

Report No: JYTSZB-R01-2100103

FCC REPORT

Applicant:	JiangXi Lesia Technology Co., Limited			
Address of Applicant:	Yangjiahu District(South Of Xiangxing Avenue), Industrial Park, Gao'An City, Jlangxi Province, China			
Equipment Under Test (E	EUT)			
Product Name:	SMARTPHONE			
Model No.:	C5, KC5512			
Trade mark:	LESIA			
FCC ID:	2ATFDLESIAC5			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart B			
Date of sample receipt:	16 Mar., 2021			
Date of Test:	16 Mar., to 12 Apr., 2021			
Date of report issued:	12 Apr., 2021			
Test Result:	PASS *			

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	12 Apr., 2021	Original

Tested by:

Mike.OU Test Engineer

12 Apr., 2021 Date:

Reviewed by:

Winner Thang Project Engineer

Date: 12 Apr., 2021

Project No.: JYTSZE2103037

3 Contents

			Page
1	С	COVER PAGE	1
2	V	/ERSION	2
3	C	CONTENTS	3
4	_	EST SUMMARY	-
-			
5	G		5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	Test Mode	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8 5.9	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9 5.10	LABORATORY FACILITY	
	5.10		
_			
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	
	6.2	RADIATED EMISSION	11
7	Т	EST SETUP PHOTO	17
8	E	EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. 2. N/A: The EUT not applicable of the test item.				
Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	JiangXi Lesia Technology Co., Limited
Address:	Yangjiahu District(South Of Xiangxing Avenue), Industrial Park, Gao'An City, Jlangxi Province, China
Manufacturer/ Factory:	JiangXi Lesia Technology Co., Limited
Address:	Yangjiahu District(South Of Xiangxing Avenue), Industrial Park, Gao'An City, Jlangxi Province, China

5.2 General Description of E.U.T.

Product Name:	SMARTPHONE
Model No.:	C5, KC5512
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2500mAh
AC adapter:	Model: U100XSA Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2000mA
Remark:	Model No.: C5, KC5512 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode Detail description				
PC mode	Keep the EUT in Downloading mode(Worst case)			
Charging+Recording mode	Keep the EUT in Charging+Recording mode			
Charging+Playing mode	Keep the EUT in Charging+Playing mode			
FM mode	Keep the EUT in FM receiver mode			
GPS mode	Keep the EUT in GPS receiver mode			
The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model Serial Number		FCC ID/DoC
DELL	PC	OPTIPLEX7070 2J8XSZ2		DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

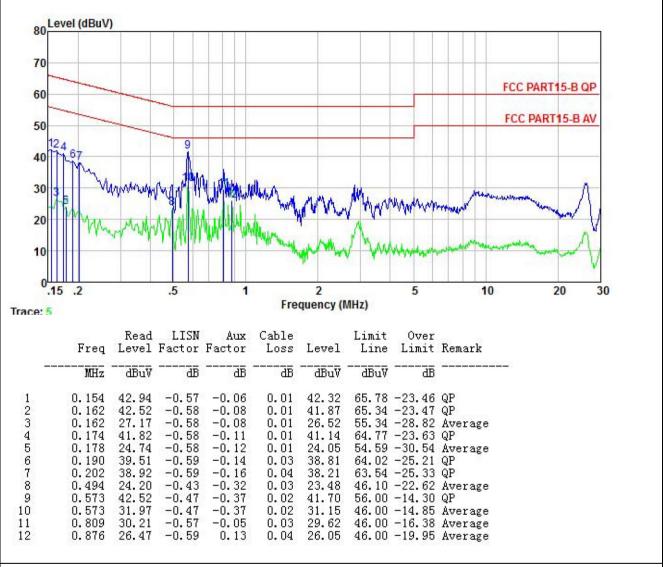
JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022	
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022	
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022	

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022		
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021		
Cable	HP	10503A	N/A	03-03-2021	03-02-2022		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

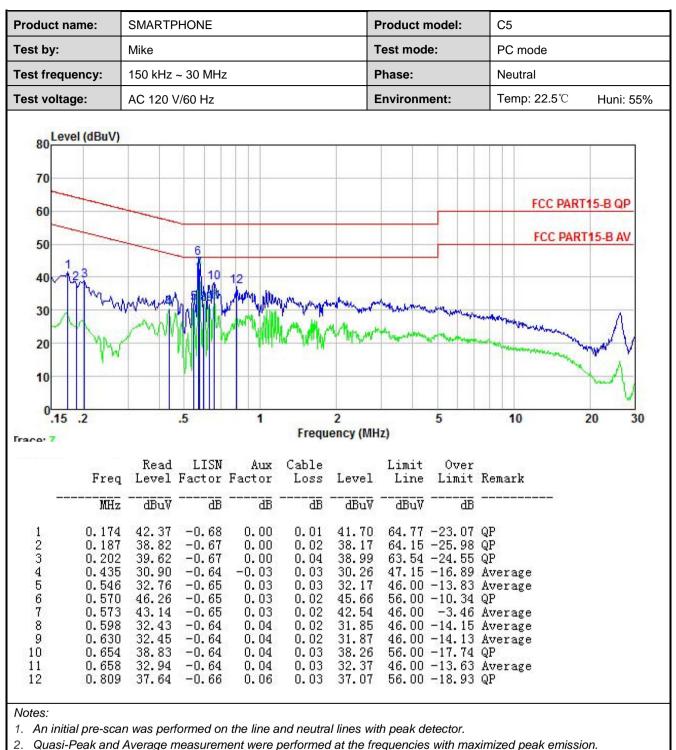
6 Test results and Measurement Data


6.1 Conducted Emission

Toot Poquiromont:	FCC Part 15 B Section 15.107		
Test Requirement:			
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit	(dBµV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	0.5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane		
Testence	Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	
Test procedure	 The E.U.T and simulators are impedance stabilization netw coupling impedance for the n The peripheral devices are a LISN that provides a 50ohm/ termination. (Please refers to photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.4(late) 	ork(L.I.S.N.). The prov neasuring equipment. Iso connected to the m 50uH coupling impeda the block diagram of t checked for maximum d the maximum emissi all of the interface cat	ide a 50ohm/50uH ain power through a nce with 50ohm he test setup and conducted on, the relative oles must be changed
Test Instruments:	Refer to section 5.11 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data:

Product name:	SMARTPHONE	Product model:	C5
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

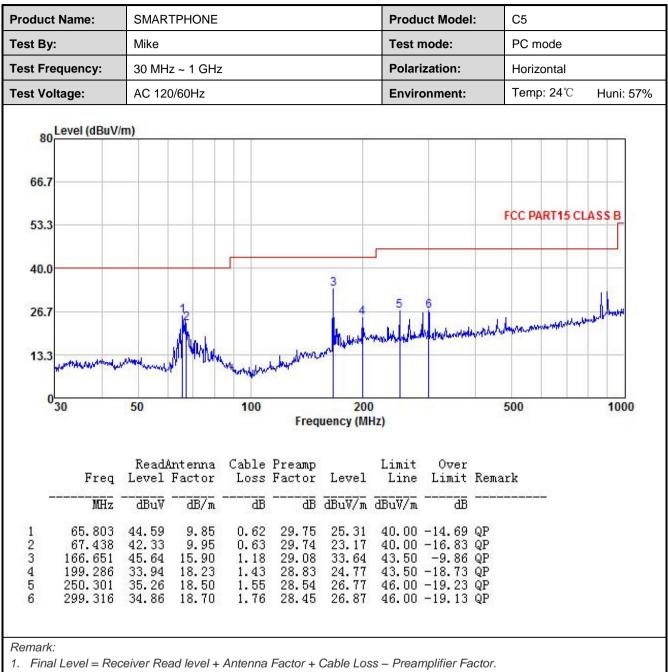
3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Project No.: JYTSZE2103037

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.109	9				
Test Frequency Range:	30MHz to 6000MI	Hz					
Test site:	Measurement Dis	tance: 3m (S	Sem	i-Anechoic (Chamber)		
Receiver setup:	Frequency	Detector	r	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-pea	ak	120kHz	300kHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MHz	Peak Value	
	Above IGHZ	RMS		1MHz	3MHz	Average Value	
Limit:	Frequenc		Lim	nit (dBuV/m	@3m)	Remark	
	30MHz-88M		40.0			Quasi-peak Value	
	88MHz-216MHz			43.5		Quasi-peak Value	
	216MHz-960MHz			46.0		Quasi-peak Value	
	960MHz-1G	iHz		54.0		Quasi-peak Value	
	Above 1G	-Iz		54.0		Average Value	
Test setup:				74.0		Peak Value	
	EUT Tum Table Ground Plane Above 1GHz	4m 4m •		RFT		1	
		EUT		Horn Antenna Horn Antenna moe Plane	Antenna Tower		
Test Procedure:	ground at a 3 n degrees to dete 2. The EUT was s which was mou 3. The antenna he ground to deter	neter semi-a ermine the p set 3 meters unted on the eight is varie rmine the ma	aneclositi awa top ed fro axim	hoic camber on of the hig ay from the in of a variable om one mete um value of	. The table phest radiat nterference pheight and er to four m the field st	e-receiving antenna, tenna tower. leters above the	

Project No.: JYTSZE2103037


	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

oduct Na	ame:	SMAR	TPHONE				Proc	duct Mod	el:	C5		
est By:		Mike						mode:		PC mode		
st Frequ	ency:	30 MH	z ~ 1 GH:				Pola	rization:		Vertical		
est Voltag	ge:	AC 120/60Hz Environment: Temp: 24°C Hu							Huni: 57%			
Lev	el (dBuV/	m)										
80												
66.7												
00.7												
53.3				_						FCC PART15	CLASSB	
									_			
							100			6		
40.0				-								
40.0			2				5					
40.0	1		2 3 W	h	Ť	4	5	ulouver	urphab	o low some her built not	afore details	
	brandaly	ndriquit ^{ing t}	1 3	haline	automatic determined	a and with the	5	alsonon w	ungagande	o lagon som hen standiger om	Anortheter	
26.7	brauptala	50	1 3	100		4 Autor 20 quency (M		alexanora.~v	wywhat	olloganger hander far en	40.900 × 1000	
26.7 13.3		50	ntenna	100 Cable		20 quency (N	AHz) Limit	Over Limit	Remar	500		
26.7 13.3		50 ReadA	ntenna	100 Cable	Fre Preamp Factor	20 quency (N	AHz) Limit Line	Limit	Remar	500		
26.7 13.3 0 30	Freq MHz 64.659	50 ReadA Level dBuV 47.93	ntenna Factor 	100 Cable Loss dB 0.61	Fre Preamp Factor dB 29.76	20 quency (M Level dBuV/m 28.63	MHZ) Limit Line dBuV/m 40.00	Limit 	 QP	500		
26.7 13.3 0 30	Freq MHz	50 ReadA Level dBuV 47.93 51.52	ntenna Factor 	100 Cable Loss dB 0.61 0.63	Free Preamp Factor dB 29.76 29.74	20 quency (N Level dBuV/m 28.63 32.33	<pre>//Hz) Limit Line dBuV/m 40.00 40.00</pre>	Limit dB -11.37 -7.67	QP QP	500		
26.7 13.3 0 30	Freq MHz 64.659 66.967 79.521 66.651	50 ReadA Level dBuV 47.93 51.52 42.13 36.68	ntenna Factor 	Cable Loss dB 0.61 0.63 0.69 1.18	Free Preamp Factor 29.76 29.74 29.64 29.08	20 quency (N Level dBuV/m 28.63 32.33 25.84 24.68	<pre>//Hz) Limit Line dBuV/m 40.00 40.00 40.00 43.50</pre>	Limit dB -11.37 -7.67 -14.16 -18.82	QP QP QP QP QP	500		
26.7 13.3 0 30	Freq MHz 64.659 66.967 79.521	50 ReadA Level dBuV 47.93 51.52 42.13	ntenna Factor 	100 Cable Loss dB 0.61 0.63 0.69	Free Preamp Factor 29.76 29.74 29.64 29.08 28.59	20 quency (N dBuV/m 28.63 32.33 25.84 24.68 29.40	<pre>Image Amplify Image Ampl</pre>	Limit dB -11.37 -7.67 -14.16	QP QP QP QP QP QP	500		

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Above 1GHz:

oduct	t Nam	e:	SMAR	TPHONE				Produc	t Model:	C5			
st By:	:		Mike						Test mode:		PC mode		
st Fre	equen	icy:	1 GHz	~ 6 GHz			Polarization:			Vertic	al		
st Vo	Itage:	:	AC 120)/60Hz				Enviror	ment:	Temp	: 24 ℃	Huni	: 57%
80	Level (dBuV/m	n)							FCC F	ART 15	B.PK	
										1001		DIN	
66.7													
53.3										FCC F	PART 15	5 B-AV	
55.5							1		habebalaheba da	unathrought	mont	MUN B	
40.0					human	her aller beneral	Wynesphynrastal	UNACHYPHIC	Call and All and All and				
	up.trafter	-	http://www.	internite-experiences and	APLANCE .					umaharada na			
26.7													
26.7													
26.7 13.3													
13.3	1000	1200	1	500	200						5000	6000	
13.3	1000	1200	1	500	200		ncy (MHz)				5000	6000	
13.3	1000	1200		500 Antenna	<i></i>	Freque		Limit	Over		5000	6000	
13.3	-		Read		Cable	Freque				Remark	5000	6000	
13.3	-		Read	Antenna Factor	Cable	Freque Preamp Factor		Line	Limit	Remark	5000	6000	
13.3 0 1	4796	Freq MHz 5.035	Read. Level dBuV 46.66	Antenna Factor dB/m 30.75	Cable Loss dB 12.37	Freques Preamp Factor 	Level dBuV/m 50.39	Line dBuV/m 74.00	Limit dB -23.61			6000	
13.3 0 1 1 2	4796	Freq MHz 5.035 5.035	Read. Level dBuV 46.66 38.41	Antenna Factor 	Cable Loss dB 12.37 12.37	Freques Preamp Factor dB 41.83 41.83	Level dBuV/m 50.39 42.14	Line <u>dBuV/m</u> 74.00 54.00	Limit <u>dB</u> -23.61 -11.86	 Peak Average		6000	
13.3 0 1 1 2 3	4796 4796 5208	Freq MHz 5.035 5.035 3.076	Read. Level dBuV 46.66 38.41 46.26	Antenna Factor 	Cable Loss dB 12.37 12.37 13.00	Freques Preamp Factor dB 41.83 41.83 41.94	Level dBuV/m 50.39 42.14 51.56	Line dBuV/m 74.00 54.00 74.00	Limit -23.61 -11.86 -22.44	 Peak Average Peak		6000	
13.3 0 1 1 2	4796 4796 5208 5208	Freq MHz 5.035 5.035	Read. Level dBuV 46.66 38.41	Antenna Factor 	Cable Loss dB 12.37 12.37	Freques Preamp Factor dB 41.83 41.83 41.94 41.94	Level dBuV/m 50.39 42.14 51.56 43.66 54.18	Line dBuV/m 74.00 54.00 74.00 54.00 74.00 74.00	Limit -23.61 -11.86 -22.44 -10.34 -19.82	 Peak Average Peak Average		6000	

The emission levels of other frequencies are very lower than the limit and not show in test report.

The emission levels of other frequencies are very lower than the limit and not show in test report. 2.