

## FCC EMC Test Report

### FCC ID: 2ATEYWS7200

| Project No.     | : | 2006C031C                                                                                         |
|-----------------|---|---------------------------------------------------------------------------------------------------|
| Equipment       | : | 3000Mbps Wi-Fi 6 Router                                                                           |
| Brand Name      | : | HUAWEI                                                                                            |
| Test Model      | : | WS7200                                                                                            |
| Series Model    | : | N/A                                                                                               |
| Applicant       | : | Huawei Device Co., Ltd.                                                                           |
| Address         | : | No.2 of Xincheng Road, Songshan Lake Zone, Dongguan, Guangdong 523808, People's Republic of China |
| Manufacturer    | : | Huawei Device Co., Ltd.                                                                           |
| Address         | : | No.2 of Xincheng Road, Songshan Lake Zone, Dongguan, Guangdong                                    |
|                 |   | 523808, People's Republic of China                                                                |
| Date of Receipt | : | Jun. 08, 2020                                                                                     |
|                 |   | Sep. 02, 2020                                                                                     |
|                 |   | May 17, 2021                                                                                      |
| Date of Test    | : | Jun. 11, 2020 ~ Jun. 20, 2020                                                                     |
| Issued Date     | : | May 21, 2021                                                                                      |
| Report Version  | : | R00                                                                                               |
| Test Sample     | : | Engineering Sample No.: DG2020060844                                                              |
| Standard(s)     | : | FCC CFR Title 47, Part 15, Subpart B                                                              |

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Dave Hong Prepared by : Dave Hong

Levn

Approved by : Kevin Li



Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com



#### Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

**BTL** is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

#### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.





| Table of Contents                                            | Page |
|--------------------------------------------------------------|------|
| REPORT ISSUED HISTORY                                        | 4    |
| 1 . SUMMARY OF TEST RESULTS                                  | 5    |
| 1.1 TEST FACILITY                                            | 6    |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 6    |
| 1.3 TEST ENVIRONMENT CONDITIONS                              | 6    |
| 2 . GENERAL INFORMATION                                      | 7    |
| 2.1 GENERAL DESCRIPTION OF EUT                               | 7    |
| 2.2 DESCRIPTION OF TEST MODES                                | 8    |
| 2.3 EUT OPERATING CONDITIONS                                 | 9    |
| 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 9    |
| 2.5 DESCRIPTION OF SUPPORT UNITS                             | 9    |
| 3 . EMC EMISSION TEST                                        | 10   |
| 3.1 AC POWER LINE CONDUCTED EMISSIONS TEST                   | 10   |
| 3.1.1 LIMIT                                                  | 10   |
| 3.1.2 MEASUREMENT INSTRUMENTS LIST                           | 10   |
| 3.1.3 TEST PROCEDURE                                         | 11   |
| 3.1.4 DEVIATION FROM TEST STANDARD                           | 11   |
| 3.1.5 TEST SETUP                                             | 11   |
| 3.1.6 TEST RESULTS                                           | 11   |
| 3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ                       | 14   |
| 3.2.1 LIMIT                                                  | 14   |
|                                                              | 14   |
| 3.2.4 DEVIATION FROM TEST STANDARD                           | 15   |
| 3.2.5 TEST SETUP                                             | 15   |
| 3.2.6 TEST RESULTS                                           | 15   |
| 3.3 RADIATED EMISSIONS ABOVE 1 GHZ                           | 18   |
| 3.3.1 LIMIT                                                  | 18   |
| 3.3.2 MEASUREMENT INSTRUMENTS LIST                           | 18   |
| 3.3.3 TEST PROCEDURE                                         | 19   |
| 3.3.4 DEVIATION FROM TEST STANDARD                           | 19   |
| 3.3.5 TEST SETUP                                             | 20   |
| 3.3.6 TEST RESULTS                                           | 21   |



#### **REPORT ISSUED HISTORY**

| Report Version | Description     | Issued Date  |
|----------------|-----------------|--------------|
| R00            | Original Issue. | May 21, 2021 |



#### **1. SUMMARY OF TEST RESULTS**

| Emission        |                                    |        |  |
|-----------------|------------------------------------|--------|--|
| Standard(s)     | Test Item                          | Result |  |
|                 | AC Power Line Conducted Emissions  | PASS   |  |
| ANSI C63 4 2014 | Radiated Emissions 30 MHz to 1 GHz | PASS   |  |
| ANOI 000.7-2014 | Radiated Emissions Above 1 GHz     | PASS   |  |

Note:

(1) According to client's specification, removed the description of operation frequency bands UNII-2A and UNII-2C, so all test data are kept the same with report No.: BTL-FCCE-1-2006C031A.



#### 1.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

#### **1.2 MEASUREMENT UNCERTAINTY**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

| Test Site | Method | Measurement Frequency Range | U,(dB) |
|-----------|--------|-----------------------------|--------|
| DG-C02    | CISPR  | 150kHz ~ 30MHz              | 2.60   |

B. Radiated emissions test:

| Test Site       | Method | Measurement Frequency Range | Ant.<br>H / V | U,(dB) |
|-----------------|--------|-----------------------------|---------------|--------|
| DG-CB02<br>(3m) |        | 30MHz ~ 200MHz              | V             | 4.56   |
|                 | CISPR  | 30MHz ~ 200MHz              | Н             | 3.60   |
|                 |        | 200MHz ~ 1,000MHz           | V             | 4.16   |
|                 |        | 200MHz ~ 1,000MHz           | Н             | 4.00   |

| Test Site       | Method | Measurement Frequency Range | U,(dB) |
|-----------------|--------|-----------------------------|--------|
| DG-CB02<br>(3m) |        | 1GHz ~ 6GHz                 | 4.38   |
|                 | CISPR  | 6GHz ~ 18GHz                | 5.36   |

| Test Site       | Method | Measurement Frequency Range | U,(dB) |
|-----------------|--------|-----------------------------|--------|
| DG-CB02<br>(1m) |        | 18 ~ 26.5 GHz               | 3.62   |
|                 | CISPR  | 26.5 ~ 40 GHz               | 4.00   |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

#### **1.3 TEST ENVIRONMENT CONDITIONS**

| Test Item                          | Temperature | Humidity | Tested By   |
|------------------------------------|-------------|----------|-------------|
| AC Power Line Conducted Emissions  | 25°C        | 55%      | Gatsby Wang |
| Radiated emissions 30 MHz to 1 GHz | 24°C        | 60%      | Lea Lu      |
| Radiated emissions above 1 GHz     | 24°C        | 60%      | Lea Lu      |



#### 2. GENERAL INFORMATION

#### 2.1 GENERAL DESCRIPTION OF EUT

| Equipment                      | 3000Mbps Wi-Fi 6 Router                                                                                        |
|--------------------------------|----------------------------------------------------------------------------------------------------------------|
| Brand Name                     | HUAWEI                                                                                                         |
| Test Model                     | WS7200                                                                                                         |
| Series Model                   | N/A                                                                                                            |
| Model Difference(s)            | N/A                                                                                                            |
| Hardware Version               | AM1WS7200M                                                                                                     |
| Software Version               | 10.0.5.28                                                                                                      |
| Power Source                   | DC voltage supplied from AC adapter.<br>Brand: FUHUA, HONOR<br>Model: HW-120200E01, HW-120200B01, HW-120200U01 |
| Power Rating                   | I/P: 100-240V ~50/60Hz, 0.8A O/P: 12V === 2A                                                                   |
| Connecting I/O Port(s)         | 1* WAN port<br>3* LAN port<br>1* POWER port                                                                    |
| Classification of EUT          | Class B                                                                                                        |
| Work Frequency                 | 2.4G WIFI: 2400-2483.5MHz<br>5G WIFI: 5150-5250MHz, 5725-5850MHz                                               |
| Highest Internal Frequency(Fx) | 5850MHz                                                                                                        |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.



#### 2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description                    |
|--------------|--------------------------------|
| Mode 1       | FULL SYSTEM(2.4G WIFI+5G WIFI) |

| AC Power Line Conducted Emissions test |                                |  |
|----------------------------------------|--------------------------------|--|
| Final Test Mode                        | Description                    |  |
| Mode 1                                 | FULL SYSTEM(2.4G WIFI+5G WIFI) |  |

| Radiated Emissions 30 MHz to 1 GHz test |                                |  |  |  |  |
|-----------------------------------------|--------------------------------|--|--|--|--|
| Final Test Mode                         | Description                    |  |  |  |  |
| Mode 1                                  | FULL SYSTEM(2.4G WIFI+5G WIFI) |  |  |  |  |
|                                         |                                |  |  |  |  |

| Radiated emissions above 1 GHz test |                                |  |  |  |
|-------------------------------------|--------------------------------|--|--|--|
| Final Test Mode                     | Description                    |  |  |  |
| Mode 1                              | FULL SYSTEM(2.4G WIFI+5G WIFI) |  |  |  |

Note:

1. FUHUA and HONOR adapter are tested, the worst case is FUHUA and recorded.

- 2. The product support 2.4G&5G WIFI function.
- The frequency exemption are 2400-2483.5MHz, 5150-5250MHz, 5725-5850MHz.
- 3. Radiated emission above 1GHz tested with 2.4G&5G filter.



#### 2.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

1. EUT connected to Notebook (E) via 2.4G WIFI.

2. EUT connected to Notebook (F) via 5G WIFI.

- 3. EUT connected to Notebook (A&B&C&D) via RJ45 Cable.
- 4. EUT connected to Adapter via DC Cable.

#### 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED



#### 2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment         | Mfr/Brand | Model/Type No. | Series No. |
|------|-------------------|-----------|----------------|------------|
| A    | Notebook          | Lenovo    | E445           | MP-05Y3X6  |
| В    | Notebook          | Lenovo    | V310-14ISK     | LR07GZHC   |
| С    | Notebook          | Lenovo    | E46L           | EB22953770 |
| D    | Notebook          | Lenovo    | E445           | MP-05Y56S  |
| E    | E Notebook Lenovo |           | E46L           | EB21809870 |
| F    | Notebook Lenovo   |           | V310-14ISK     | LR07GZML   |

| Item | Cable Type | Shielded Type | Ferrite Core | Length |
|------|------------|---------------|--------------|--------|
| 1    | DC Cable   | NO            | NO           | 1.5m   |
| 2-5  | RJ45 Cable | NO            | NO           | 10m    |



#### **3. EMC EMISSION TEST**

#### 3.1 AC POWER LINE CONDUCTED EMISSIONS TEST

#### 3.1.1 LIMIT

| Frequency of Emission (MHz)  | Class B (dBuV) |           |  |  |  |
|------------------------------|----------------|-----------|--|--|--|
| Frequency of Emission (Minz) | Quasi-peak     | Average   |  |  |  |
| 0.15 - 0.5                   | 66 - 56 *      | 56 - 46 * |  |  |  |
| 0.5 - 5.0                    | 56.00          | 46.00     |  |  |  |
| 5.0 - 30.0                   | 60.00          | 50.00     |  |  |  |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

#### 3.1.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment           | Manufacturer              | Type No.  | Serial No. | Calibrated until |
|------|-----------------------------|---------------------------|-----------|------------|------------------|
| 1    | 50Ω Terminator              | SHX                       | TF2-3G-A  | 8122901    | Feb. 28, 2021    |
| 2    | TWO-LINE<br>V-NETWORK       | R&S                       | ENV216    | 100526     | Mar. 01, 2021    |
| 3    | EMI Test Receiver           | Il Test Receiver R&S ESR3 |           | 101862     | Aug. 03, 2020    |
| 4    | Artificial-Mains<br>Network | SCHWARZBECK               | NSLK 8127 | 8127685    | Mar. 01, 2021    |
| 5    | TRANSIENT<br>LIMITER        | EM                        | EM-7600   | 772        | Mar. 01, 2021    |
| 6    | Cable                       | N/A                       | RG223     | 12m        | Mar. 10, 2021    |

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.



#### 3.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- f. Measuring frequency range from 150KHz to 30MHz.

#### 3.1.4 DEVIATION FROM TEST STANDARD

No deviation

#### 3.1.5 TEST SETUP



#### 3.1.6 TEST RESULTS

Remark:

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of <code>[Note]</code>. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " \* " marked in AVG Mode column of Interference Voltage Measured.





| No. | Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Margin |          |         |
|-----|-----|--------|------------------|-------------------|------------------|-------|--------|----------|---------|
|     |     | MHz    | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1   |     | 0.1500 | 40.91            | 9.67              | 50.58            | 66.00 | -15.42 | QP       |         |
| 2   |     | 0.2940 | 25.01            | 9.89              | 34.90            | 50.41 | -15.51 | AVG      |         |
| 3   |     | 0.2985 | 34.64            | 9.89              | 44.53            | 60.28 | -15.75 | QP       |         |
| 4   |     | 0.3435 | 37.60            | 9.91              | 47.51            | 59.12 | -11.61 | QP       |         |
| 5   | *   | 0.3435 | 30.06            | 9.91              | 39.97            | 49.12 | -9.15  | AVG      |         |
| 6   |     | 0.3615 | 25.62            | 9.91              | 35.53            | 48.69 | -13.16 | AVG      |         |
| 7   |     | 0.3795 | 30.55            | 9.92              | 40.47            | 58.29 | -17.82 | QP       |         |
| 8   |     | 0.5595 | 16.67            | 9.96              | 26.63            | 46.00 | -19.37 | AVG      |         |
| 9   |     | 2.2650 | 14.36            | 10.12             | 24.48            | 46.00 | -21.52 | AVG      |         |
| 10  |     | 2.3325 | 25.81            | 10.12             | 35.93            | 56.00 | -20.07 | QP       |         |
| 11  |     | 4.1010 | 26.98            | 10.25             | 37.23            | 56.00 | -18.77 | QP       |         |
| 12  |     | 4.1774 | 15.09            | 10.27             | 25.36            | 46.00 | -20.64 | AVG      |         |





| NO. WIK. | rieq.  | Level | Factor | ment  | Linne | margin |          |         |
|----------|--------|-------|--------|-------|-------|--------|----------|---------|
|          | MHz    | dBuV  | dB     | dBuV  | dBuV  | dB     | Detector | Comment |
| 1        | 0.1590 | 25.72 | 9.81   | 35.53 | 55.52 | -19.99 | AVG      |         |
| 2        | 0.1725 | 40.07 | 9.91   | 49.98 | 64.84 | -14.86 | QP       |         |
| 3 *      | 0.3435 | 29.41 | 10.05  | 39.46 | 49.12 | -9.66  | AVG      |         |
| 4        | 0.3480 | 36.86 | 10.05  | 46.91 | 59.01 | -12.10 | QP       |         |
| 5        | 0.3615 | 34.93 | 10.06  | 44.99 | 58.69 | -13.70 | QP       |         |
| 6        | 0.3660 | 24.98 | 10.06  | 35.04 | 48.59 | -13.55 | AVG      |         |
| 7        | 0.5595 | 14.65 | 10.17  | 24.82 | 46.00 | -21.18 | AVG      |         |
| 8        | 2.0625 | 25.52 | 10.42  | 35.94 | 56.00 | -20.06 | QP       |         |
| 9        | 3.1470 | 26.38 | 10.53  | 36.91 | 56.00 | -19.09 | QP       |         |
| 10       | 3.9975 | 14.53 | 10.59  | 25.12 | 46.00 | -20.88 | AVG      |         |
| 11       | 9.7620 | 27.62 | 11.05  | 38.67 | 60.00 | -21.33 | QP       |         |
| 12       | 9.7620 | 17.12 | 11.05  | 28.17 | 50.00 | -21.83 | AVG      |         |
|          |        |       |        |       |       |        |          |         |





#### 3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ

#### 3.2.1 LIMIT

|                 | Class B (at 3m)          |                            |  |  |  |  |
|-----------------|--------------------------|----------------------------|--|--|--|--|
| Frequency (MHz) | (uV/m)<br>Field strength | (dBuV/m)<br>Field strength |  |  |  |  |
| 30 - 88         | 100                      | 40                         |  |  |  |  |
| 88 - 216        | 150                      | 43.5                       |  |  |  |  |
| 216 - 960       | 200                      | 46                         |  |  |  |  |
| Above 960       | 500                      | 54                         |  |  |  |  |

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
  3m Emission level = 10m Emission level + 20log(10m/3m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

#### 3.2.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment           | Manufacturer      | Type No.                          | Serial No. | Calibrated until |
|------|-----------------------------|-------------------|-----------------------------------|------------|------------------|
| 1    | Trilog-Broadband<br>Antenna | Schwarzbeck       | VULB9168                          | 9168-806   | Aug. 27, 2020    |
| 2    | 2 Cable emci                |                   | LMR-400(30MHz-1GHz)(1<br>0m+2.5m) | N/A        | Jun. 03, 2021    |
| 3    | FSV Signal Analyzer         | R&S               | FSV40                             | 101423     | Aug. 22, 2020    |
| 4    | Pre-Amplifier               | EMC<br>INSTRUMENT | EMC 9135                          | 980284     | Mar. 01, 2021    |
| 5    | EMI Test Receiver           | R&S               | ESCI                              | 100895     | Feb. 28, 2021    |

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.



#### 3.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- f. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

| Spectrum Parameters | Setting |
|---------------------|---------|
| RBW                 | 100 kHz |
| VBW                 | 300 kHz |
| ATT                 | 10 dB   |
| Sweep               | 200 ms  |

#### 3.2.4 DEVIATION FROM TEST STANDARD

No deviation

#### 3.2.5 TEST SETUP



#### Remark:

- (1) Measuring frequency range from 30 MHz to 1000 MHz
- (2) If the peak scan value lower limit more than 20 dB, then this signal data does not show in table.









|     | 40.4300  | 20.91 | -4.35 | 23.30 | 40.00 | -10.02 | Q. |  |
|-----|----------|-------|-------|-------|-------|--------|----|--|
| 2   | 157.0700 | 29.63 | -4.78 | 24.85 | 43.50 | -18.65 | QP |  |
| 3   | 220.1200 | 33.50 | -6.95 | 26.55 | 46.00 | -19.45 | QP |  |
| 4   | 250.1900 | 35.08 | -5.50 | 29.58 | 46.00 | -16.42 | QP |  |
| 5   | 433.5200 | 31.01 | 0.66  | 31.67 | 46.00 | -14.33 | QP |  |
| 6 * | 684.7500 | 29.09 | 6.15  | 35.24 | 46.00 | -10.76 | QP |  |



#### 3.3 RADIATED EMISSIONS ABOVE 1 GHZ

#### 3.3.1 LIMIT

| Frequency  | Class B          |         |  |  |  |  |  |
|------------|------------------|---------|--|--|--|--|--|
|            | (dBuV/m) (at 3m) |         |  |  |  |  |  |
|            | Peak             | Average |  |  |  |  |  |
| Above 1000 | 74               | 54      |  |  |  |  |  |
|            |                  |         |  |  |  |  |  |

| Fraguanay   | Class B          |         |  |  |  |  |  |
|-------------|------------------|---------|--|--|--|--|--|
|             | (dBuV/m) (at 1m) |         |  |  |  |  |  |
|             | Peak             | Average |  |  |  |  |  |
| Above 18000 | 83.5             | 63.5    |  |  |  |  |  |

#### FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

| Highest frequency generated or Upper frequency<br>of measurement used in the device or on which<br>the device operates or tunes (MHz) | Range (MHz)                                                                        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|
| Below 1.705                                                                                                                           | 30                                                                                 |  |  |  |  |  |
| 1.705 - 108                                                                                                                           | 1000                                                                               |  |  |  |  |  |
| 108 - 500                                                                                                                             | 2000                                                                               |  |  |  |  |  |
| 500 - 1000                                                                                                                            | 5000                                                                               |  |  |  |  |  |
| Above 1000                                                                                                                            | 5 <sup>th</sup> harmonic of the highest frequency or<br>40 GHz, whichever is lower |  |  |  |  |  |

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
  1m Emission level = 3m Emission level + 20log(3m/1m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

#### 3.3.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment                          | Manufacturer | Type No.                    | Serial No. | Calibrated until |
|------|--------------------------------------------|--------------|-----------------------------|------------|------------------|
| 1    | Double Ridged<br>Broadband Horn<br>Antenna | Schwarzbeck  | BBHA 9120D                  | 9120D-1787 | Apr. 13, 2021    |
| 2    | Cable                                      | mitron       | RWLP50-4.0A-KJ-SMSM-<br>12M | N/A        | Nov. 25, 2020    |
| 3    | Pre-Amplifier                              | emci         | EMC012645SE                 | 980421     | May 11, 2021     |
| 4    | EMI Test Receiver                          | R&S          | ESCI                        | 100895     | Feb. 28, 2021    |
| 5    | FSV Signal Analyzer                        | R&S          | FSV40                       | 101423     | Aug. 22, 2020    |

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.



#### 3.3.3 TEST PROCEDURE

a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. Note:

For measurement of frequency 1GHz -18GHz, the EUT was set 3 meters away from the receiver antenna. For 18G – 40GHz, the EUT was set 1 meter.

Emission level (dBuV/m)=20log Emission level (uV/m).

The limits above 18GHz shall be extrapolated to the specified distance using an

extrapolation factor of 20dB/decade from 3m to 1m

Distance extrapolation factor = 20 log (3m/1m) dB ;

Limit line = specific limits (dBuV) + 9.5 dB.

- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
- g. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

| Spectrum Parameters | Setting  |
|---------------------|----------|
| RBW                 | 1000 kHz |
| VBW                 | 1000 kHz |
| ATT                 | 0 dB     |
| Sweep               | 200 ms   |

#### 3.3.4 DEVIATION FROM TEST STANDARD

No deviation

# **B**L

#### 3.3.5 TEST SETUP



18 GHz-40 GHz





#### 3.3.6 TEST RESULTS

#### Remark:

- (1) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (2) Data of measurement within this frequency range shown " \* " in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.



| est Volt | ade            | AC               | 1201/601          | 17               |                 | Polari  | zation   |         | Vertica    | al (Peak)   |
|----------|----------------|------------------|-------------------|------------------|-----------------|---------|----------|---------|------------|-------------|
| Test Mod |                | Mor              | 1_01/001          |                  |                 | 1 oran  | Lation   |         | Vortice    |             |
|          |                | Wiot             |                   |                  |                 |         |          |         |            |             |
| 80.0     | dBu∀/m         |                  |                   |                  |                 |         |          |         |            |             |
|          |                |                  |                   |                  |                 |         |          |         |            |             |
| 70       |                |                  |                   |                  |                 |         |          |         |            |             |
| 60       |                |                  |                   |                  |                 |         |          |         |            |             |
| EO       |                |                  |                   |                  |                 |         |          |         |            |             |
| UC       | × .            | 2                |                   |                  |                 |         |          |         |            |             |
| 40       |                | Â                | 3<br>7 <b>4</b>   | Annenner         | 1/4/14/14/14/14 | monan   | whenter  | whether | anytutuman | what finder |
| 20       | mannum         | University       | Ward & Kanana     |                  |                 |         |          |         | **         |             |
| 30       |                |                  |                   |                  |                 |         |          |         |            |             |
| 20       |                |                  |                   |                  |                 |         |          |         |            |             |
| 10       |                |                  |                   |                  |                 |         |          |         |            |             |
| 0.0      |                |                  |                   |                  |                 |         |          |         |            |             |
| 10       | 000.000 1500.0 | 0 2000.00        | 2500.00           | 3000.00          | 3500.00         | 4000.00 | ) 4500.  | 00 5000 | .00        | 6000.00 MHz |
| No. M    | k. Freq.       | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit           | Margin  |          |         |            |             |
|          | MHz            | dBuV             | dB                | dBuV/m           | dBuV/m          | dB      | Detector | Commen  | t          |             |
| 1 *      | 1375.000       | 50.14            | -4.27             | 45.87            | 74.00           | -28.13  | peak     |         |            |             |
| 2        | 1625.000       | 44.69            | -2.88             | 41.81            | 74.00           | -32.19  | peak     |         |            |             |
| 3        | 2400.000       | 37.65            | 0.52              | 38.17            | 74.00           | -35.83  | peak     |         |            |             |
| 4        | 2483.500       | 34.83            | 0.76              | 35.59            | 74.00           | -38.41  | peak     |         |            |             |
| E        | 5725 000       | 29.63            | 8.69              | 38.32            | 74.00           | 35.68   | neak     |         |            |             |
| 5        | 0120.000       | 20.00            | 0.00              | 00.02            | 74.00           | -33.00  | peak     |         |            |             |



5825.000

6

30.47

9.01

39.48

| est Volta                                        | /oltage AC 120V/60Hz Polarization Horizo                                      |                                                                       |                                                                                |                                                                               |                                                                |                                                                | Horizo                                              | ntal (Peak)        |               |             |  |
|--------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|--------------------|---------------|-------------|--|
| est Mode                                         | е                                                                             | Ν                                                                     | Mode 1                                                                         |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 00.0                                             | dDe M das                                                                     |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 00.0                                             | abavyiii                                                                      |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 70 -                                             |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 60                                               |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
|                                                  |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 50                                               | 1                                                                             | 2                                                                     |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 40                                               |                                                                               | Ź                                                                     | 3                                                                              | A read to be add                                                              | aktusture da                                                   | h daharika da                                                  |                                                     | www.when.          | n Nuthenation | Same        |  |
|                                                  | w Murminian                                                                   | manual                                                                | nntron WVX                                                                     | NAMANANA                                                                      | eriori (Ph)                                                    | t of Allock for                                                | יר מיז עיציאיש אוי                                  |                    | an an an And  | Value a     |  |
| 30 -                                             |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 20                                               |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
|                                                  |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 10                                               |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 10                                               |                                                                               |                                                                       |                                                                                |                                                                               |                                                                |                                                                |                                                     |                    |               |             |  |
| 10<br>0.0<br>100                                 | 00.000 1500.0                                                                 | 10 2000                                                               | .00 2500.                                                                      | 00 3000.00                                                                    | 3500.00                                                        | 4000.0                                                         | 00 4500                                             | .00 5000           | 0.00          | 6000.00 MHz |  |
| 10<br>0.0<br>100                                 | 00.000 1500.0                                                                 | 0 2000<br>Readin                                                      | 0.00 2500.<br>ng Correc                                                        | oo 3000.00<br>t Measure                                                       | 3500.00<br>-                                                   | 4000.0                                                         | 00 4500                                             | .00 5000           | ). 00         | 6000.00 MHz |  |
| 10<br>0.0<br>100<br>No. Mk                       | 00.000 1500.0<br>Freq.<br>MHz                                                 | 0 2000<br>Readin<br>Level<br>dBuV                                     | 0.00 2500.<br>ng Correc<br>Facto<br>dB                                         | 00 3000.00<br>t Measure<br>r ment<br>dBuV/m                                   | 3500.00<br>-<br>Limit<br>dBuV/m                                | 4000.0<br>Margir                                               | 00 4500<br>1<br>Detector                            | .00 5000           | 0. OD         | 6000.00 MHz |  |
| 10<br>0.0<br>100<br>No. Mk                       | 00.000 1500.0<br>Freq.<br>MHz<br>1375.000                                     | 0 2000<br>Readin<br>Level<br>dBuV<br>50.26                            | 0.00 2500.<br>ng Correc<br>Facto<br>dB<br>3 -4.27                              | 00 3000.00<br>t Measure<br>r ment<br>dBuV/m<br>45.99                          | 3500.00<br>Limit<br>dBuV/m<br>74.00                            | 4000.0<br>Margin<br>dB<br>-28.01                               | 00 4500<br>n<br>Detector<br>peak                    | .00 5000<br>Commer | 0.00<br>it    | 6000.00 MHz |  |
| 10<br>0.0<br>100<br>No. Mk                       | 00.000 1500.0<br>Freq.<br>MHz<br>1375.000<br>1625.000                         | 0 2000<br>Readin<br>Level<br>dBuV<br>50.26<br>46.13                   | 0.00 2500.<br>ng Correc<br>Facto<br>dB<br>5 -4.27<br>8 -2.88                   | 00 3000.00<br>et Measure<br>r ment<br>dBuV/m<br>45.99<br>43.25                | 3500.00<br>Limit<br>dBuV/m<br>74.00<br>74.00                   | 4000.0<br>Margir<br>dB<br>-28.01<br>-30.75                     | 00 4500<br>Detector<br>peak<br>peak                 | .00 5000<br>Commer | 0.00<br>it    | 6000.00 MHz |  |
| 10<br>0.0<br>100<br>No. Mk<br>1 *<br>2<br>3      | 00.000 1500.0<br>Freq.<br>MHz<br>1375.000<br>1625.000<br>2400.000             | 0 2000<br>Readin<br>Level<br>dBuV<br>50.26<br>46.13<br>38.00          | 0.00 2500.<br>ng Correc<br>Facto<br>dB<br>6 -4.27<br>8 -2.88<br>0 0.52         | 00 3000.00<br>t Measure<br>r ment<br>dBuV/m<br>45.99<br>43.25<br>38.52        | 3500.00<br>Limit<br>dBuV/m<br>74.00<br>74.00<br>74.00          | 4000.0<br>Margin<br>dB<br>-28.01<br>-30.75<br>-35.48           | 00 4500<br>Detector<br>peak<br>peak<br>peak         | .00 5000<br>Commer | 0.00<br>it    | 6000.00 MHz |  |
| 10<br>0.0<br>100<br>No. Mk<br>1 *<br>2<br>3<br>4 | 00.000 1500.0<br>Freq.<br>MHz<br>1375.000<br>1625.000<br>2400.000<br>2483.500 | 0 2000<br>Readin<br>Level<br>dBuV<br>50.26<br>46.13<br>38.00<br>34.31 | 0.00 2500.<br>ng Correc<br>Facto<br>dB<br>6 -4.27<br>8 -2.88<br>0 0.52<br>0.76 | 00 3000.00<br>t Measure<br>ment<br>dBuV/m<br>45.99<br>43.25<br>38.52<br>35.07 | 3500.00<br>Limit<br>dBuV/m<br>74.00<br>74.00<br>74.00<br>74.00 | 4000.0<br>Margin<br>dB<br>-28.01<br>-30.75<br>-35.48<br>-38.93 | 00 4500<br>Detector<br>peak<br>peak<br>peak<br>peak | .00 5000<br>Commer | 0.00<br>it    | 6000.00 MHz |  |

74.00 -34.52

peak





| No. | Mk. | Freq.    | Reading<br>Level | Factor | Measure-<br>ment | Limit  | Margin |          |         |
|-----|-----|----------|------------------|--------|------------------|--------|--------|----------|---------|
|     |     | MHz      | dBuV             | dB     | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |     | 7464.000 | 38.19            | 11.44  | 49.63            | 74.00  | -24.37 | peak     |         |
| 2   |     | 9252.000 | 38.61            | 12.78  | 51.39            | 74.00  | -22.61 | peak     |         |
| 3   |     | 10356.00 | 39.23            | 13.50  | 52.73            | 74.00  | -21.27 | peak     |         |
| 4   |     | 13296.00 | 37.64            | 17.32  | 54.96            | 74.00  | -19.04 | peak     |         |
| 5   |     | 14592.00 | 37.86            | 18.83  | 56.69            | 74.00  | -17.31 | peak     |         |
| 6   | *   | 17772.00 | 37.04            | 22.16  | 59.20            | 74.00  | -14.80 | peak     |         |



| Teat \ /alt | 0.00            | 10               | 1201//601         | 1-                     |                           | Dala           | rization  |            | Harizantal (Dag | L)  |
|-------------|-----------------|------------------|-------------------|------------------------|---------------------------|----------------|-----------|------------|-----------------|-----|
| Test volt   | age             | AC               | 1200/006          | 72                     |                           | Pola           | Ization   |            | Horizontai (Pea | к)  |
| Test Mod    | le              | Mod              | le 1              |                        |                           |                |           |            |                 |     |
| 100.        | 0 dBuV/m        |                  |                   |                        |                           |                |           |            |                 |     |
| 90          |                 |                  |                   |                        |                           |                |           |            |                 |     |
| 80          |                 |                  |                   |                        |                           |                |           |            |                 |     |
| 70          |                 |                  |                   |                        |                           |                |           |            |                 |     |
| 60          |                 |                  | 2                 |                        |                           | 3              | 4 July    |            | 5               |     |
| 50          | milmentertation | Horabaran Maria  | www.thethereter   | Hard Andrewson and the | which and the most of the | pentiktrission | Man davi  |            |                 |     |
| 40          |                 |                  |                   |                        |                           |                |           |            |                 |     |
| 30          |                 |                  |                   |                        |                           |                |           |            |                 |     |
| 20          |                 |                  |                   |                        |                           |                |           |            |                 |     |
| 10          |                 |                  |                   |                        |                           |                |           |            |                 |     |
| 0.0<br>61   | 000.000 7200.00 | 8400.00          | 9600.00           | 10800.00               | 12000.00                  | 13200.         | .00 1440( | ).00 15600 | ).00 18000.00 k | IHz |
| No. M       | k. Freq.        | Reading<br>Level | Correct<br>Factor | Measure-<br>ment       | Limit                     | Margin         | 1         |            |                 |     |
|             | MHz             | dBuV             | dB                | dBuV/m                 | dBuV/m                    | dB             | Detector  | Comment    |                 |     |
| 1           | 7728.000        | 39.39            | 11.41             | 50.80                  | 74.00                     | -23.20         | peak      |            |                 |     |
| 2           | 9744.000        | 38.75            | 12.96             | 51.71                  | 74.00                     | -22.29         | peak      |            |                 |     |
| 3           | 12876.00        | 37.62            | 16.29             | 53.91                  | 74.00                     | -20.09         | peak      |            |                 |     |
| 4           | 13812.00        | 37.24            | 18.69             | 55.93                  | 74.00                     | -18.07         | peak      |            |                 |     |
| 5           | 14508.00        | 37.04            | 19.08             | 56.12                  | 74.00                     | -17.88         | peak      |            |                 |     |
| 6 *         | 17928.00        | 37.18            | 22.26             | 59.44                  | 74.00                     | -14.56         | peak      |            |                 |     |







| Test Voltage |               | AC 120             | )V/60Hz                |                                  | Pola                    | arization   |           | Horizontal (Pea                                           | k)  |
|--------------|---------------|--------------------|------------------------|----------------------------------|-------------------------|-------------|-----------|-----------------------------------------------------------|-----|
| Test Mode    |               | Mode 1             | l                      |                                  |                         |             |           |                                                           |     |
|              |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 100.0 dBu\   | //m           |                    |                        |                                  |                         |             |           |                                                           |     |
|              |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 90           |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 80           |               |                    |                        |                                  |                         |             |           |                                                           |     |
|              |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 70           |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 60           |               |                    |                        |                                  |                         |             | 5         | 6                                                         |     |
| 1            |               | Z                  | 3                      | and a data to a second           | 4                       |             | Annaliter | when when a start when when when when when when when when |     |
| 50 aline     | mulponether   | white a summer of  | Walnut Hand            | and a second state of the second | an an an an an an an An |             |           |                                                           |     |
| 40           |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 40           |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 30           |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 20.0         |               |                    |                        |                                  |                         |             |           |                                                           |     |
| 18000.000    | 18850.00      | 19700.00           | 20550.00 21            | 400.00 222                       | 50.00 2310              | 0.00 23950. | .00 24800 | .00 26500.00                                              | MHz |
| No. Mk. F    | Re<br>req. Le | ading Co<br>evel F | orrect Mea<br>actor me | sure-<br>ent Lin                 | nit Marg                | in          |           |                                                           |     |
| N            | /Hz d         | BuV                | dB dBu                 | V/m dBuV                         | //m dB                  | Detector    | Comment   |                                                           |     |
| 1 1806       | 8.00 3        | 7.08 1             | 6.19 53                | 27 83.5                          | 50 -30.2                | 3 peak      |           |                                                           |     |
| 2 1962       | 3.50 30       | 6.36 1             | 7.24 53                | 60 83.5                          | 50 -29.9                | 0 peak      |           |                                                           |     |
| 3 2119       | 6.00 3        | 7.31 1             | 7.23 54                | 54 83.5                          | 50 -28.9                | 6 peak      |           |                                                           |     |
| 4 2287       | 9.00 30       | 6.22 1             | 8.17 54                | 39 83.5                          | 50 -29.1                | 1 peak      |           |                                                           |     |
| 5 2416       | 2.50 3        | 5.91 2             | 1.29 57                | 20 83.5                          | 50 -26.3                | 0 peak      |           |                                                           |     |
| 6 * 2568     | 4.00 3        | 7.26 2             | 1.51 58                | 77 83.5                          | 50 -24.73               | 3 peak      |           |                                                           |     |











| Test Volt | age             | AC       | 120V/60           | Hz               |         | Pola   | rization |           | Vertical (Avera | ge) |
|-----------|-----------------|----------|-------------------|------------------|---------|--------|----------|-----------|-----------------|-----|
| Test Mod  | de              | Mod      | de 1              |                  |         |        |          |           |                 |     |
| 80.0      | dBuV/m          |          |                   |                  |         |        |          |           |                 |     |
| 00.0      |                 |          |                   |                  |         |        |          |           |                 |     |
| 70        |                 |          |                   |                  |         |        |          |           |                 |     |
| 60        |                 |          |                   |                  |         |        |          |           |                 |     |
| 50        |                 |          |                   |                  |         |        |          |           |                 |     |
| 40        | 1               |          |                   |                  |         |        |          |           |                 |     |
| 30        | ×               |          |                   | mmmun            | www.    | mm     | www.     | wwwww     | Winner And      |     |
| 20        | mhuhuhuhuh      | Althorem |                   |                  |         |        |          |           |                 |     |
| 10        |                 |          |                   |                  |         |        |          |           |                 |     |
| 0.0       | 000.000.1500.00 | 2000.00  | 2500.00           | 2000.00          | 2500.00 | 4000.0 | 0 4500   | 00 5000   | 00 0000 00      |     |
|           | 000.000 1500.00 | 2000.00  | 2500.00           | 3000.00          | 3500.00 | 4000.0 | 10 4500  | .00 5000. | 00 6000.00      | MHZ |
| No. M     | k. Freq.        | Level    | Correct<br>Factor | Measure-<br>ment | Limit   | Margin | 1        |           |                 |     |
|           | MHz             | dBuV     | dB                | dBuV/m           | dBuV/m  | dB     | Detector | Comment   | :               |     |
| 1 *       | 1380.000        | 40.85    | -4.25             | 36.60            | 54.00   | -17.40 | AVG      |           |                 |     |
| 2         | 1630.000        | 36.07    | -2.86             | 33.21            | 54.00   | -20.79 | AVG      |           |                 |     |
| 3         | 2400.000        | 26.26    | 0.52              | 26.78            | 54.00   | -27.22 | AVG      |           |                 |     |
| 4         | 2483.500        | 26.70    | 0.76              | 27.46            | 54.00   | -26.54 | AVG      |           |                 |     |
| 5         | 5725.000        | 20.37    | 8.69              | 29.06            | 54.00   | -24.94 | AVG      |           |                 |     |
| 6         | 5825.000        | 20.97    | 9.01              | 29.98            | 54.00   | -24.02 | AVG      |           |                 |     |



| Test Volta      | age             | AC               | 120V/60H          | łz               |         | Polar  | ization                                 |                                        | Horizontal (Average) |
|-----------------|-----------------|------------------|-------------------|------------------|---------|--------|-----------------------------------------|----------------------------------------|----------------------|
| Test Mod        | le              | Moc              | le 1              |                  |         |        |                                         |                                        |                      |
| 80.0            | dBuV/m          |                  |                   |                  |         |        |                                         |                                        |                      |
| 70              |                 |                  |                   |                  |         |        |                                         |                                        |                      |
| 60              |                 |                  |                   |                  |         |        |                                         |                                        |                      |
| 50              |                 |                  |                   |                  |         |        |                                         |                                        |                      |
| 40              | 1<br>X          | 2<br>X           |                   |                  |         |        |                                         |                                        |                      |
| 30              |                 | lonhund          | min Minn          | maria            | ana ana | mmm    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | mmmy                 |
| 20              | million         | horder to        |                   |                  |         |        |                                         |                                        |                      |
| 10              |                 |                  |                   |                  |         |        |                                         |                                        |                      |
| <b>0.0</b><br>1 | 000.000 1500.00 | 2000.00          | 2500.00           | 3000.00          | 3500.00 | 4000.0 | 0 4500                                  | .00 5000.                              | 00 6000.00 MHz       |
| No. M           | k. Freq.        | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit   | Margin |                                         |                                        |                      |
|                 | MHz             | dBuV             | dB                | dBuV/m           | dBuV/m  | dB     | Detector                                | Comment                                |                      |
| 1 *             | 1380.000        | 42.45            | -4.25             | 38.20            | 54.00   | -15.80 | AVG                                     |                                        |                      |
| 2               | 1735.000        | 35.65            | -2.22             | 33.43            | 54.00   | -20.57 | AVG                                     |                                        |                      |
| 3               | 2400.000        | 26.26            | 0.52              | 26.78            | 54.00   | -27.22 | AVG                                     |                                        |                      |
| 4               | 2483.500        | 26.50            | 0.76              | 27.26            | 54.00   | -26.74 | AVG                                     |                                        |                      |
| 5               | 5725.000        | 20.71            | 8.69              | 29.40            | 54.00   | -24.60 | AVG                                     |                                        |                      |
| 6               | 5825.000        | 20.81            | 9.01              | 29.82            | 54.00   | -24.18 | AVG                                     |                                        |                      |



14364.00

16596.00

6 \* 17916.00

4

5

25.63

26.70

24.65

44.77

45.64

46.89

19.14

18.94

22.24

54.00

54.00

54.00

AVG

AVG

AVG

-9.23

-8.36

-7.11

| est Voltage |                 |                 | C 120V/60           | Hz               |          | Polar  | ization   | Vertic        | al (Average)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------|-----------------|-----------------|---------------------|------------------|----------|--------|-----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| est M       | ode             | Ν               | Mode 1              |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 10          | 0.0 dBuV/m      |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 90          |                 |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 80          |                 |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 70          |                 |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 60          |                 |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 50          |                 |                 |                     |                  |          |        | 4         |               | 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 40          | -               | 1<br>~~X~~~~~   | ×                   | manne            |          |        |           |               | Martin Contraction of the Contra |  |  |
| 30          |                 |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 20          |                 |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 10          |                 |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 0.0         | )               |                 |                     |                  |          |        |           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | 6000.000 7200.0 | 00 8400         | .00 9600.00         | 10800.00         | 12000.00 | 13200. | .00 14400 | 0.00 15600.00 | 18000.00 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| No. I       | Mk. Freq.       | Readin<br>Level | g Correct<br>Factor | Measure-<br>ment | Limit    | Margin | I         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | MHz             | dBuV            | dB                  | dBuV/m           | dBuV/m   | dB     | Detector  | Comment       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1           | 7704.000        | 28.48           | 11.42               | 39.90            | 54.00    | -14.10 | AVG       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 2           | 9912.000        | 28.17           | 13.11               | 41.28            | 54.00    | -12.72 | AVG       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 3           | 11940.00        | 27.40           | 14.58               | 41.98            | 54.00    | -12.02 | AVG       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |



| est Volt  | tage           |             | AC         | 120V/6            | 0Hz          |                                         |                                        | Pola      | arizatio              | on      |                    | Но                                                                                                             | rizor                                  | ntal (A     | verage) |  |
|-----------|----------------|-------------|------------|-------------------|--------------|-----------------------------------------|----------------------------------------|-----------|-----------------------|---------|--------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|---------|--|
| est Mo    | de             |             | Mod        | le 1              |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             |         |  |
| 100.      | 0 dBu∀/m       |             |            |                   |              |                                         |                                        |           |                       | 1       |                    |                                                                                                                |                                        |             |         |  |
| 90        |                |             | _          |                   |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             | _       |  |
| 80        |                |             |            |                   |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             | _       |  |
| 70        |                |             |            |                   |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             |         |  |
| 60        |                |             |            |                   |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             |         |  |
| 50        |                |             |            | 2                 | 3            |                                         |                                        |           |                       |         | 4<br>X             |                                                                                                                | 5                                      | 6           |         |  |
| 40        | -              | 1<br>X      |            | ×.                | ~×           | مراجع می وروند.<br>مراجع می وروند از می | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ********* | and the second second | er den  | - Caller Configure | and a second | ······································ | in Constant |         |  |
| 30        |                |             |            |                   |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             |         |  |
| 20        |                |             |            |                   |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             |         |  |
| 10        |                |             |            |                   |              |                                         |                                        |           |                       |         |                    |                                                                                                                |                                        |             | _       |  |
| 0.0<br>61 | 000.000 7200.0 | 0 84        | 100.00     | 9600.00           | D 1080       | D.00                                    | 12000.00                               | ) 1320    | 0.00 1                | 4400.00 | 1560               | )0.00                                                                                                          |                                        | 18000.      | 00 MHz  |  |
| No. M     | k. Freq.       | Read<br>Lev | ling<br>el | Correct<br>Factor | Measu<br>men | ire-<br>t                               | Limit                                  | Margi     | in                    |         |                    |                                                                                                                |                                        |             |         |  |
|           | MHz            | dBu         | ١V         | dB                | dBuV/        | m d                                     | lBuV/m                                 | dB        | Deteo                 | ctor (  | Commer             | nt                                                                                                             |                                        |             |         |  |
| 1         | 7584.000       | 28.         | 54         | 11.47             | 40.0         | 1 ;                                     | 54.00                                  | -13.99    | AV                    | G       |                    |                                                                                                                |                                        |             |         |  |
| 2         | 9252.000       | 28.         | 78         | 12.78             | 41.5         | 6                                       | 54.00                                  | -12.44    | AV                    | G       |                    |                                                                                                                |                                        |             |         |  |
| 3         | 10116.00       | 28.         | 53         | 13.29             | 41.8         | 2                                       | 54.00                                  | -12.18    | B AV                  | G       |                    |                                                                                                                |                                        |             |         |  |
| 4 *       | 15156.00       | 28.1        | 16         | 17.43             | 45.5         | 9                                       | 54.00                                  | -8.41     | AV                    | G       |                    |                                                                                                                |                                        |             |         |  |
| 5         | 16452.00       | 27.0        | 06         | 18.53             | 45.5         | 9                                       | 54.00                                  | -8.41     | AV                    | G       |                    |                                                                                                                |                                        |             |         |  |
| 6         | 17448.00       | 23.         | 75         | 21.82             | 45.5         | 7                                       | 54.00                                  | -8.43     | AV                    | G       |                    |                                                                                                                |                                        |             |         |  |



22768.50

24052.00

6 \* 25012.50

4

5

26.37

25.65

25.98

18.33

21.41

22.64

44.70

47.06

48.62

|              |                 |             | 4001/00                                  | N I_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Data           |          |              |                 |  |  |
|--------------|-----------------|-------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------|--------------|-----------------|--|--|
| lest voltage |                 |             | AC 120V/00HZ POIA12ation Vertical (Avera |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| est M        | ode             | Mo          | de 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
|              |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| 10           | U.U dBu¥/m      |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
|              |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| 90           |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| 80           |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
|              |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| 70           |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
|              |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| 60           |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| EO           |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          | _ (          | 6               |  |  |
| 50           | 1               | 2           |                                          | 3<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 4<br>          |          | ×            | mm              |  |  |
| 40           | ×               | - Anno      |                                          | and the second |          | - 0.272 - 44 4 | ~        |              |                 |  |  |
|              |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| 30           |                 |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
| 20           | .0              |             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |          |              |                 |  |  |
|              | 18000.000 18850 | .00 19700.0 | 0 20550.0                                | 0 21400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22250.00 | 23100.         | .00 2395 | D.00 24800.0 | 00 26500.00 MHz |  |  |
|              |                 | Reading     | Correct                                  | Measure-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1.1.1  |                |          |              |                 |  |  |
| No. I        | Vik. Freq.      | Level       | Factor                                   | ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit    | Margin         | 1        |              |                 |  |  |
|              | MHz             | dBuV        | dB                                       | dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dBuV/m   | dB             | Detector | Comment      |                 |  |  |
| 1            | 18085.00        | 26.43       | 16.13                                    | 42.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.50    | -20.94         | AVG      |              |                 |  |  |
| 2            | 19530.00        | 26.02       | 17.59                                    | 43.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.50    | -19.89         | AVG      |              |                 |  |  |
| 3            | 21434.00        | 27.19       | 17.35                                    | 44.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63.50    | -18.96         | AVG      |              |                 |  |  |

63.50 -18.80 AVG

-16.44

-14.88

AVG

AVG

63.50

63.50



| est Vol | tage           | AC               | C 120V/60                  | )Hz              |                            | Pola                                                                                                            | arization  |            | Horiz  | ontal (Av | erage) |
|---------|----------------|------------------|----------------------------|------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|------------|------------|--------|-----------|--------|
| est Mo  | de             | M                | Mode 1                     |                  |                            |                                                                                                                 |            |            |        |           |        |
| 100.0   | 0 dBuV/m       |                  |                            |                  |                            |                                                                                                                 |            |            |        |           | _      |
|         |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           |        |
| 90      |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           |        |
| 80      |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           |        |
| 70      |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           |        |
|         |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           | -      |
| 60      |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           | 1      |
| 50      |                | 1                |                            | 2                |                            |                                                                                                                 | 3 4<br>X X |            | 5<br>X | 6<br>X    |        |
| 40      | m              |                  | and a second second second |                  | - Concertainte Contraction | hall and a share a shar |            |            |        |           |        |
| 30      |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           |        |
| 20.0    |                |                  |                            |                  |                            |                                                                                                                 |            |            |        |           |        |
| 10      | 8000.000 18850 | .00 19700.0      | 0 20550.00                 | ) 21400.00       | 22250.00                   | 23100                                                                                                           | .00 23950  | ).00 24800 | ).00   | 26500.00  | MHz    |
| No. M   | k. Freq.       | Reading<br>Level | Correct<br>Factor          | Measure-<br>ment | Limit                      | Margir                                                                                                          | ı          |            |        |           |        |
|         | MHz            | dBuV             | dB                         | dBuV/m           | dBuV/m                     | dB                                                                                                              | Detector   | Comment    |        |           |        |
| 1       | 19538.50       | 26.74            | 17.56                      | 44.30            | 63.50                      | -19.20                                                                                                          | AVG        |            |        |           |        |
| 2       | 21383.00       | 28.12            | 17.33                      | 45.45            | 63.50                      | -18.05                                                                                                          | AVG        |            |        |           |        |
| 3       | 23516.50       | 26.32            | 19.89                      | 46.21            | 63.50                      | -17.29                                                                                                          | AVG        |            |        |           |        |
| 4       | 24009.50       | 26.00            | 21.47                      | 47.47            | 63.50                      | -16.03                                                                                                          | AVG        |            |        |           |        |
| 5 *     | 24953.00       | 25.48            | 22.48                      | 47.96            | 63.50                      | -15.54                                                                                                          | AVG        |            |        |           |        |
| 6       | 25760.50       | 25.83            | 21.14                      | 46.97            | 63.50                      | -16.53                                                                                                          | AVG        |            |        |           |        |



| Test Vol | tage             | A                | C 120V/60                               | Hz               |         | Pola    | ization  | Ve            | Vertical (Average) |  |  |
|----------|------------------|------------------|-----------------------------------------|------------------|---------|---------|----------|---------------|--------------------|--|--|
| Test Mo  | de               | N                | lode 1                                  |                  |         |         |          |               |                    |  |  |
| 100.     | 0 dBuV/m         |                  |                                         |                  |         |         |          |               |                    |  |  |
|          |                  |                  |                                         |                  |         |         |          |               |                    |  |  |
| 90       |                  |                  |                                         |                  |         |         |          |               |                    |  |  |
| 80       |                  |                  |                                         |                  |         |         |          |               |                    |  |  |
| 70       |                  |                  |                                         |                  |         |         |          |               |                    |  |  |
|          |                  |                  |                                         |                  |         |         |          |               |                    |  |  |
| 60       |                  |                  |                                         |                  |         |         |          |               |                    |  |  |
| 50       |                  |                  |                                         |                  |         |         |          |               | 6                  |  |  |
| 40       |                  |                  |                                         |                  | 1 2     | 3       |          | *             | ment and a second  |  |  |
| 30       | James A.         | an mark          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                  | *~      |         |          |               |                    |  |  |
| 20.0     |                  |                  |                                         |                  |         |         |          |               |                    |  |  |
| 2        | 6500.000 27850.0 | 00 29200         | 0.00 30550.0                            | 0 31 900.00      | 33250.0 | 0 34600 | .00 3595 | D.00 37300.00 | 40000.00 MHz       |  |  |
| No. M    | k. Freg.         | Reading<br>Level | g Correct<br>Factor                     | Measure-<br>ment | Limit   | Margir  | ı        |               |                    |  |  |
|          | MHz              | dBuV             | dB                                      | dBuV/m           | dBuV/m  | dB      | Detector | Comment       |                    |  |  |
| 1        | 32669.50         | 22.91            | 12.31                                   | 35.22            | 63.50   | -28.28  | AVG      |               |                    |  |  |
| 2        | 33466.00         | 23.54            | 13.67                                   | 37.21            | 63.50   | -26.29  | AVG      |               |                    |  |  |
| 3        | 34721.50         | 24.62            | 14.56                                   | 39.18            | 63.50   | -24.32  | AVG      |               |                    |  |  |
| 4        | 36746.50         | 26.47            | 15.02                                   | 41.49            | 63.50   | -22.01  | AVG      |               |                    |  |  |
| 5        | 38582.50         | 26.04            | 16.87                                   | 42.91            | 63.50   | -20.59  | AVG      |               |                    |  |  |
| 6 *      | 40000.00         | 25.67            | 21.37                                   | 47.04            | 63.50   | -16.46  | AVG      |               |                    |  |  |



| Test Volt | ade              | Δ                | C 120V/60            | )Hz              |                       | Pola   | rization              |           | Horizo | ntal (Average) |
|-----------|------------------|------------------|----------------------|------------------|-----------------------|--------|-----------------------|-----------|--------|----------------|
| Toot Mod  |                  | N                | Ando 1               |                  |                       | 1 014  | nzation               |           | TIONZO |                |
| Test Mou  | le               | IV               |                      |                  |                       |        |                       |           |        |                |
| 100.0     | 0 dBuV/m         |                  |                      |                  |                       |        |                       |           |        |                |
|           |                  |                  |                      |                  |                       |        |                       |           |        |                |
| 90        |                  |                  |                      |                  |                       |        |                       |           |        |                |
| 80        |                  |                  |                      |                  |                       |        |                       |           |        |                |
| 70        |                  |                  |                      |                  |                       |        |                       |           |        |                |
|           |                  |                  |                      |                  |                       |        |                       |           |        |                |
| 60        |                  |                  |                      |                  |                       |        |                       |           |        |                |
| 50        |                  |                  |                      |                  |                       |        |                       |           |        | 6              |
| 40        |                  |                  |                      | 1                | 2                     | 3      | and the second second | . to      |        | 5<br>******    |
|           |                  |                  |                      | ×                | and the second second | mul    |                       |           |        |                |
| 30        | menner           | - and the second |                      |                  |                       |        |                       |           |        |                |
| 20.0      |                  |                  |                      |                  |                       |        |                       |           |        |                |
| 20        | 6500.000 27850.0 | 00 2920          | 0.00 30550.0         | 0 31900.00       | 33250.00              | 34600  | .00 35950             | .00 37300 | .00    | 40000.00 MHz   |
| No. M     | k. Freq.         | Readin<br>Level  | ig Correct<br>Factor | Measure-<br>ment | Limit                 | Margin | 1                     |           |        |                |
|           | MHz              | dBuV             | dB                   | dBuV/m           | dBuV/m                | dB     | Detector              | Comment   |        |                |
| 1         | 32345.50         | 23.65            | 11.94                | 35.59            | 63.50                 | -27.91 | AVG                   |           |        |                |
| 2         | 33277.00         | 24.09            | 13.17                | 37.26            | 63.50                 | -26.24 | AVG                   |           |        |                |
| 3         | 34586.50         | 24.67            | 14.53                | 39.20            | 63.50                 | -24.30 | AVG                   |           |        |                |
| 4         | 36760.00         | 25.83            | 15.00                | 40.83            | 63.50                 | -22.67 | AVG                   |           |        |                |
| 5         | 38744.50         | 26.26            | 17.49                | 43.75            | 63.50                 | -19.75 | AVG                   |           |        |                |
| 6 *       | 39959.50         | 24.98            | 21.32                | 46.30            | 63.50                 | -17.20 | AVG                   |           |        |                |

#### End of Test Report