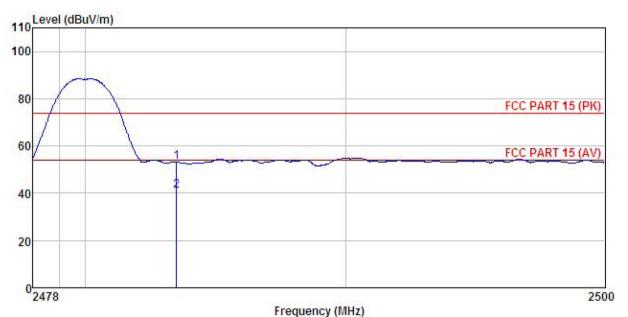
6.6.2 Radiated Ellission			4 = 00	- 11-000			
Test Requirement:	FCC Part 15 C	Section 2	15.20	5 and 15.209			
Test Method:			KDE	3 558074 D01 1	5.247	7 Meas	Guidance v05r02
Test Frequency Range:	2.3GHz to 2.5	GHz					
Test Distance:	3m	ı		T			T
Receiver setup:	Frequency	Detect		RBW		/BW	Remark
	Above 1GHz	Peak RMS		1MHz 1MHz		MHz MHz	Peak Value Average Value
Limit:	Frequer			nit (dBuV/m @3	•	VITIZ	Remark
Lillin.				54.00	,,,,	Α	verage Value
	Above 10	HZاف		74.00			Peak Value
Test setup:	the ground determine 2. The EUT antenna, tower. 3. The anter ground to horizonta measurer 4. For each and then and the rathe maximum of the estimates of the EU have 10 of the EU have 10 of the EU the maximum of the EU have 10 of the EU the end the end the end the EU the end the end the end the EU the end t	ad at a 3 me the position was set 3 which was set 3 which was anna height of determined and vertice the antenrota table woman reading the sion levels pecified, to The would be the margin	eter of ion of meters mou. is value the call point in a way as tung. I of the hen the rep would be in a would be in a way as tung.	camber. The tal f the highest race ers away from the unted on the top aried from one in maximum value colarizations of the as tuned to heig urned from 0 de in was set to Pea in Maximum Hol ine EUT in peak esting could be orted. Otherwis	ble wadiation of a meter e of the analysis ak De di Moderato stoppe e the bone by	as rotate n. erference variable to four re ne field se tenna are arranged om 1 me se to 360 tect Fur de. e was 10 ped and emission y one us	e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find action and d dB lower than the peak values ons that did not sing peak, quasi-
	AE THE STATE OF TH	Test Re		Horn Antenna Reference Plane Pre- Amplifier Contr	Antenna To	ower	
Test Instruments:	Refer to section	on 5.8 for c	detail	S			
Test mode:	Refer to section	on 5.3 for c	detail	S			
Test results:	Passed						

roduct Name:	Mobile Ph	none		P	Product Mo	odel:	KT5021		
est By:	Mike			Т	est mode:		BLE Tx	mode	
est Channel:	Lowest ch	nannel		Р	olarizatio	n:	Vertical		
est Voltage:	AC 120/6	0Hz		Е	nvironme	nt:	Temp: 2	24℃ Hu	ıni: 57%
	860								
110 Level (dBuV/n)								_
100	-								
									0
80							FCC I	PART 15 (F	NC)
							1001	FART 131	14
									VI.
60							FCCI	DART 15 (A	V
60	~~~~	~~~~	V	mm	V	~~~	FCCI	PART 15 (A	.V)
40	V	~~~~		mm	V-v-v-	~~~	FCC	PART 15 (A	IV)
~~~~	V	~~~		m	V	~~~	FCC 1	PART 15 (A	V)
~~~~	V	~~~			~~~~~	~~~	FCC I	PART 15 (A	V)
40	~~~~	~~~		•	~~~~	~~~~	FCC I	PART 15 (A	v)
40	V	~~~	2350	· · · · · · · · · · · · · · · · · · ·		~~~~	FCC 1		
40	V		2350 Freq	uency (MHz	·)	~~~	FCC 1		V)
40 20 0 2310 2320	, - 1	Ant enna	Freq	2.00	150	Limit	2		2404
40 20 0 2310 2320	Read	Antenna Factor	Freq	2.00	150	Limit Line	2		2404
40 20 0 2310 2320 Fr	Read eq Level	Antenna Factor	Freq	Preamp Factor	150		Over Limit	Remark	2404
40 20 0 2310 2320 Fr	Read eq Level	dB/m	Freq Cable Loss dB	Preamp Factor ————————————————————————————————————	Level	dBuV/m	Over Limit	Remark	2404

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product N	oduct Name: Mobile Phone			Product	Model:	кт	KT5021				
est By:		Mike			Test mo	Test mode:			BLE Tx mode		
est Chan	nel:	Lowest cha	nnel		Polariza	tion:	Но	rizontal			
est Voltage:		AC 120/60H	Ηz		Environ	Environment:			Huni: 57%		
Lev	el (dBuV/m)										
110 Lev											
80						1		FCC P	ART 15 (PK)		
60								FCC D	ART 15 (AV)		
~~	~~~~~~		m	~~~~	Luman	m	m	min	AKT 13 (AV)		
40								2			
20											
0231	0 2320			2350 Frequ	iency (MHz))			2404		
	2000	ReadA	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		Remark		
	Freq	Peact									
	Freq MHz	dBuV		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



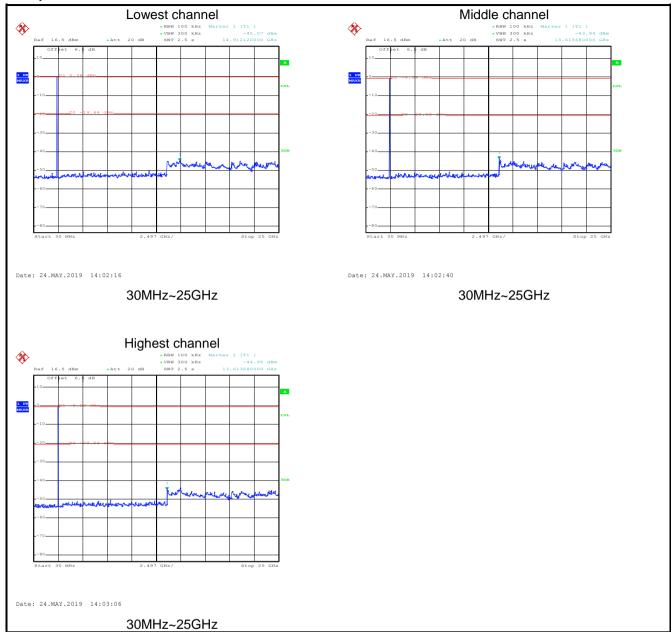
Product Name:	Mobile P	Mobile Phone				Product Model: KT5021				
Test By:	Mike	Mike				Test mode: BLE Tx mode				
Test Channel:	Highest	channel			Polarizatio	n:	Vertical	Vertical		
Test Voltage:	AC 120/	AC 120/60Hz			Environme	ent:	Temp: 2	Temp: 24℃ Huni: 57%		
	OWI ZE									
110 Level (dBu\	//m)			7					1	
100										
80							ECC	C PART 1	5 (DIO	
/	1						rcc	PARTI	3 (PK)	
60							FO	C DADT 4	5 (ALB	
50.00 PC	1	1					- FUL	C PART 1	DIAVII	
				~~		ter d				
40		2		~~		<u>jev</u>				
40		2	125							
		2	120							
20		2								
20		2								
		2	Fee		11-1				2500	
20	Road	Únt anna		quency (M	116	I imi+				
20 0 2478	Read req Level	Antenna Factor	Cable	Preamp		Limit Line	Over Limit		2500	
20 0 2478 F1	Read eq Level	Factor	Cable	Preamp Factor		Line	Over Limit	Remar	2500	
20 0 2478 F1	eq Level Hz dBuV	Factor ——dB/m	Cable Loss	Preamp Factor dB	Level	Line dBuV/m	Over Limit	Remar	2500	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	KT5021
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
-	MHz	—dBu∜	<u>dB</u> /m	<u>———</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500 2483.500								

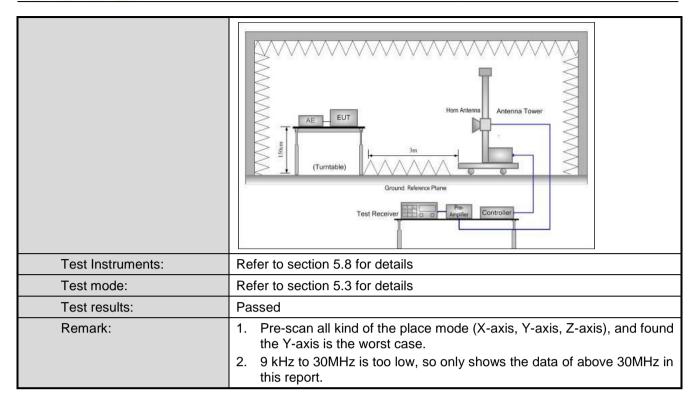
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

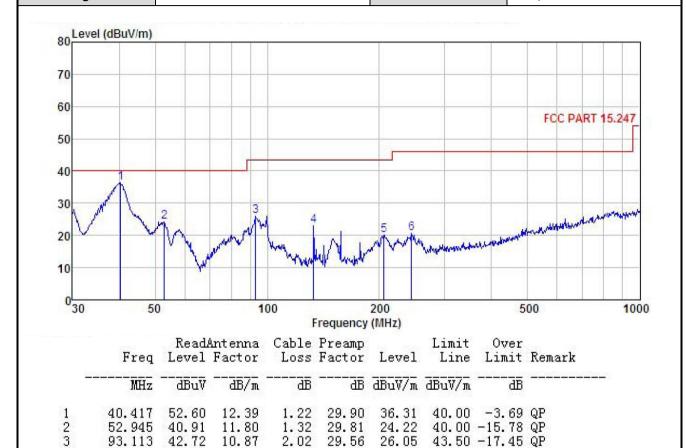
Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB 558074 D01 15.247 Meas Guidance v05r02							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.8 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:



6.7.2 Radiated Emission Method

6.7.2 Radiated Emission		0	005	- 145,000			
Test Requirement:	FCC Part 15 C		.205	and 15.209			
Test Method:	ANSI C63.10:20)13					
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	VB		Remark
	30MHz-1GHz	Quasi-pea			3001		Quasi-peak Value
	Above 1GHz	Peak		1MHz 3M			
Limite	Frequency	RMS	Lin	1MHz nit (dBuV/m @	3M	HZ	Average Value Remark
Limit:	30MHz-88M		LIII	40.0	3111)	C	Quasi-peak Value
	88MHz-216M			43.5			luasi-peak Value
							luasi-peak Value
	960MHz-1G	Hz		54.0		C	luasi-peak Value
	Above 1GH	lz –		54.0			Average Value
			1 .	74.0			Peak Value
Test Procedure:	1GHz)/1.5r The table we highest rad 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the meters and to find the restrict Specified B. If the emisses the limit specified EUT have 10 dE	n(above 10 was rotated iation. was set 3 hich was no ha height is to determental and was pected hen the anaximum receiver system on level of ecified, the would be margin wo	GHz d 36 d 36 d mould dis variable dentale den	z) above the 50 degrees to eters away to the first aried from one the maximulation and the maximulation are the maximulation as the eteroid by the first are	e groun o deter from the op of a ne met um valuitions of EUT was deter to Pea old Mo ak mod oe stop wise the done be	d at a rmine ne inter to due of the a as arraceights degreede. We was ped arrie emity one	table 0.8m(below a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 les to 360 degrees elect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	3m < 4m 4m 0.8m 1m				Antenna Search Antenn Test eiver —	



Measurement Data (worst case):

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	KT5021
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

29.56

29.31

28.79

28.57

26.05

23.14

20.20

20.76

43.50 -17.45 QP

43.50 -20.36 QP

43.50 -23.30 QP

46.00 -25.24 QP

4

5

93.113

133.151

205.675

244.232

42.72

40.18

35.29

34.05

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

10.87

9.95

10.84

12.46

The emission levels of other frequencies are very lower than the limit and not show in test report.

2.02

2.32

2.86

2.82

	Name:	Mobile Ph	one		P	Product Mo	del:	KT5021	KT5021			
est By:		Mike			Т	est mode:		BLE Tx	mode			
est Freq	luency:	30 MHz ~ 1 GHz Polarization: Horizontal										
est Volta	age:	AC 120/60	OHz		E	nvironme	nt:	Temp: 2	24℃	Н	luni: 57%	
Low	el (dBuV/m)											
80 Lev	er (dbdv/iii)											
70												
, 0												
60								50	CPART	1450	47	
50								FU	CPAR	15.2	4 <i>/</i>	
50												
40												
30					5	6				h. Marketty	الجرموق	
20	2		3		. M	6 		Mary Company Stations	Nagaging a park	J. Marie Land	لجندول	
20	2 مراره	Mary Market	M. M.	normal Maria	1 m	und May have	phage a boye, a dealer	manife or many the flower	Night productive for the	J. Marine	اجرموق	
0.00	market Change of	Marine Marine	Anna Maria	many My	\$ TA	und And property	shayara biyasi dada	market property and the second	Mary Mary Andrews	j. Majarah	bana)	
20 10	A SO	Marine and a second	100	normal Maria	5 Www. 5		Mayora bija ji dordir		Marketer			
20	2 10 50	Marine Marine	100	Fred	200 juency (MH		phayers by sail seador	500	A SALANDA AND		1000	
20 10			int enna	Cable	uency (MH Preamp	Iz)	Limit	500 Over				
20 10		ReadA Level	int enna	Cable	uency (MH Preamp		Limit	500				
20 10			int enna	Cable	uency (MH Preamp Factor	Iz)	Limit Line	500 Over				
10 0 30	Freq MHz	Level ——dBuV	ntenna Factor ——dB/m	Cable Loss dB	uency (MH Preamp Factor ————— dB	Level	Limit Line dBuV/m	500 Over Limit	Rema			
20 10 030	Freq MHz 30.000 40.135	Level dBuV 42.93 35.99	antenna Factor dB/m 10.60 12.40	Cable Loss dB 0.72 1.22	reamp Preamp Factor dB 29.98 29.90	Level dBuV/m 24.27 19.71	Limit Line dBuV/m 40.00 40.00	500 Over Limit ———————————————————————————————————	Rema			
20 10 030	Freq MHz 30.000 40.135 99.878	Level dBuV 42.93 35.99 34.13	ntenna Factor dB/m 10.60 12.40 12.41	Cable Loss dB 0.72 1.22 1.94	uency (MH Preamp Factor dB 29.98 29.90 29.53	Level dBuV/m 24.27 19.71 18.95	Limit Line dBuV/m 40.00 40.00 43.50	500 Over Limit 	Rema QP QP QP			
10 0 30	Freq MHz 30.000 40.135	Level dBuV 42.93 35.99	antenna Factor dB/m 10.60 12.40	Cable Loss dB 0.72 1.22	reamp Preamp Factor dB 29.98 29.90	Level dBuV/m 24.27 19.71	Limit Line dBuV/m 40.00 40.00	500 Over Limit 	Rema QP QP QP QP			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel: Lowest channel										
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	49.65	30.85	6.80	41.81	45.49	74.00	-28.51	Vertical		
4804.00	48.25	30.85	6.80	41.81	44.09	74.00	-29.91	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	40.11	30.85	6.80	41.81	35.95	54.00	-18.05	Vertical		
4804.00	39.98	30.85	6.80	41.81	35.82	54.00	-18.18	Horizontal		
			To at ak	annalı Mida	lla abannal					
				nannel: Midd						
				tector: Peak	value			l		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	49.50	31.20	6.86	41.84	45.72	74.00	-28.28	Vertical		
4884.00	50.12	31.20	6.86	41.84	46.34	74.00	-27.66	Horizontal		

(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization			
4884.00	49.50	31.20	6.86	41.84	45.72	74.00	-28.28	Vertical			
4884.00	50.12	31.20	6.86	41.84	46.34	74.00	-27.66	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	36.69	36.38	6.86	41.84	38.09	54.00	-15.91	Vertical			
4884.00	36.31	36.38	6.86	41.84	37.71	54.00	-16.29	Horizontal			
			•	•			•	•			

	Test channel: Highest channel											
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	49.52	31.63	6.91	41.87	46.19	74.00	-27.81	Vertical				
4960.00	50.22	31.63	6.91	41.87	46.89	74.00	-27.11	Horizontal				
			Dete	ctor: Avera	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4960.00	39.60	31.63	6.91	41.87	36.27	54.00	-17.73	Vertical				
4960.00	41.12	31.63	6.91	41.87	37.79	54.00	-16.21	Horizontal				

Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.