

# Page 24 of 53

### Report No.: KS2007S00666E02





# Page 25 of 53

#### Report No.: KS2007S00666E02





# 3.4. Conducted Output Power Test

# Limit

# FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

| FCC Part 15 Subpart E(15.407)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|--|
| Test Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                          | Frequency Range(MHz) |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fixed: 1 Watt (30dBm)<br>Mobile and Portable:<br>250mW (24dBm) | 5150~5250            |  |  |  |  |  |  |  |  |
| Conducted Output Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250mW (24dBm)                                                  | 5250~5350            |  |  |  |  |  |  |  |  |
| e de la companya de | 250mW (24dBm)                                                  | 5470~5725            |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Watt (30dBm)                                                 | 5725~5850            |  |  |  |  |  |  |  |  |

# Test Configuration



#### Test Procedure

- The EUT was tested according to according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.
- 2. The maximum conducted output power may be measured using a broadband AVG RF power meter.
- 3. Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 4. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 5. Record the measurement data.

#### Test Mode

Please refer to the clause 2.2.

### Test Result

|           | an a | 2101/07/07/07/07/07/07/07/07/07/07/07/07/07/ |                           |            |         |  |
|-----------|------------------------------------------|----------------------------------------------|---------------------------|------------|---------|--|
| Band      | Test Mode                                | Channel                                      | Output Power (dBm)        | Limit(dBm) | Result  |  |
|           | 2 h.                                     | CH∟                                          | 5.90                      |            |         |  |
|           | 802.11a                                  | CH <sub>M</sub>                              | 7.01                      | 30         | Pass    |  |
|           |                                          | СНн                                          | 8.00                      |            |         |  |
|           | 802.11n(HT20)                            | CH∟                                          | -1.79                     |            | Pass    |  |
| 0-111-3   |                                          | СНм                                          | -0.58                     | 30         |         |  |
| Ŷ.        |                                          | СНн                                          | -0.26                     |            |         |  |
|           | 802 11p(UT40)                            | CH∟                                          | -6.59                     | 20         | Pass    |  |
|           | 002.111(H140)                            | СНн                                          | -4.65                     |            | F d 5 5 |  |
| Remark Th | ELIT provides on                         | antennas for t                               | ransmitting and receiving | nd         |         |  |

and receiving. ig Gain=1.5dBi< 6dBi So Pout=Plimit



# 3.5. Maximum Power Spectral Density Test

# Limit

FCC CFR Title 47 Part 15 Subpart E Section 15.407(a):

| FCC Part 15 Subpart E(15.407) |                                                                                     |                      |  |  |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|--|
| Test Item                     | Limit                                                                               | Frequency Range(MHz) |  |  |  |  |  |  |  |  |
|                               | Other than Mobile and<br>Portable : 17dBm/MHz<br>Mobile and Portable :<br>11dBm/MHz | 5150~5250            |  |  |  |  |  |  |  |  |
| Power Spectral Density        | 11dBm/MHz                                                                           | 5250~5350            |  |  |  |  |  |  |  |  |
|                               | 11dBm/MHz                                                                           | 5470~5725            |  |  |  |  |  |  |  |  |
| ×                             | 30dBm/500kHz                                                                        | 5725~5850            |  |  |  |  |  |  |  |  |

### **Test Configuration**



## Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) Set the RBW to: 300kHz
- (5) Set the VBW to: ≥3RBW
- (6) Detector: RMS
- (7) Trace: Max Hold
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

#### Note :

1. For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules v02, section II.F.5., it is acceptable to set RBW at 1MHz and VBW at 3MHz if the spectrum analyzer does not have 500kHz RBW.

2. The value measured with RBW=1MHz is to be added with 10log(500kHz/MHz) which is -3dB. For example, if the measured value is +10dBm using RBW=1MHz (that is +10dBm/MHz), then the converted value will be +7dBm/500kHz.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.



# Test Mode

Please refer to the clause 2.2.

# Test Result

| Band    | Test Mode      | Channel         | Power Spectral Density<br>(dBm/MHz) | Limit(dBm/kHz) | Result |
|---------|----------------|-----------------|-------------------------------------|----------------|--------|
|         |                | CH∟             | 1.55                                |                |        |
|         | 802.11a        | CHM             | 2.77                                | 30/500         | Pass   |
| ×       |                | СНн             | 4.94                                | /              |        |
|         |                | CH∟             | -3.65                               |                | Pass   |
| 0-111-5 | 802.11n(HT20)  | CH <sub>M</sub> | -1.94                               | 30/500         | 1      |
|         | 15             | СНн             | -1.45                               |                |        |
|         | 902 11p(UT40)  | CH∟             | -5.28                               | 20/500         | Deee   |
|         | 002.1111(H140) | СНн             | -2.73                               | 30/500         | Pass   |



# Page 30 of 53

### Report No.: KS2007S00666E02





# Page 31 of 53

#### Report No.: KS2007S00666E02





# Page 32 of 53

### Report No.: KS2007S00666E02





# 3.6. Frequency Stability Measurement

Limit

| FCC Part 15 Subpart C(15.407) |                                                             |                      |  |  |  |  |  |  |  |  |
|-------------------------------|-------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|--|
| Test Item                     | Limit                                                       | Frequency Range(MHz) |  |  |  |  |  |  |  |  |
|                               | Specified in the user's                                     | 5150~5250            |  |  |  |  |  |  |  |  |
| Deck Everyteien Massurement   | manual, the transmitter center frequency tolerance shall be | 5250~5350            |  |  |  |  |  |  |  |  |
| Peak Excursion Measurement    | ±20 ppm maximum for the 5<br>GHz band (IEEE 802.11n         | 5470~5725            |  |  |  |  |  |  |  |  |
|                               | specification)                                              | 5725~5850            |  |  |  |  |  |  |  |  |

## Test Configuration



# Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
- (6) Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency.
- (7) Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- (8)Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

NOTE: The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

## Test Mode

Please refer to the clause 2.2.



# Test Result

Pre-scan 802.11a/n(HT20/HT40)modulation, and found the 802.11a modulation 5745MHz which it is worse case, so only show the test data for worse case.

| Band U-NII-3                        |                             |  |  |  |  |  |  |  |  |
|-------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| 801.11a                             | 5745 MHz                    |  |  |  |  |  |  |  |  |
| Voltage vs. Free                    | quency Stability            |  |  |  |  |  |  |  |  |
| Voltage (V)                         | Measurement Frequency (MHz) |  |  |  |  |  |  |  |  |
| 7.40                                | 5745.001                    |  |  |  |  |  |  |  |  |
| 6.66                                | 5745.000                    |  |  |  |  |  |  |  |  |
| 8.14                                | 5744.997                    |  |  |  |  |  |  |  |  |
| Max. Deviation (MHz)                | 0.001                       |  |  |  |  |  |  |  |  |
| Max. Deviation (ppm)                | 0.1741                      |  |  |  |  |  |  |  |  |
| Limit (ppm)                         | 20                          |  |  |  |  |  |  |  |  |
| Result                              | Pass                        |  |  |  |  |  |  |  |  |
| Temperature vs. Frequency Stability |                             |  |  |  |  |  |  |  |  |
| Temperature (°C)                    | Measurement Frequency (MHz) |  |  |  |  |  |  |  |  |
| -30                                 | 5745.002                    |  |  |  |  |  |  |  |  |
| -20                                 | 5745.002                    |  |  |  |  |  |  |  |  |
| -10                                 | 5745.002                    |  |  |  |  |  |  |  |  |
| 0                                   | 5745.001                    |  |  |  |  |  |  |  |  |
| 10                                  | 5744.997                    |  |  |  |  |  |  |  |  |
| 20                                  | 5744.996                    |  |  |  |  |  |  |  |  |
| 30                                  | 5744.996                    |  |  |  |  |  |  |  |  |
| 40                                  | 5744.997                    |  |  |  |  |  |  |  |  |
| 50                                  | 5745.001                    |  |  |  |  |  |  |  |  |
| Max. Deviation (MHz)                | 0.002                       |  |  |  |  |  |  |  |  |
| Max. Deviation (ppm)                | 0.3481                      |  |  |  |  |  |  |  |  |
| Limit (ppm)                         | 20                          |  |  |  |  |  |  |  |  |
| Result                              | Pass                        |  |  |  |  |  |  |  |  |



# 3.7. Band Edge Emissions(Radiated)

# Limit

### FCC CFR Title 47 Part 15 Subpart C Section 15.407(b): Limits of unwanted emission out of the restricted bands

| Frequency (MHz) | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dBuV/m) |
|-----------------|-------------------|------------------------------------------|
| 5150~5250       | -27               | 68.2                                     |
| 5250~5350       | -27               | 68.2                                     |
| 5470~5725       | -27               | 68.2                                     |
|                 | -27(Note 2)       | 68.2                                     |
|                 | 10(Note 2)        | 105.2                                    |
| 5725~5850       | 15.6(Note 2)      | 110.8                                    |
|                 | 27(Note 2)        | 122.2                                    |

#### NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

### $1000000\sqrt{30P}$

 $E = \frac{1000000 \text{ (V301)}}{3} \text{ uV/m, where P is the eirp (Watts)}$ 

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

\* Increase/Decreases with the linearly of the frequency.

For emission above 1GHz and in restricted band, according to FCC KDB 789033 D02 General UNII Test Procedure, all emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.  $E[dB\mu V/m] = EIRP[dBm] + 95.2$ , for d = 3 meters.

# Test Configuration



## Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow: RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz RMS detector for Average value.



#### Test Mode

Please refer to the clause 2.2.

# Test Results

#### Note:

1.Measurement = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

2.Pre-scan 802.11a/n(HT20/HT40) modulation, and found the 802.11a modulation which it is worse case for above 1GHz, so only show the test data for worse case.

| Test  | Vol       | tag    | je:                    | DC 7     | .4V   |       |              |       |         |          |       | X        |         | E.      |     |           |       |            |       |      |
|-------|-----------|--------|------------------------|----------|-------|-------|--------------|-------|---------|----------|-------|----------|---------|---------|-----|-----------|-------|------------|-------|------|
| Ant.  | Pol       | .:     |                        | Horiz    | onta  | l     |              |       |         |          |       |          | Y       |         |     |           |       |            |       | X    |
| Test  | Mo        | de:    |                        | 802.7    | 11a N | /lode | 5745         | 5MHz  | z       | A.       |       |          |         |         |     |           |       |            |       |      |
| 110.0 | ) dBu     | uV /n  | 1                      |          |       |       |              |       |         |          |       |          |         |         |     |           |       |            |       |      |
| 100   | -         |        |                        |          |       |       |              |       | they .  |          |       |          |         |         |     |           |       |            |       |      |
| 90    | -         |        |                        |          |       |       |              | 00 OA |         |          | +     |          |         |         | -   |           |       |            |       |      |
| 80    |           |        |                        |          |       |       | _            |       | +       |          | -     |          | _       |         |     |           |       |            | _     |      |
| 70    |           |        |                        |          |       |       | signal .     |       | ~       |          | _     |          |         |         | FCC | Part 1    | 5.407 | (PK)       |       |      |
| 60    |           |        |                        |          |       | 5     | 4 <b>7</b> • |       |         | wy       |       |          |         |         | FCC | Part 1    | 5 407 | IAVI       |       |      |
| 50    |           |        |                        |          | Pur   | × \$  |              |       |         | NA       | WHYM  | (        |         |         |     |           |       |            |       |      |
| 40    | which has | مردرار | howay                  | monthing | Nutr  |       |              |       | _       |          |       | When     | we have | utions. | man | North Par | may   | maharmadal | march |      |
| 30    |           |        |                        |          | -     |       |              |       | _       |          |       |          |         |         |     |           |       |            |       |      |
| 20    |           |        |                        |          |       |       |              |       |         |          |       |          |         |         |     |           |       |            |       |      |
| 10.0  |           |        |                        |          |       |       |              |       |         |          |       |          |         |         |     |           |       | Canada -   |       |      |
| 56    | 55.000    | ) 5    | 675.00 5               | 695.00   | 571   | 5.00  | 5735.0       | 00    | (MHz)   | 5        | 775.0 | 00       | 5795    | .00     | 581 | 5.00      | 583   | 5.00       | 5855  | 5.00 |
| No    | . M       | k.     | Freq                   | . F      | Le    | vel   | F            | acto  | rt<br>F | Mea<br>m | en    | re-<br>t | Li      | mit     |     | Ove       | r     |            |       |      |
|       |           |        | MHz                    |          | (dBu  | IV)   | (0           | dB/m  | )       | (dBu     | V/m   | 1)       | (dB     | uV/m    | )   | (dB)      |       | Dete       | ctor  |      |
| 1     |           |        | 5711.64                | 0        | 56.   | 14    | -4           | .45   |         | 51       | .69   | )        | 68      | .20     | 9   | 16.       | 51    | pe         | ak    |      |
| 2     | *         |        | 571 <mark>1</mark> .64 | 0        | 54.9  | 93    | -4           | .45   |         | 50       | .48   | 3        | 54      | .00     |     | -3.5      | 2     | A٧         | /G    |      |
| 3     | 6         | 1000   | 5717.56                | 0        | 58.3  | 38    | -4           | .43   |         | 53       | .95   | 5        | 68      | .20     | ŝ   | 14.2      | 25    | pe         | ak    |      |
| 4     | 8         |        | 5717.56                | 0        | 54.   | 10    | -4           | .43   |         | 49       | .67   |          | 54      | .00     |     | -4.3      | 3     | A١         | /G    |      |
| 5     |           | 1      | 5725.00                | 0        | 66.   | 17    | -4           | .43   |         | 61       | .74   | ŀ.       | 68      | .20     |     | -6.4      | 6     | pe         | ak    |      |
| 6     | i.        |        | 5725.00                | 0        | 53.3  | 34    | -4           | .43   |         | 48       | .91   |          | 54      | .00     |     | -5.0      | 9     | AV         | /G    |      |

Measurement = Reading level + Correct Factor

| Test      | Volta    | ge:        | DC 7     | ′.4V       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |            |                   |                 |                                                                                                                |         |           |         |
|-----------|----------|------------|----------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|------------|-------------------|-----------------|----------------------------------------------------------------------------------------------------------------|---------|-----------|---------|
| Ant.      | Pol.     |            | Verti    | cal        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |            | × .               |                 |                                                                                                                |         |           |         |
| Test      | Mode     | ):         | 802.     | 11a N      | /lode       | 5745 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1Hz           | 200.       |            |                   |                 |                                                                                                                |         |           |         |
| 100.0     | j dBuV/  | m          |          |            |             | in the second se |               |            |            |                   |                 | 1                                                                                                              |         |           |         |
| 90        |          |            |          |            |             | $\cap$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1             |            |            |                   |                 |                                                                                                                |         |           |         |
| 80        |          |            |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rightarrow$ |            |            |                   |                 | -                                                                                                              |         |           |         |
| 70        |          |            |          |            |             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _\            |            |            |                   | FC              | C Part 1                                                                                                       | 5.407   | (PK)      |         |
| 60        |          |            |          |            | 3           | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | and a wat  |            |                   | FD              | C Part 1                                                                                                       | 5.407   | (AV)      |         |
| 50        |          |            |          | -          | × *         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | "Aug       | helming    |                   |                 |                                                                                                                |         |           |         |
| 40        | Annormal | manumumulu | hermined | word       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | Jul .      | the month         | Mundersontation | where the second se | tenting | his Munda | rohome  |
| 30        |          |            |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |            |                   |                 |                                                                                                                |         |           |         |
| 20        | <u>.</u> |            |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |            | _                 |                 |                                                                                                                |         |           |         |
| 10        |          | _          |          |            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            |            |                   |                 |                                                                                                                |         |           |         |
| 0.0<br>56 | 55.000   | 5675.00    | 5695.00  | 571        | 5.00        | 5735.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (MH)          | ) 577      | 75.00      | 5795.0            | 0 58            | 15.00                                                                                                          | 583     | 5.00      | 5855.00 |
| No        | . Mk.    | Fre        | q.       | Read<br>Le | ding<br>vel | Corr<br>Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ect<br>tor    | Meas<br>me | ure-       | Lin               | nit             | Ove                                                                                                            | er      |           |         |
|           |          | MHz        | z        | (dBu       | IV)         | (dB/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'm)           | (dBuV      | /m)        | (dBu              | V/m)            | (dB)                                                                                                           | )       | Dete      | ctor    |
| 1         |          | 5711.2     | 80       | 54.0       | 08          | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5             | 49.6       | 53         | 68.               | 20              | -18.                                                                                                           | 57      | pe        | ak      |
| 2         |          | 5711.2     | 80       | 54.0       | 08          | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5             | 49.6       | 63         | 54.               | 00              | -4.3                                                                                                           | 37      | AV        | 'G      |
| 3         |          | 5717.7     | 80       | 57.8       | 89          | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3             | 53.4       | <b>1</b> 6 | 68.               | 20              | -14.                                                                                                           | 74      | pe        | ak      |
| 4         | 8        | 5717.7     | 80       | 53.        | 59          | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3             | 49.1       | 16         | 54.               | 00              | -4.8                                                                                                           | 34      | AV        | 'G      |
| 5         | 8        | 5725.0     | 00       | 62.        | 53          | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3             | 58.1       | 10         | 68.               | 20              | -10.                                                                                                           | 10      | pe        | ak      |
| 6         | *        | 5725.0     | 00       | 54.9       | 90          | -4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3             | 50.4       | 17         | <mark>54</mark> . | 00              | -3.5                                                                                                           | 53      | AV        | 'G      |

Measurement = Reading level + Correct Factor

| Test        | Volta      | ge:                                     | DC               | 7.4V           |          |             |            |          | - La         |        |           |                       |            |
|-------------|------------|-----------------------------------------|------------------|----------------|----------|-------------|------------|----------|--------------|--------|-----------|-----------------------|------------|
| Ant.        | Pol.       |                                         | Hori             | zontal         |          |             |            |          |              |        |           |                       |            |
| Test        | Mode       | ):                                      | 802.             | 11a Mod        | le 582   | 25MH        | lz 🛛       | Mar.     |              |        |           |                       |            |
| 110.0<br>Г  | dBuV/      | m                                       |                  |                |          |             |            |          |              |        | E.        | 1                     |            |
| 100         |            |                                         |                  |                |          | (           |            | 1        |              |        |           |                       |            |
| 90          |            |                                         |                  |                |          |             |            | 1        |              |        |           |                       |            |
| 80          |            |                                         |                  |                |          | _           |            |          |              |        |           |                       |            |
| 70          |            |                                         |                  |                |          |             |            |          |              |        | FCC Par   | t 15.407 (PK)         |            |
| 60          |            |                                         |                  |                |          | 1           |            | he       |              |        |           |                       |            |
|             |            |                                         |                  | _              | met      | r           | _          | - MAR    | 1            |        | FCC Par   | t 15.407 (AV          | · · · · ·  |
| 50          |            |                                         |                  | worker w       | - And    |             |            |          | * myler      | mul    |           |                       |            |
| 40          | an and the | International International Constrained | application with | merter         |          |             |            |          |              |        | munchened | howeveryter           | mathematic |
| 30 -        |            |                                         |                  |                |          |             |            |          |              |        | -         |                       |            |
| 20          |            |                                         |                  |                |          |             |            |          |              |        |           |                       |            |
| 10.0<br>572 | 25.000     | 5745.00                                 | 5765.00          | 5785.00        | 5805     | 5.00        | (MHz)      | 5845     | .00 5        | 865.00 | 5885.00   | 5905.00               | ) 5925.00  |
| No.         | . Mk.      | Fr                                      | eq.              | Readir<br>Leve | ng<br>el | Cori<br>Fac | ect<br>tor | Mea<br>m | sure-<br>ent | Lin    | nit       | Over                  |            |
|             |            | M                                       | Ηz               | (dBuV)         | )        | (dB         | /m)        | (dBu     | V/m)         | (dBu   | V/m)      | (dB)                  | Detector   |
| 1           |            | 5850.                                   | 000              | 59.17          |          | -4.´        | 14         | 55       | .03          | 68.    | 20        | -13.17                | peak       |
| 2           | *          | 5850.                                   | 000              | 54.01          |          | -4.1        | 14         | 49       | .87          | 54.    | 00        | -4.13                 | AVG        |
| 3           | ł.         | 5892.                                   | 780              | 56.21          |          | -4.0        | )4         | 52       | .17          | 68.    | 20        | - <mark>16.0</mark> 3 | peak       |
| 4           | 8          | 5892.                                   | 780              | 53.19          |          | -4.(        | )4         | 49       | .15          | 54.    | 00        | -4.85                 | AVG        |

Measurement = Reading level + Correct Factor

| Test \ | Volta   | ge:        | DC 7         | ′.4V                |            |                 |                |            |        |                 |                         |
|--------|---------|------------|--------------|---------------------|------------|-----------------|----------------|------------|--------|-----------------|-------------------------|
| Ant. I | Pol.    |            | Verti        | cal                 |            |                 |                | Y          |        |                 |                         |
| Test I | Mode    | :          | 802.         | 11a Mode            | 5825M      | Hz 🔬            | h.             |            |        |                 |                         |
| 110.0  | dBuV/   | m          | - T          |                     |            |                 |                |            | i      |                 |                         |
| 100 -  |         |            |              |                     |            | manan           | 1              |            |        |                 |                         |
| 90     |         |            |              |                     |            |                 | 1              |            |        |                 |                         |
| 80     |         | _          |              | _                   | _          |                 |                |            |        |                 |                         |
| 70     |         |            |              |                     |            |                 | 1              |            | FCC Pa | art 15.407 (PK) |                         |
| 60     |         |            |              |                     | and and a  |                 | and the second |            |        |                 |                         |
| 50     |         |            |              |                     | rut        |                 | - Au           | h.         | FCC Pa | 15.407 (AV)     |                         |
| 40     | . del   | malemetrow | بعرب الملاسم | munter              |            |                 | *              | maneringth | manuna | Martines        | will a                  |
| 40     | And And |            |              |                     |            |                 |                |            |        | and the first   | . And the second second |
| 30     |         |            |              |                     |            |                 |                |            |        |                 |                         |
| 20     |         |            |              |                     |            |                 |                |            |        |                 |                         |
| 572    | 5.000   | 5745.00    | 5765.00      | 5785.00             | 5805.00    | (MHz)           | 5845.00        | 5865.00    | 5885.0 | 0 5905.00       | 5925.00                 |
| No.    | Mk.     | Fr         | eq.          | Reading<br>Level    | g Co<br>Fa | orrect<br>actor | Measur<br>ment | e-<br>Li   | mit    | Over            |                         |
|        |         | М          | Hz           | (dBuV)              | (0         | dB/m)           | (dBuV/m)       | ) (dB      | uV/m)  | (dB)            | Detector                |
| 1      |         | 5850       | 000          | 61.67               | -4         | .14             | 57.53          | 68         | 3.20   | -10.67          | peak                    |
| 2      |         | 5850       | .000         | 50.95               | -4         | .14             | 46.81          | 54         | 1.00   | -7.19           | AVG                     |
| 3      |         | 5892       | 780          | 56.2 <mark>1</mark> | -4         | .04             | 52.17          | 68         | 8.20   | -16.03          | peak                    |
| 4      | *       | 5892       | 780          | 53.93               | -4         | .04             | 49.89          | 54         | 1.00   | -4.11           | AVG                     |
|        |         |            |              |                     |            |                 |                |            |        |                 |                         |

Measurement = Reading level + Correct Factor

# 3.8. Radiated Spurious Emissions

# Limit

# FCC CFR Title 47 Part 15 Subpart E Section 15.407(b):

Radiated Emission Limits (9 kHz~1000 MHz)

| Frequency<br>(MHz) | Field Strength<br>(microvolt/meter) | Measurement Distance<br>(meters) |
|--------------------|-------------------------------------|----------------------------------|
| 0.009~0.490        | 2400/F(KHz)                         | 300                              |
| 0.490~1.705        | 24000/F(KHz)                        | 30                               |
| 1.705~30.0         | 30                                  | 30                               |
| 30~88              | 100                                 | 3                                |
| 88~216             | 150                                 | 3                                |
| 216~960            | 200                                 | 3                                |
| Above 960          | 500                                 | 3                                |

## Radiated Emission Limit (Above 1000MHz)

| Frequency  | Distance Meters(at 3m) |         |  |  |  |
|------------|------------------------|---------|--|--|--|
| (MHz)      | Peak                   | Average |  |  |  |
| Above 1000 | 74                     | 54      |  |  |  |

## Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)= 20log Emission Level (uV/m)

## Limits of unwanted emission out of the restricted bands

| Frequency (MHz) | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dBuV/m) |
|-----------------|-------------------|------------------------------------------|
| 5150~5250       | -27               | 68.2                                     |
| 5250~5350       | -27               | 68.2                                     |
| 5470~5725       | -27               | 68.2                                     |
|                 | -27(Note 2)       | 68.2                                     |
| E725- 5950      | 10(Note 2)        | 105.2                                    |
| 5725~5650       | 15.6(Note 2)      | 110.8                                    |
|                 | 27(Note 2)        | 122.2                                    |

## NOTE:

E=-

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$\frac{1000000\sqrt{30P}}{2}$$
 uV/m, where P is the eirp (Watts)

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.





### Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz RMS detector for Average value.

# Test Mode

Please refer to the clause 2.2.

## Test Result

## 9 KHz~30 MHz and 18GHz~40GHz

From 9 KHz~30 MHz and 18GHz~40GHz: Conclusion: PASS

#### Note:

1) Measurement = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 5) Pre-scan 802.11a/n(HT20/HT40) modulation, and found the 802.11a modulation 5745MHz which it is worse case for 30MHz-1GHz, so only show the test data for worse case.
- 6) Pre-scan 802.11a/n(HT20/HT40) modulation, and found the 802.11a modulation which it is worse case for above 1GHz, so only show the test data for worse case.

30MHz-1GHz



| No. | Mk. | Freq.    | Reading<br>Level    | Correct<br>Factor     | Measure-<br>ment | Limit    | Over                  |          |
|-----|-----|----------|---------------------|-----------------------|------------------|----------|-----------------------|----------|
|     |     | MHz      | (dBuV)              | (dB/m)                | (dBuV/m)         | (dBuV/m) | (dB)                  | Detector |
| 1   |     | 119.9817 | 44.55               | - <mark>13.4</mark> 8 | 31.07            | 43.50    | - <mark>12.4</mark> 3 | QP       |
| 2   |     | 216.0236 | 42.36               | -11.38                | 30.98            | 46.00    | -15.02                | QP       |
| 3   |     | 312.0700 | 50.00               | -8.24                 | 41.76            | 46.00    | -4.24                 | QP       |
| 4   |     | 528.0606 | 43.2 <mark>1</mark> | -3.15                 | 40.06            | 46.00    | -5.94                 | QP       |
| 5   |     | 599.9921 | 45.49               | -0.73                 | 44.76            | 46.00    | -1.24                 | QP       |
| 6   |     | 665.8035 | 43.64               | -1.02                 | 42.62            | 46.00    | -3.38                 | QP       |

Measurement = Reading Level+ Correct Factor

| est | Voltage:             | DC 7.4V   |          |            |           | $\sim$             |                        |            |
|-----|----------------------|-----------|----------|------------|-----------|--------------------|------------------------|------------|
| ht. | Pol.                 | Vertical  |          |            | ~ ~       |                    |                        |            |
| est | Mode:                | TX 802.11 | a Mode   | 5745MHz    | (U-NII-3) | ~                  |                        |            |
| em  | nark:                | Only wors | e case i | s reported |           |                    |                        |            |
| 0.0 | dBuV/m               |           |          |            |           |                    |                        |            |
| 0   |                      |           |          |            |           |                    |                        |            |
| )   | т                    |           |          |            |           |                    |                        |            |
| i - |                      |           |          |            |           | FCC Part 15        | C (30MHz-1GHz)         |            |
| í i |                      |           |          |            |           |                    | Margin 6 dB            | -          |
| •   |                      | ſ         |          |            | 3         | 8 1.4              | 5 ¥                    |            |
| 0   |                      |           | M        | N. L. M. I | 1 what    | Jand Market Market | Caller Allahalling and | reitigenth |
| 0   | Appelran was tradien | Mundhin   | wwwww    | "MAY"      | Manduta   |                    |                        |            |
| 0.0 |                      |           |          |            |           |                    |                        |            |
| 30. | .000                 | 60        | 100      | (MHz)      |           | 50                 | )                      | 100        |

| MHz      | (dBuV)                                                               | 100000                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |
|----------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                      | (dB/m)                                                                                                           | (dBuV/m)                                                                                                                                                      | (dBuV/m)                                                                                                                                                                                                   | (dB)                                                                                                                                                                                                                                                    | Detector                                                                                                                                                                                                                                                                                            |
| 119.9986 | 55.79                                                                | - <mark>13.4</mark> 8                                                                                            | 42.31                                                                                                                                                         | 43.50                                                                                                                                                                                                      | -1.19                                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                  |
| 168.0005 | 45.59                                                                | -14.84                                                                                                           | 30.75                                                                                                                                                         | 43.50                                                                                                                                                                                                      | -12.75                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                  |
| 264.0040 | 42.94                                                                | -9.60                                                                                                            | 33.3 <mark>4</mark>                                                                                                                                           | 46.00                                                                                                                                                                                                      | - <mark>12.6</mark> 6                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                  |
| 312.0700 | 42.20                                                                | -8.24                                                                                                            | <b>33.96</b>                                                                                                                                                  | 46.00                                                                                                                                                                                                      | -12.04                                                                                                                                                                                                                                                  | QP                                                                                                                                                                                                                                                                                                  |
| 552.1082 | 41.18                                                                | -2.39                                                                                                            | 38.79                                                                                                                                                         | 46.00                                                                                                                                                                                                      | -7.21                                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                  |
| 599.9521 | 43.81                                                                | -0.73                                                                                                            | 43.08                                                                                                                                                         | 46.00                                                                                                                                                                                                      | -2.92                                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                  |
|          | 119.9986<br>168.0005<br>264.0040<br>312.0700<br>552.1082<br>599.9521 | MHz (dBuV)   119.9986 55.79   168.0005 45.59   264.0040 42.94   312.0700 42.20   552.1082 41.18   599.9521 43.81 | MHz (dBuV) (dB/m)   119.9986 55.79 -13.48   168.0005 45.59 -14.84   264.0040 42.94 -9.60   312.0700 42.20 -8.24   552.1082 41.18 -2.39   599.9521 43.81 -0.73 | MHz (dBuV) (dB/m) (dBuV/m)   119.9986 55.79 -13.48 42.31   168.0005 45.59 -14.84 30.75   264.0040 42.94 -9.60 33.34   312.0700 42.20 -8.24 33.96   552.1082 41.18 -2.39 38.79   599.9521 43.81 -0.73 43.08 | MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m)   119.9986 55.79 -13.48 42.31 43.50   168.0005 45.59 -14.84 30.75 43.50   264.0040 42.94 -9.60 33.34 46.00   312.0700 42.20 -8.24 33.96 46.00   552.1082 41.18 -2.39 38.79 46.00   599.9521 43.81 -0.73 43.08 46.00 | MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB)   119.9986 55.79 -13.48 42.31 43.50 -1.19   168.0005 45.59 -14.84 30.75 43.50 -12.75   264.0040 42.94 -9.60 33.34 46.00 -12.66   312.0700 42.20 -8.24 33.96 46.00 -12.04   552.1082 41.18 -2.39 38.79 46.00 -7.21   599.9521 43.81 -0.73 43.08 46.00 -2.92 |

# Measurement = Reading Level+ Correct Factor

# Adobe 1GHz

| Test Volt              | tage:      | DC 7.          | 4V                        |                       | ×             |                 |                               |                 |
|------------------------|------------|----------------|---------------------------|-----------------------|---------------|-----------------|-------------------------------|-----------------|
| Ant. Pol.              |            | Horizo         | ontal                     |                       | No.           |                 |                               |                 |
| Test Mod               | de:        | TX 80          | 2.11a Mod                 | le 5745MHz            |               |                 |                               | h.              |
| Remark:                |            | No re<br>presc | port for the ribed limit. | emission w            | vhich more th | nan 10 dB       | below th                      | e               |
| 120.0 dBuV             | //m        |                | 1                         | T I                   |               | 1 9             |                               |                 |
| 110                    |            |                |                           |                       |               |                 |                               |                 |
| 100                    |            |                |                           |                       |               |                 |                               |                 |
| 00                     |            |                |                           |                       |               |                 |                               |                 |
| 90                     |            |                |                           |                       |               |                 |                               |                 |
| 80                     |            |                |                           |                       |               |                 |                               |                 |
| 70                     |            | -              | -                         |                       |               | FCC             | Part 15.407 (P                | K)              |
| 60                     | 3          |                | 5X                        |                       | ¥             | FCC             | Part 15.407 (A                | 9<br>Man June m |
| 50 1                   | , i        |                | *                         |                       | A mar         | manufallowingha | had a well have a should be a | ×               |
| 30<br>20.0<br>1000.000 | 2700.00 44 | 00.00          | 6100.00 78                | 00.00 (MHz)           | 11200.00 12   | 900.00 146      | 00.00 16300                   | .00 18000.      |
|                        | 7.3        |                | Reading                   | Correct               | Measure-      |                 | - 200                         |                 |
| No. N                  | /k. Fre    | eq.            | Level                     | Factor                | ment          | Limit           | Over                          |                 |
|                        | MH         | z              | (dBuV)                    | (dB/m)                | (dBuV/m)      | (dBuV/m)        | (dB)                          | Detector        |
| 1                      | 1666.4     | 00             | 55.94                     | -11. <mark>4</mark> 8 | 44.46         | 68.20           | -23.74                        | peak            |
| 2                      | 2659.2     | 200            | 50.47                     | -10.79                | 39.68         | 68.20           | -28.52                        | peak            |
| 3                      | 3976.7     | 00             | 61.33                     | -8.49                 | 52.84         | 68.20           | -15.36                        | peak            |
| 4                      | 3976.7     | 00             | 58.1 <mark>6</mark>       | -8.49                 | 49.67         | 54.00           | - <mark>4</mark> .33          | AVG             |
| 5                      | 5751.5     | 500            | 64.65                     | -4.36                 | 60.29         | 68.20           | -7.91                         | peak            |
| 6                      | 5751.5     | 500            | 52.97                     | -4.36                 | 48.61         | 54.00           | - <mark>5</mark> .39          | AVG             |
| 7                      | 11492.4    | 00             | 50.05                     | 6.84                  | 56.89         | 68.20           | -11.31                        | peak            |
| 8                      | 11492.4    | 00             | 42.88                     | 6.84                  | 49.72         | 54.00           | -4.28                         | AVG             |

Measurement = Reading level + Correct Factor

45.00

37.18

17228.200

17228.200

9

10 \*

13.19

13.19

58.19

50.37

68.20

54.00

-10.01

-3.63

peak

AVG

| Test Voltage:                                                                                    | DC 7.4V                                                                                                                                                                                                             |                                                                                                        |                                                                                                              | 1                                                                                                             |                                                                                                             |                                                                                                  |                                                                       |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Ant. Pol.                                                                                        | Vertical                                                                                                                                                                                                            |                                                                                                        |                                                                                                              | <u> 11</u>                                                                                                    | i na sha sha sha sha sha sha sha sha sha sh                                                                 |                                                                                                  |                                                                       |
| Test Mode:                                                                                       | TX 802.1                                                                                                                                                                                                            | 1a Mode                                                                                                | 5745MHz                                                                                                      | $\sim$                                                                                                        |                                                                                                             |                                                                                                  | 2                                                                     |
| Remark:                                                                                          | No repor<br>prescribe                                                                                                                                                                                               | t for the ei<br>d limit.                                                                               | mission wh                                                                                                   | ich more th                                                                                                   | an 10 dB                                                                                                    | below the                                                                                        | 9                                                                     |
| 120.0 dBuV/m                                                                                     |                                                                                                                                                                                                                     |                                                                                                        |                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                  |                                                                       |
| 110                                                                                              |                                                                                                                                                                                                                     |                                                                                                        |                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                  |                                                                       |
| 100                                                                                              |                                                                                                                                                                                                                     |                                                                                                        |                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                  |                                                                       |
| 90                                                                                               |                                                                                                                                                                                                                     |                                                                                                        |                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                  |                                                                       |
| 80                                                                                               |                                                                                                                                                                                                                     |                                                                                                        |                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                  |                                                                       |
| 70                                                                                               |                                                                                                                                                                                                                     |                                                                                                        |                                                                                                              |                                                                                                               | FCC I                                                                                                       | Part 15.407 (PK                                                                                  | 9                                                                     |
| 60                                                                                               | *                                                                                                                                                                                                                   |                                                                                                        |                                                                                                              | 5<br>X                                                                                                        |                                                                                                             |                                                                                                  | 8<br>X                                                                |
| 50 .                                                                                             | 5                                                                                                                                                                                                                   |                                                                                                        |                                                                                                              |                                                                                                               | FCC I                                                                                                       | Part 15.407 (A)                                                                                  | and when                                                              |
|                                                                                                  | i du                                                                                                                                                                                                                | and make water                                                                                         | mannamper                                                                                                    | man Enhanner                                                                                                  |                                                                                                             |                                                                                                  |                                                                       |
| 20 MAN Maken Million Adv                                                                         | har ben to be and the second of the                                                                                                                                                                                 |                                                                                                        |                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                  |                                                                       |
| 20.0                                                                                             |                                                                                                                                                                                                                     |                                                                                                        |                                                                                                              |                                                                                                               |                                                                                                             |                                                                                                  |                                                                       |
| 100.000 2700.00                                                                                  | 4400.00 610                                                                                                                                                                                                         | 0.00 7800.0                                                                                            | 10 (MHz)                                                                                                     | 11200 00 120                                                                                                  | 00.00 1400                                                                                                  | 0001000                                                                                          | 00 18000 Dr                                                           |
|                                                                                                  | -                                                                                                                                                                                                                   |                                                                                                        | and the second states of the                                                                                 | 11200.00 12:                                                                                                  | 1460                                                                                                        | 0.00 16300.                                                                                      | 00 10000.0t                                                           |
| No. Mk.                                                                                          | Re<br>Freq. L                                                                                                                                                                                                       | ading (<br>evel                                                                                        | Correct I<br>Factor                                                                                          | Measure-<br>ment                                                                                              | Limit                                                                                                       | Over                                                                                             |                                                                       |
| No. Mk.                                                                                          | Re<br>Freq. L<br>MHz (d                                                                                                                                                                                             | ading (<br>.evel<br><sup>BuV)</sup>                                                                    | Correct I<br>Factor<br>(dB/m)                                                                                | Measure-<br>ment<br>(dBuV/m)                                                                                  | Limit<br>(dBuV/m)                                                                                           | Over<br>(dB)                                                                                     | Detector                                                              |
| No. Mk. 1                                                                                        | Re<br>Freq. L<br>MHz (d<br>5.800 5                                                                                                                                                                                  | ading (<br>evel<br><sup>BuV)</sup><br>7.97 -                                                           | Correct I<br>Factor<br>(dB/m)<br>12.19                                                                       | Measure-<br>ment<br>(dBuV/m)<br>45.78                                                                         | Limit<br>(dBuV/m)<br>68.20                                                                                  | Over<br>(dB)<br>-22.42                                                                           | Detector<br>peak                                                      |
| No. Mk. 1                                                                                        | Re<br>Freq. L<br>MHz (d<br>5.800 5<br>6.400 5                                                                                                                                                                       | ading (<br>.evel<br>BuV)<br>7.97 -<br>6.16 -                                                           | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48                                                              | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68                                                                | Limit<br>(dBuV/m)<br>68.20<br>68.20                                                                         | Over<br>(dB)<br>-22.42<br>-23.52                                                                 | Detector<br>peak<br>peak                                              |
| No. Mk. 1<br>1 112<br>2 166<br>3 279                                                             | Re<br>Freq. L<br>MHz (d<br>5.800 5<br>6.400 5<br>8.600 5                                                                                                                                                            | ading (<br>evel<br>BuV)<br>7.97 -<br>6.16 -<br>3.91 -                                                  | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48<br>10.71                                                     | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68<br>43.20                                                       | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20                                                                | Over<br>(dB)<br>-22.42<br>-23.52<br>-25.00                                                       | Detector<br>peak<br>peak<br>peak                                      |
| No. Mk. 1<br>1 112<br>2 166<br>3 279<br>4 574                                                    | Re<br>Freq. L<br>MHz (d<br>5.800 5<br>6.400 5<br>8.600 5<br>6.400 6                                                                                                                                                 | ading (<br>evel<br>BuV)<br>7.97 -<br>6.16 -<br>3.91 -<br>5.81                                          | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48<br>10.71<br>-4.38                                            | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68<br>43.20<br>61.43                                              | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20                                                       | Over<br>(dB)<br>-22.42<br>-23.52<br>-25.00<br>-6.77                                              | Detector<br>peak<br>peak<br>peak<br>peak                              |
| No. Mk. 1<br>1 112<br>2 166<br>3 279<br>4 574<br>5 574                                           | Re   Freq. L   MHz (d   5.800 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5                                                                                                                                   | ading (<br>evel<br>BuV)<br>7.97 -<br>6.16 -<br>3.91 -<br>5.81<br>4.09                                  | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48<br>10.71<br>-4.38<br>-4.38                                   | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68<br>43.20<br>61.43<br>49.71                                     | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00                                     | Over<br>(dB)<br>-22.42<br>-23.52<br>-25.00<br>-6.77<br>-4.29                                     | Detector<br>peak<br>peak<br>peak<br>peak<br>AVG                       |
| No. Mk. 1<br>1 112<br>2 166<br>3 279<br>4 574<br>5 574<br>6 1149                                 | Re   Freq. L   MHz (d   5.800 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5                                                                                 | ading (<br>evel<br>BuV)<br>7.97 -<br>6.16 -<br>3.91 -<br>5.81<br>4.09<br>2.46                          | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48<br>10.71<br>-4.38<br>-4.38<br>6.84                           | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68<br>43.20<br>61.43<br>49.71<br>59.30                            | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20                                     | Over<br>(dB)<br>-22.42<br>-23.52<br>-25.00<br>-6.77<br>-4.29<br>-8.90                            | Detector<br>peak<br>peak<br>peak<br>peak<br>AVG<br>peak               |
| No. Mk. 1<br>1 112<br>2 166<br>3 279<br>4 574<br>5 574<br>6 1149<br>7 1149                       | Re   Freq. L   MHz (d   5.800 5   6.400 5   8.600 5   6.400 6   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.700 5   0.700 4 | ading (<br>evel<br>BuV)<br>7.97 -<br>6.16 -<br>3.91 -<br>5.81<br>4.09<br>2.46<br>2.48                  | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48<br>10.71<br>-4.38<br>-4.38<br>6.84<br>6.84                   | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68<br>43.20<br>61.43<br>49.71<br>59.30<br>49.32                   | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00                            | Over<br>(dB)<br>-22.42<br>-23.52<br>-25.00<br>-6.77<br>-4.29<br>-8.90<br>-4.68                   | Detector<br>peak<br>peak<br>peak<br>peak<br>AVG<br>peak               |
| No. Mk. 1<br>1 112<br>2 166<br>3 279<br>4 574<br>5 574<br>6 1149<br>7 1149<br>8 1722             | Re   Freq. L   MHz (d   5.800 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.700 5   0.700 5   6.500 4                                                                                 | ading (<br>.evel<br>BuV)<br>7.97 -<br>6.16 -<br>3.91 -<br>5.81<br>4.09<br>2.46<br>2.48<br>8.77         | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48<br>10.71<br>-4.38<br>-4.38<br>6.84<br>6.84<br>13.19          | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68<br>43.20<br>61.43<br>49.71<br>59.30<br>49.32<br>61.96          | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20                   | Over<br>(dB)<br>-22.42<br>-23.52<br>-25.00<br>-6.77<br>-4.29<br>-8.90<br>-4.68<br>-6.24          | Detector<br>peak<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak        |
| No. Mk. 1<br>1 112<br>2 166<br>3 279<br>4 574<br>5 574<br>6 1149<br>7 1149<br>8 1722<br>9 * 1722 | Re   Freq. L   MHz (d   5.800 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.400 5   6.500 4   6.500 3                                                                                 | ading (<br>.evel<br>BuV)<br>7.97 -<br>6.16 -<br>3.91 -<br>5.81<br>4.09<br>2.46<br>2.48<br>8.77<br>7.29 | Correct I<br>Factor<br>(dB/m)<br>12.19<br>11.48<br>10.71<br>-4.38<br>-4.38<br>6.84<br>6.84<br>13.19<br>13.19 | Measure-<br>ment<br>(dBuV/m)<br>45.78<br>44.68<br>43.20<br>61.43<br>49.71<br>59.30<br>49.32<br>61.96<br>50.48 | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20<br>54.00 | Over<br>(dB)<br>-22.42<br>-23.52<br>-25.00<br>-6.77<br>-4.29<br>-8.90<br>-4.68<br>-6.24<br>-3.52 | Detector<br>peak<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak<br>AVG |

Measurement = Reading level + Correct Factor

| Test                         | t Voltage: | DC 7.                  | 4V                      |                |                    |           | Manuel     |                            |                        |           |       |
|------------------------------|------------|------------------------|-------------------------|----------------|--------------------|-----------|------------|----------------------------|------------------------|-----------|-------|
| Ant.                         | . Pol.     | Horizo                 | ontal                   |                |                    |           | $\bigcirc$ |                            |                        |           |       |
| Test                         | t Mode:    | TX 80                  | 2.11a M                 | ode 57         | 85MHz              |           |            |                            |                        |           |       |
| Ren                          | nark:      | No re                  | port for t<br>ribed lim | he emis<br>it. | ssion wh           | nich more | e than 1   | 0 dB b                     | elow                   | the       |       |
| 120.0                        | dBuV/m     |                        |                         |                | / 200000000000000  |           |            |                            |                        | 1         |       |
| 110<br>100<br>90<br>80<br>70 |            |                        | 5                       |                |                    |           |            | FCC Pa                     | rt 15.407              | (PK)      |       |
| 60                           |            | 3                      | Î                       |                |                    | Ý         |            | FCC Pa                     | rt 15.407              | ANDANA    | Bern  |
| 50                           | . 3        | *                      | *                       |                | 2760 19            | unit      | unphanner  | , was an a start which the | New Constanting of the | ,         |       |
| 40<br>30                     | MMMander   | the and and the second | Magnelin                | whather        | AN ARA CANAL AND A |           |            |                            |                        |           |       |
| 20                           |            |                        |                         |                |                    |           |            |                            |                        | · · · · · |       |
| 10                           |            | 1100.00                |                         | 7000.00        |                    | 11 200 00 | 10000.00   | 14000                      |                        | 000.000   | 10000 |

| No. | Mk. | Freq.                   | Reading<br>Level    | Correct<br>Factor | Measure-<br>ment | Limit    | Over                |          |
|-----|-----|-------------------------|---------------------|-------------------|------------------|----------|---------------------|----------|
|     |     | MHz                     | (dBuV)              | (dB/m)            | (dBuV/m)         | (dBuV/m) | (dB)                | Detector |
| 1   |     | 112 <mark>4.10</mark> 0 | <mark>54.</mark> 59 | -12.19            | 42.40            | 68.20    | -25.80              | peak     |
| 2   |     | 1671.500                | 57.26               | -11.47            | 45.79            | 68.20    | -22.41              | peak     |
| 3   |     | 3995.400                | 61.07               | -8.44             | 52.63            | 68.20    | -15.57              | peak     |
| 4   | *   | 3995.400                | 59.13               | -8.44             | 50.69            | 54.00    | -3.31               | AVG      |
| 5   |     | 5783.800                | 66.73               | -4.29             | 62.44            | 68.20    | -5.76               | peak     |
| 6   |     | 5783.800                | 53.96               | -4.29             | 49.67            | 54.00    | <mark>-4</mark> .33 | AVG      |
| 7   | 1   | 1567.200                | 52.16               | 7.00              | 59.16            | 68.20    | -9.04               | peak     |
| 8   | 1   | 1567.200                | 43.10               | 7.00              | 50.10            | 54.00    | -3.90               | AVG      |
| 9   | 1   | 7350.600                | 49.31               | 13.29             | 62.60            | 68.20    | -5.60               | peak     |
| 10  | ্   | 7350.600                | 37.19               | 13.29             | 50.48            | 54.00    | -3.52               | AVG      |
|     |     |                         |                     |                   |                  |          |                     |          |

Measurement = Reading level + Correct Factor

| Test Voltage:                                                                                                                      | DC 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4V                                                                                                     |                                                                                                                                   |                                                                                                                                                |                                                                                                                             |                                                                                                                  |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Ant. Pol.                                                                                                                          | Vertic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al                                                                                                      |                                                                                                                                   |                                                                                                                                                |                                                                                                                             |                                                                                                                  |                                                                       |
| Test Mode:                                                                                                                         | TX 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )2.11a Mod                                                                                              | de 5785MHz                                                                                                                        | z È                                                                                                                                            | *                                                                                                                           |                                                                                                                  |                                                                       |
| Remark:                                                                                                                            | No re<br>presc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | port for the ribed limit.                                                                               | e emission v                                                                                                                      | vhich more t                                                                                                                                   | han 10 dB                                                                                                                   | below the                                                                                                        | e                                                                     |
| 120.0 dBuV/m                                                                                                                       | Î                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                   |                                                                                                                                                |                                                                                                                             |                                                                                                                  |                                                                       |
| 110                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                   |                                                                                                                                                |                                                                                                                             |                                                                                                                  |                                                                       |
| 100                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                   |                                                                                                                                                |                                                                                                                             |                                                                                                                  |                                                                       |
| 90                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                   |                                                                                                                                                |                                                                                                                             |                                                                                                                  |                                                                       |
| 80                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                   |                                                                                                                                                | -                                                                                                                           |                                                                                                                  |                                                                       |
| 70                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                                                                                   |                                                                                                                                                | FCC                                                                                                                         | Part 15.407 (P)                                                                                                  | 0                                                                     |
| 60 3                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                       |                                                                                                                                   | ž                                                                                                                                              | FCC                                                                                                                         | Part 15.407 (A)                                                                                                  | antina                                                                |
| 50 1. 3                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                       |                                                                                                                                   | and the more                                                                                                                                   | here any and the second                                                                                                     | e we konder a                                                                                                    | *                                                                     |
| X O                                                                                                                                | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M                                                                                                       | weather the ending                                                                                                                | VVVV ······                                                                                                                                    |                                                                                                                             |                                                                                                                  |                                                                       |
| 40                                                                                                                                 | 1 and mark month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Martherman                                                                                              | ale COMadada Dove                                                                                                                 | Soft for                                                                                                                                       |                                                                                                                             |                                                                                                                  |                                                                       |
| 40 <b>30</b>                                                                                                                       | handrand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maria                                                                                                   | Ale Wedder                                                                                                                        |                                                                                                                                                |                                                                                                                             |                                                                                                                  |                                                                       |
| 40<br>30<br>20.0<br>1000.000 2700.00                                                                                               | Annal and Annal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6100.00 78                                                                                              | 00.00 (MHz)                                                                                                                       | 11200.00 12                                                                                                                                    | 2900.00 1460                                                                                                                | 0.00 16300.                                                                                                      | 00 18000.0(                                                           |
| 40<br>30<br>20.0<br>1000.000 2700.00                                                                                               | Jane Jane Jane Jane Jane Jane Jane Jane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6100.00 78<br>Reading                                                                                   | 00.00 (MHz)                                                                                                                       | 11200.00 12<br>Measure-                                                                                                                        | 2900.00 1460                                                                                                                | 0.00 16300.                                                                                                      | 00 18000.00                                                           |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.                                                                                    | 4400.00<br>Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6100.00 78<br>Reading<br>Level                                                                          | Correct<br>Factor                                                                                                                 | 11200.00 12<br>Measure-<br>ment                                                                                                                | 2900.00 1460<br>Limit                                                                                                       | 0.00 16300.<br>Over                                                                                              | 00 18000.00                                                           |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.                                                                                    | Mulana<br>4400.00<br>Freq.<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6100.00 78<br>Reading<br>Level<br>(dBuV)                                                                | Correct<br>Factor<br>(dB/m)                                                                                                       | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)                                                                                                    | 2900.00 1460<br>Limit<br>(dBuV/m)                                                                                           | 0.00 16300.<br>Over<br>(dB)                                                                                      | Detector                                                              |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11                                                                            | Mulandramov<br>Freq.<br>MHz<br>125.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6100.00 78<br>Reading<br>Level<br>(dBuV)<br>58.05                                                       | 00.00 (МН <sub>2</sub> )<br>Correct<br>Factor<br>(dB/m)<br>-12.19                                                                 | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86                                                                                           | Limit<br>(dBuV/m)<br>68.20                                                                                                  | 0.00 16300.<br>Over<br>(dB)<br>-22.34                                                                            | Detector<br>peak                                                      |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16                                                                    | Mulandramov<br>Freq.<br>MHz<br>125.800<br>661.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6100.00 78<br>Reading<br>Level<br>(dBu∨)<br>58.05<br>58.24                                              | оо.оо (мн <sub>2</sub> )<br>Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49                                                       | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75                                                                                  | Limit<br>(dBuV/m)<br>68.20<br>68.20                                                                                         | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45                                                                  | Detector<br>peak<br>peak                                              |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16<br>3 25                                                            | Mulandramov<br>Freq.<br>MHz<br>125.800<br>661.300<br>552.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6100.00 78<br>Reading<br>Level<br>(dBu∨)<br>58.05<br>58.24<br>64.63                                     | оо.оо (мн <sub>2</sub> )<br>Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49<br>-10.85                                             | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75<br>53.78                                                                         | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20                                                                                | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45<br>-14.42                                                        | Detector<br>peak<br>peak<br>peak                                      |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16<br>3 25<br>4 25                                                    | MHz<br>661.300<br>552.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6100.00 78<br>Reading<br>Level<br>(dBu∨)<br>58.05<br>58.24<br>64.63<br>60.68                            | оо.оо (мн <sub>2</sub> )<br>Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49<br>-10.85<br>-10.85                                   | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75<br>53.78<br>49.83                                                                | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>54.00                                                                       | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45<br>-14.42<br>-4.17                                               | Detector<br>peak<br>peak<br>peak<br>AVG                               |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16<br>3 25<br>4 25<br>5 57                                            | MHz<br>661.300<br>652.100<br>783.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.12                                                                                                   | Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49<br>-10.85<br>-10.85<br>-4.29                                                      | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75<br>53.78<br>49.83<br>59.83                                                       | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20                                                              | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45<br>-14.42<br>-4.17<br>-8.37                                      | Detector<br>peak<br>peak<br>peak<br>AVG<br>peak                       |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16<br>3 25<br>4 25<br>5 57<br>6 57                                    | MHz<br>Freq.<br>MHz<br>125.800<br>661.300<br>552.100<br>552.100<br>783.800<br>783.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6100.00 78<br>Reading<br>Level<br>(dBuV)<br>58.05<br>58.24<br>64.63<br>60.68<br>64.12<br>54.46          | олоо (мна)<br>Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49<br>-10.85<br>-10.85<br>-4.29<br>-4.29                               | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75<br>53.78<br>49.83<br>59.83<br>59.83<br>50.17                                     | 2900.00 1460<br>Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00                                     | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45<br>-14.42<br>-4.17<br>-8.37<br>-3.83                             | Detector<br>peak<br>peak<br>AVG<br>peak<br>AVG                        |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16<br>3 25<br>4 25<br>5 57<br>6 57<br>7 115                           | Mulandrawa<br>Freq.<br>MHz<br>125.800<br>661.300<br>652.100<br>783.800<br>783.800<br>783.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6100.00 78<br>Reading<br>Level<br>(dBuV)<br>58.05<br>58.24<br>64.63<br>60.68<br>64.12<br>54.46<br>50.44 | олоо (мн <sub>2</sub> )<br>Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49<br>-10.85<br>-10.85<br>-4.29<br>-4.29<br>-4.29<br>7.00 | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75<br>53.78<br>49.83<br>59.83<br>59.83<br>50.17<br>57.44                            | 2900.00 1460<br>Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20                   | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45<br>-14.42<br>-4.17<br>-8.37<br>-3.83<br>-10.76                   | Detector<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak                |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16<br>3 25<br>4 25<br>5 57<br>6 57<br>6 57<br>7 115<br>8 115          | MHz<br>125.800<br>661.300<br>552.100<br>783.800<br>783.800<br>570.600<br>570.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6100.00 78   Reading<br>Level 78   (dBuV) 58.05   58.24 64.63   60.68 64.12   54.46 50.44   42.67 78    | олоо (мна)<br>Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49<br>-10.85<br>-10.85<br>-4.29<br>-4.29<br>7.00<br>7.00<br>7.00       | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75<br>53.78<br>49.83<br>59.83<br>59.83<br>59.83<br>50.17<br>57.44<br>49.67          | 2900.00 1460<br>Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20          | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45<br>-14.42<br>-4.17<br>-8.37<br>-3.83<br>-10.76<br>-4.33          | Detector<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak<br>AVG         |
| 40<br>30<br>20.0<br>1000.000 2700.00<br>No. Mk.<br>1 11<br>2 16<br>3 25<br>4 25<br>5 57<br>6 57<br>6 57<br>7 115<br>8 115<br>9 173 | MHz<br>125.800<br>661.300<br>652.100<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800<br>783.800 | 6100.00 78   Reading<br>Level 78   (dBuV) 58.05   58.24 64.63   60.68 64.12   54.46 50.44   42.67 47.53 | олоо (мна)<br>Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.49<br>-10.85<br>-10.85<br>-4.29<br>-4.29<br>7.00<br>7.00<br>13.32      | 11200.00 12<br>Measure-<br>ment<br>(dBuV/m)<br>45.86<br>46.75<br>53.78<br>49.83<br>59.83<br>59.83<br>59.83<br>50.17<br>57.44<br>49.67<br>60.85 | 2900.00 1460<br>Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20 | 0.00 16300.<br>Over<br>(dB)<br>-22.34<br>-21.45<br>-14.42<br>-4.17<br>-8.37<br>-3.83<br>-10.76<br>-4.33<br>-7.35 | Detector<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak<br>AVG<br>peak |

Measurement = Reading level + Correct Factor

| Test Voltage:    | DC 7.4V                            |                         |               |               |                |        |  |  |  |
|------------------|------------------------------------|-------------------------|---------------|---------------|----------------|--------|--|--|--|
| Ant. Pol.        | Horizontal                         |                         | <u> </u>      |               |                |        |  |  |  |
| Test Mode:       | TX 802.11a Mo                      | TX 802.11a Mode 5825MHz |               |               |                |        |  |  |  |
| Remark:          | No report for the prescribed limit | ne emission w<br>t.     | hich more tha | an 10 dB belo | w the          |        |  |  |  |
| 120.0 dBuV/m     |                                    |                         |               |               |                |        |  |  |  |
| 110              |                                    |                         |               |               |                |        |  |  |  |
| 100              |                                    |                         |               |               |                |        |  |  |  |
|                  |                                    |                         |               |               |                |        |  |  |  |
| 90               |                                    |                         |               |               |                |        |  |  |  |
| 80               |                                    |                         |               |               | 12 2000        | -      |  |  |  |
| 70               |                                    |                         |               | FCC Part 15.4 | 407 (PK)       |        |  |  |  |
| 60               | 5                                  |                         | 7             |               | 9X             |        |  |  |  |
| 50               | 3                                  |                         | 8             | FCC Part 15.  | 107 Willingert | 4      |  |  |  |
| 50 1<br>X 3      | T Thomas                           | what an and the         | mannamment    |               | Î              | 1      |  |  |  |
| 40               | In and when the strand budy        | non chrittine           |               |               |                |        |  |  |  |
| 30 10 10000000   |                                    |                         |               |               |                | -      |  |  |  |
| 20               |                                    |                         |               |               | -              | -      |  |  |  |
| 10               |                                    |                         |               |               |                |        |  |  |  |
| 0.0              |                                    |                         |               |               |                |        |  |  |  |
| 1000.000 2700.00 | 4400.00 6100.00                    | 7800.00 (MHz)           | 11200.00 1290 | 0.00 14600.00 | 16300.00 18    | 10.000 |  |  |  |

| No. | Mk. | Freq.     | Reading<br>Level | Correct<br>Factor    | Measure-<br>ment | Limit    | Over                  |          |
|-----|-----|-----------|------------------|----------------------|------------------|----------|-----------------------|----------|
|     |     | MHz       | (dBuV)           | (dB/m)               | (dBuV/m)         | (dBuV/m) | (dB)                  | Detector |
| 1   |     | 1661.300  | 57.73            | -11.49               | 46.24            | 68.20    | - <mark>21.9</mark> 6 | peak     |
| 2   |     | 2657.500  | 52.49            | -10.78               | 41.71            | 68.20    | -26.49                | peak     |
| 3   |     | 3976.700  | 60.81            | -8.49                | 52.32            | 68.20    | - <mark>15.8</mark> 8 | peak     |
| 4   |     | 3976.700  | 57.46            | -8.49                | 48.97            | 54.00    | -5.03                 | AVG      |
| 5   |     | 5819.500  | 66.54            | -4.21                | 62.33            | 68.20    | -5.87                 | peak     |
| 6   |     | 5819.500  | 53.54            | - <mark>4.2</mark> 1 | 49.33            | 54.00    | - <mark>4</mark> .67  | AVG      |
| 7   |     | 11657.300 | 53.69            | 7.18                 | 60.87            | 68.20    | -7.33                 | peak     |
| 8   |     | 11657.300 | 42.50            | 7.18                 | 49.68            | 54.00    | -4.32                 | AVG      |
| 9   |     | 17473.000 | 49.38            | 13.39                | 62.77            | 68.20    | -5. <mark>4</mark> 3  | peak     |
| 10  | *   | 17473.000 | 37.50            | 13.39                | 50.89            | 54.00    | -3.11                 | AVG      |
|     |     |           |                  |                      |                  |          |                       |          |

Measurement = Reading level + Correct Factor

| Test Voltage:                                                                                                                   | DC 7.4V                                                                                                                                                     |                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Ant. Pol.                                                                                                                       | Vertical                                                                                                                                                    |                                                                                                                                            |                                                                                                                           | and the second sec |                                                                                                           |                                                                                      |
| Test Mode:                                                                                                                      | TX 802.11a Mode 5825MHz                                                                                                                                     |                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                      |
| Remark:                                                                                                                         | No report for the emission which more than 10 dB below the prescribed limit.                                                                                |                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           | ie                                                                                   |
| 120.0 dBuV/m                                                                                                                    |                                                                                                                                                             |                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                      |
| 110   100   90   80   70                                                                                                        |                                                                                                                                                             |                                                                                                                                            |                                                                                                                           | FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : Part 15.407 (I                                                                                          | PK)                                                                                  |
| 60                                                                                                                              | 5                                                                                                                                                           |                                                                                                                                            | Į                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           | 9<br>X                                                                               |
| 50                                                                                                                              |                                                                                                                                                             |                                                                                                                                            | -                                                                                                                         | FCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Part 15.407 (                                                                                             | allow from                                                                           |
| 40<br>30<br>20                                                                                                                  | Martin Marahar                                                                                                                                              | white the provider                                                                                                                         | hore and have the                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                      |
| 10                                                                                                                              |                                                                                                                                                             |                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                      |
|                                                                                                                                 |                                                                                                                                                             |                                                                                                                                            |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                                      |
| No. Mk. Fr                                                                                                                      | 4400.00 6100.00<br>Reading<br>eq. Level                                                                                                                     | <sup>7800.00</sup> (мна)<br>g Correct<br>Factor                                                                                            | 11200.00<br>Measure-<br>ment                                                                                              | 12900.00 146<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.00 1630<br>Over                                                                                        | 0.00 18000.00                                                                        |
| No. Mk. Fr.                                                                                                                     | eq. Level                                                                                                                                                   | 7800.00 (МНа)<br>g Correct<br>Factor<br>(dB/m)                                                                                             | 11200.00<br>Measure-<br>ment<br>(dBuV/m)                                                                                  | 12900.00 146<br>Limit<br>(dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00.00 1630<br>Over<br>(dB)                                                                                | 0.00 18000.00<br>Detector                                                            |
| No. Mk. Fr.<br>1000.000 2700.00<br>No. Mk. Fr.<br>1 1125.                                                                       | 4400.00 6100.00<br>Reading<br>eq. Level<br>Hz (dBuV)<br>800 57.86                                                                                           | 7800.00 (мна)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19                                                                                   | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67                                                                         | Limit<br>(dBuV/m)<br>68.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00.00 1630<br>Over<br>(dB)<br>-22.53                                                                      | Detector<br>peak                                                                     |
| No. Mk. Fr<br>1000.000 2700.00<br>No. Mk. Fr<br>1 1125.<br>2 1664.                                                              | 4400.00 6100.00<br>Reading<br>eq. Level<br>Hz (dBuV)<br>800 57.86<br>700 61.14                                                                              | 7800.00 (мна)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48                                                                         | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66                                                                | Limit<br>(dBuV/m)<br>68.20<br>68.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00.00 1630<br>Over<br>(dB)<br>-22.53<br>-18.54                                                            | Detector<br>peak<br>peak                                                             |
| No. Mk. Fr<br>Mo. Mk. Fr<br>1000.000 2700.00<br>No. Mk. Fr<br>1 1125.<br>2 1664.<br>3 * 1664.                                   | 4400.00 6100.00<br>Reading<br>eq. Level<br>Hz (dBuV)<br>800 57.86<br>700 61.14<br>700 62.15                                                                 | 2800.00 (MH2)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48<br>-11.48                                                               | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66<br>50.67                                                       | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Over<br>(dB)<br>-22.53<br>-18.54<br>-3.33                                                                 | Detector<br>peak<br>peak<br>AVG                                                      |
| No. Mk. Fr<br>Mk<br>1000.000 2700.00<br>No. Mk. Fr<br>Mk<br>1 1125.<br>2 1664.<br>3 * 1664.<br>4 3995.                          | 4400.00 6100.00<br>Reading<br>eq. Level<br>Hz (dBuV)<br>800 57.86<br>700 61.14<br>700 62.15<br>400 51.89                                                    | 2800.00 (MH2)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48<br>-11.48<br>-8.44                                                      | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66<br>50.67<br>43.45                                              | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>54.00<br>68.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Over<br>(dB)<br>-22.53<br>-18.54<br>-3.33<br>-24.75                                                       | Detector<br>peak<br>peak<br>AVG<br>peak                                              |
| No. Mk. Fr<br>Mk<br>1 1125.<br>2 1664.<br>3 * 1664.<br>4 3995.<br>5 5828.                                                       | 4400.00 6100.00<br>Reading<br>eq. Level<br>Hz (dBuV)<br>800 57.86<br>700 61.14<br>700 62.15<br>400 51.89<br>000 65.69                                       | 2800.00 (MH2)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48<br>-11.48<br>-8.44<br>-8.44<br>-4.19                                    | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66<br>50.67<br>43.45<br>61.50                                     | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>54.00<br>68.20<br>68.20<br>68.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Over<br>(dB)<br>-22.53<br>-18.54<br>-3.33<br>-24.75<br>-6.70                                              | Detector<br>peak<br>peak<br>AVG<br>peak<br>peak                                      |
| No. Mk. Fr<br>Mi<br>1000.000 2700.00<br>No. Mk. Fr<br>Mi<br>1 1125.<br>2 1664.<br>3 * 1664.<br>4 3995.<br>5 5828.<br>6 5828.    | 4400.00 6100.00<br>Reading<br>eq. Level<br>Hz (dBuV)<br>800 57.86<br>700 61.14<br>700 62.15<br>400 51.89<br>000 65.69<br>000 53.48                          | 2800.00 (MH2)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48<br>-11.48<br>-8.44<br>-8.44<br>-4.19<br>-4.19                           | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66<br>50.67<br>43.45<br>61.50<br>49.29                            | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>54.00<br>68.20<br>68.20<br>68.20<br>54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Over<br>(dB)<br>-22.53<br>-18.54<br>-3.33<br>-24.75<br>-6.70<br>-4.71                                     | Detector<br>peak<br>peak<br>AVG<br>peak<br>peak<br>AVG                               |
| No. Mk. Fr   1000.000 2700.00 4   1 1125. 2   2 1664. 3   3 * 1664.   4 3995. 5   5 5828. 6   6 5828. 7   7 11652. 7            | Reading   eq. Reading   Hz (dBuV)   800 57.86   700 61.14   700 62.15   400 51.89   000 65.69   000 53.48   200 52.32                                       | 2800.00 (MH2)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48<br>-11.48<br>-11.48<br>-8.44<br>-4.19<br>-4.19<br>-4.19<br>7.17         | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66<br>50.67<br>43.45<br>61.50<br>49.29<br>59.49                   | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>54.00<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>68.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Over<br>(dB)<br>-22.53<br>-18.54<br>-3.33<br>-24.75<br>-6.70<br>-4.71<br>-8.71                            | Detector<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak                               |
| No. Mk. Fr   1000.000 2700.00 4   1 1125. 2   2 1664. 3   3 * 1664.   4 3995. 5   5 5828. 6   6 5828. 7   7 11652. 8            | 4400.00 5100.00   Reading<br>Level   Hz (dBuV)   800 57.86   700 61.14   700 62.15   400 51.89   000 65.69   000 53.48   200 52.32   200 42.69              | 7800.00 (MH2)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48<br>-11.48<br>-8.44<br>-4.19<br>-4.19<br>7.17<br>7.17                    | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66<br>50.67<br>43.45<br>61.50<br>49.29<br>59.49<br>49.86          | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OVer<br>(dB)<br>-22.53<br>-18.54<br>-3.33<br>-24.75<br>-6.70<br>-4.71<br>-8.71<br>-4.14                   | Detector<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak<br>AVG                        |
| No. Mk. Fr   1000.000 2700.00 4   1 1125. 2   2 1664. 3   3 * 1664.   4 3995. 5   5 5828. 6   6 5828. 7   7 11652. 8   9 17473. | Auton.00 5100.00   Reading<br>Level   Hz (dBuV)   800 57.86   700 61.14   700 62.15   400 51.89   000 65.69   000 53.48   200 52.32   200 42.69   000 49.83 | 7800.00 (MHz)<br>g Correct<br>Factor<br>(dB/m)<br>-12.19<br>-11.48<br>-11.48<br>-11.48<br>-8.44<br>-4.19<br>-4.19<br>7.17<br>7.17<br>13.39 | 11200.00<br>Measure-<br>ment<br>(dBuV/m)<br>45.67<br>49.66<br>50.67<br>43.45<br>61.50<br>49.29<br>59.49<br>49.86<br>63.22 | Limit<br>(dBuV/m)<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>68.20<br>54.00<br>68.20<br>54.00<br>68.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Over<br>(dB)<br>-22.53<br>-18.54<br>-3.33<br>-24.75<br>-6.70<br>-4.71<br>-8.71<br>-8.71<br>-4.14<br>-4.98 | Detector<br>peak<br>peak<br>AVG<br>peak<br>AVG<br>peak<br>AVG<br>peak<br>AVG<br>peak |

Measurement = Reading level + Correct Factor

Page 52 of 53

Report No.: KS2007S00666E02

# 4. EUT TEST PHOTOS

KSIGN

Reference to the document No.: Test Photos.



# 5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the document No.: External Photos and Internal Photos.