

RF TEST REPORT

Applicant	Huawei Device Co., Ltd.
FCC ID	2ATEYWS7100
Product	3000Mbps Wi-Fi 6 Router
Model	WS7100
Report No.	R2105A0471-R4V2
Issue Date	June 29, 2021

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2020)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Keng Too

Performed by: Peng Tao

Kai Xu

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	t Laboratory	5
1.1.	Notes of the test report	5
1.2.	Test facility	5
1.3.	Testing Location	5
2. Ger	neral Description of Equipment under Test	6
2.1.	Applicant and Manufacturer Information	6
2.2.	General information	6
3. App	lied Standards	8
4. Tes	t Configuration	9
5. Tes	t Case Results	13
5.1.	Occupied Bandwidth	
5.2.	Average Power Output	
5.3.	Frequency Stability	64
5.4.	Power Spectral Density	67
5.5.	Unwanted Emission	132
5.6.	Conducted Emission	
6. Mai	n Test Instruments	

Version	Revision description	Issue Date	
Rev.0	Initial issue of report.	June 5, 2021	
Rev.1	v.1 Update data in Page56 June 7, 20		
Rev.2	Rev.2 Update data		
Note: This revised report (Report No. R2105A0471-R4V2) supersedes and replaces the previously issued report (Report No. R2105A0471-R4V1). Please discard or destroy the previously issued report and dispose of it accordingly.			

Number	Test Case	Clause in FCC rules	Verdict			
1	Average output power	15.407(a)	PASS			
2	Occupied bandwidth	15.407(e)	PASS			
3	Frequency stability	15.407(g)	PASS			
4	Power spectral density	15.407(a)	PASS			
5	Unwanted Emissions 15.407(b)		PASS			
6	Conducted Emissions	15.207	PASS			
Date of Te	Date of Testing: August 1, 2020~ August 26, 2020 and June 1, 2021~ June 17, 2021					
Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology						
(Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement						
Uncertainti	Uncertainties were not taken into account and are published for informational purposes only.					

Summary of measurement results

WS7100 (Report No.: R2105A0471-R4V2) is a variant model of WS7100 (Report No.: R2007H0212-R4V1). This report only tests some power and added FCC ID. Other test values duplicated from Original for variant.

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (**shanghai**) **co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	xukai@ta-shanghai.com

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant Huawei Device Co., Ltd.		
Applicant address	No.2 of Xincheng Road, Songshan Lake Zone, Dongguan,	
Applicant address	Guangdong 523808, People's Republic of China	
Manufacturer	Huawei Device Co., Ltd.	
Manufacturer address	No.2 of Xincheng Road, Songshan Lake Zone, Dongguan,	
Manufacturer address	Guangdong 523808, People's Republic of China	

2.2. General information

EUT Description				
Model		WS7100		
SN		WS7100300000001		
Hardware Ver	sion	AM1WS7100M		
Software Vers	ion	10.0.5.19		
Power Supply		AC/ DC adapter		
Antenna Type		External Antenna		
Antenna Gain		Antenna 1: 5.50dBi Antenna 2: 5.50dBi		
Directional Ga	rectional Gain Without Beamforming Mode: 5.50dBi Beamforming Mode for Power: 5.50dBi Beamforming Mode for PSD: 8.51 dBi			
Test Mode(s) U-NII-1(515		U-NII-1(5150MHz-5250MHz) U-NII-3(5725MHz-5850MHz)		
Modulation Type		802.11ax (HE20/HE40/HE80):OFDMA, OFDM		
Max. Output Power		20.48dBm		
Operating Frequency Range(s)		U-NII-1: 5150-5250MHz U-NII-3: 5725-5850MHz		
Operating tem	perature range:	0 ° C to 40° C		
Operating volt	age range:	10.8 V to 13.2 V		
State DC volta	age:	12V		
		EUT Accessory		
Accessory Model		Manufacture	No	
	HW-120100E01	Dongguan Shilong Fuhua Electronic Co., Ltd	1	
Adapter		Shenzhen Honor Electronic Co., Ltd	2	
	HW-120100B01	Dongguan Shilong Fuhua Electronic Co., Ltd	3	

TA Technology (Shanghai) Co., Ltd. TA-MB-04-006R Page 6 of 289 This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

RF	Test	Report

Report No.: R2105A0471-R4V2

		-		
			Shenzhen Honor Electronic Co., Ltd	
		HW-120100U01	Dongguan Shilong Fuhua Electronic Co., Ltd	5
		HVV-120100001	Shenzhen Honor Electronic Co., Ltd	
	Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by			
	the applicant.			
	2. There is more than one Adapter, each one should be applied throughout the compliance test			e test
	respectively, and however, only the worst case (Adapter 1) will be recorded in this report.			

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2020) Unlicensed National Information Infrastructure Devices

ANSI C63.10 (2013)

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Band	Data Rate		
Ballu	SISO Antenna	MIMO Antenna	
802.11ax HE20	MCS0	MCS0	
802.11ax HE40	MCS0	MCS0	
802.11ax HE80	MCS0	MCS0	

The worst case Antenna mode for each of the following tests for Wi-Fi:

TB Mode

Test Cases	SISO Antenna 1	SISO Antenna 2	MIMO
			802.11ax HE20
			(26-Tones, 52-Tones,
			106-Tones, 242-Tones)
			802.11ax HE40
			(26-Tones, 52-Tones,
Average output power			106-Tones, 242-Tones,
			484-Tones)
			802.11ax HE80
			(52-Tones, 106-Tones,
			242-Tones, 484-Tones,
			996-Tones)
		802.11ax HE20	
		(26-Tones, 52-Tones,	
		106-Tones, 242-Tones)	
Occupied bandwidth		802.11ax HE40	
		(26-Tones, 52-Tones,	
		106-Tones, 242-Tones,	
		484-Tones)	
		802.11ax HE80	

TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 9 of 289This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

Report No.: R2105A0471-R4V2

		242-Tones, 484-Tones,	
		996-Tones)	
Frequency stability			
			802.11ax HE20
			(26-Tones, 52-Tones,
			106-Tones, 242-Tones)
			802.11ax HE40
			(26-Tones, 52-Tones,
Power Spectral Density			106-Tones, 242-Tones,
			484-Tones)
			802.11ax HE80
			(52-Tones, 106-Tones,
			242-Tones, 484-Tones,
			996-Tones)
	802.11ax HE20	802.11ax HE20	802.11ax HE20
	(26-Tones, 52-Tones,	(26-Tones, 52-Tones,	(26-Tones, 52-Tones,
	106-Tones, 242-Tones)	106-Tones, 242-Tones)	106-Tones, 242-Tones)
	802.11ax HE40	802.11ax HE40	802.11ax HE40
	(26-Tones, 52-Tones,	(26-Tones, 52-Tones,	(26-Tones, 52-Tones,
Jnwanted Emissions	106-Tones, 242-Tones,	106-Tones, 242-Tones,	106-Tones, 242-Tones,
	484-Tones)	484-Tones)	484-Tones)
	802.11ax HE80	802.11ax HE80	802.11ax HE80
	(52-Tones, 106-Tones,	(52-Tones, 106-Tones,	(52-Tones, 106-Tones,
	242-Tones, 484-Tones,	242-Tones, 484-Tones,	242-Tones, 484-Tones,
	996-Tones)	996-Tones)	996-Tones)
Conducted Emissions		802.11ax HE20	
Note: "O": test all bands	1		1

A

RF Test Report

Report No.: R2105A0471-R4V2

SU Mode

Test Cases	SISO Antenna 1	SISO Antenna 2	MIMO
Average output power	802.11ax HE20/	802.11ax HE20/	802.11ax HE20/
Average output power	HE40/HE80	HE40/HE80	HE40/HE80
Occupied bandwidth		802.11ax HE20/	
Occupied bandwidth		HE40/HE80	
Frequency stability		802.11ax HE20	
Dower Spectral Depaity	802.11ax HE20/	802.11ax HE20/	802.11ax HE20/
Power Spectral Density	HE40/HE80	HE40/HE80	HE40/HE80
Unwanted Emissions	802.11ax HE20/	802.11ax HE20/	802.11ax HE20/
Unwanted Emissions	HE40/HE80	HE40/HE80	HE40/HE80
Conducted Emissions		802.11ax HE20	
Note: "O": test all bands			

During the test, the Unwanted Emission was performed in all modes with all channels, MIMO Antenna was selected as the worst antenna and only the worst condition will be recorded in the report.

Wireless Technology and Frequency Range

Wireless	Technology	Bandwidth	Channel	Frequency
			36	5180MHz
		20 MHz	40	5200MHz
			44	5220MHz
	U-NII-1		48	5240MHz
		40 MHz	38	5190MHz
			46	5230MHz
		80 MHz	42	5210MHz
Wi-Fi			149	5745MHz
			153	5765MHz
		20 MHz	157	5785MHz
			161	5805MHz
	U-NII-3		165	5825MHz
			151	5755MHz
		40 MHz	159	5795MHz
		80 MHz	155	5775MHz

5. Test Case Results

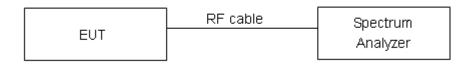
5.1. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.


For U-NII-1, set RBW \approx 1% OCB kHz, VBW \geq 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

For U-NII-3, Set RBW = 100 kHz, VBW \ge 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Use the 99 % power bandwidth function of the instrument

Test Setup

Limits

Rule FCC Part §15.407(e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

TB Mode

26-Tones

U-NII-1

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
	5180	19.053	21.70	PASS
802.11ax HE20	5200	19.063	21.81	PASS
002.118X HE20	5220	19.047	21.83	PASS
	5240	19.056	21.46	PASS
000 44 av 115 40	5190	37.984	41.77	PASS
802.11ax HE40	5230	37.978	41.34	PASS

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	5745	19.068	18.98	500	PASS
802.11ax HE20	5785	19.083	19.02	500	PASS
	5825	19.073	18.99	500	PASS
802.11ax HE40	5755	38.000	38.11	500	PASS
002.11ax HE40	5795	38.018	38.07	500	PASS

U-NII-1

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
	5180	18.978	21.95	PASS
802.11ax HE20	5200	18.946	22.00	PASS
002.1188 11220	5220	18.934	21.89	PASS
	5240	18.968	22.40	PASS
802.11ax HE40	5190	38.015	41.50	PASS
002.118X HE40	5230	37.928	40.92	PASS
802.11ax HE80	5210	77.880	83.60	PASS

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	5745	18.957	18.93	500	PASS
802.11ax HE20	5785	18.961	18.95	500	PASS
	5825	18.994	18.98	500	PASS
802.11ax HE40	5755	37.977	38.13	500	PASS
002.118X HE40	5795	38.072	38.05	500	PASS
802.11ax HE80	5775	77.862	78.01	500	PASS

U-NII-1

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
	5180	19.026	22.07	PASS
802.11ax HE20	5200	19.027	21.89	PASS
002.1188 11220	5220	19.037	22.91	PASS
	5240	19.003	22.00	PASS
802.11ax HE40	5190	37.828	41.83	PASS
002.118X HE40	5230	37.833	40.95	PASS
802.11ax HE80	5210	77.761	83.11	PASS

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	5745	19.028	18.99	500	PASS
802.11ax HE20	5785	19.069	19.04	500	PASS
	5825	19.051	19.04	500	PASS
802.11ax HE40	5755	37.892	38.02	500	PASS
002.118X HE40	5795	37.880	38.03	500	PASS
802.11ax HE80	5775	77.961	78.04	500	PASS

242-Tones

U-NII-1

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
	5180	18.958	21.62	PASS
	5200	18.944	21.83	PASS
802.11ax HE20	5220	18.951	22.86	PASS
	5240	19.012	24.77	PASS
802.11ax HE40	5190	37.859	41.39	PASS
002.118X HE40	5230	37.783	41.57	PASS
802.11ax HE80	5210	77.472	82.65	PASS

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	5745	18.989	18.95	500	PASS
802.11ax HE20	5785	19.002	18.64	500	PASS
	5825	19.014	18.88	500	PASS
802.11ax HE40	5755	37.956	38.02	500	PASS
002.118X HE40	5795	37.975	38.03	500	PASS
802.11ax HE80	5775	77.472	78.11	500	PASS

U-NII-1

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
802.11ax HE40	5190	37.844	41.09	PASS
	5230	37.767	41.20	PASS
802.11ax HE80	5210	77.299	84.45	PASS

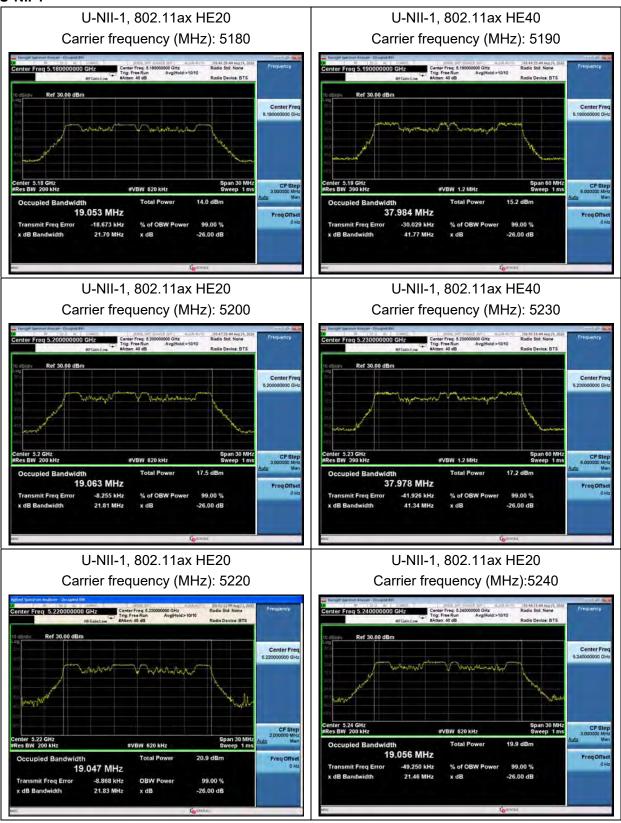
Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
802.11ax HE40	5755	37.953	37.98	500	PASS
	5795	37.982	37.95	500	PASS
802.11ax HE80	5775	77.356	77.75	500	PASS

U-NII-1

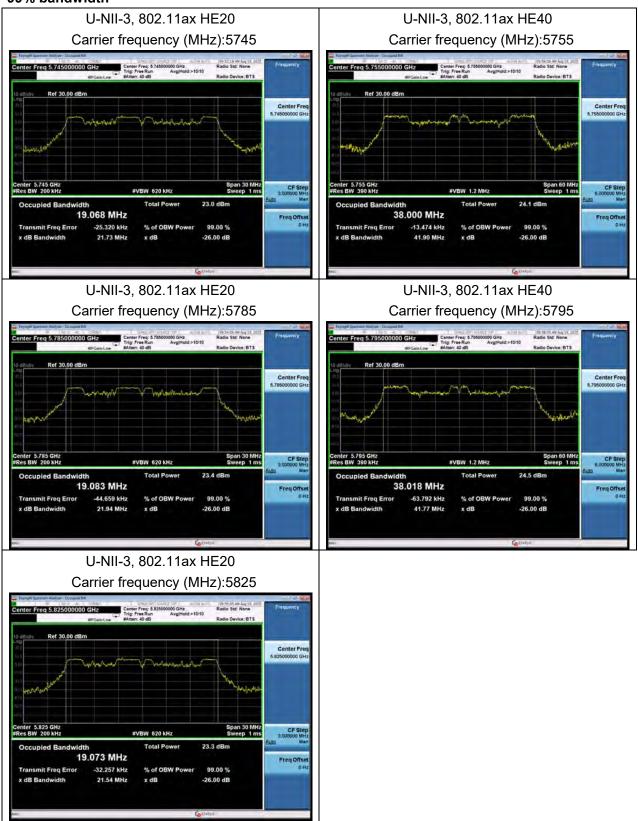
Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
802.11ax HE80	5210	77.269	82.86	PASS

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
802.11ax HE80	5775	77.165	77.43	500	PASS

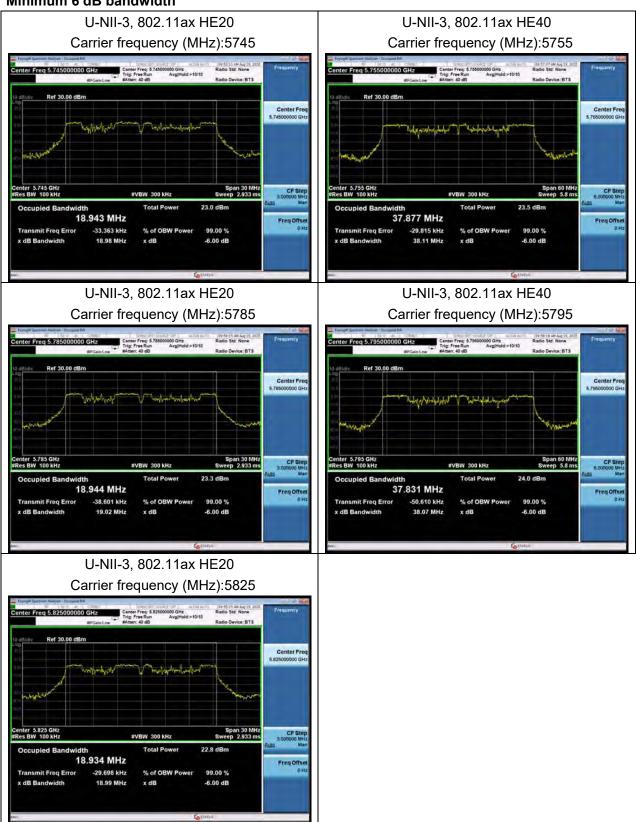
U-NII-1

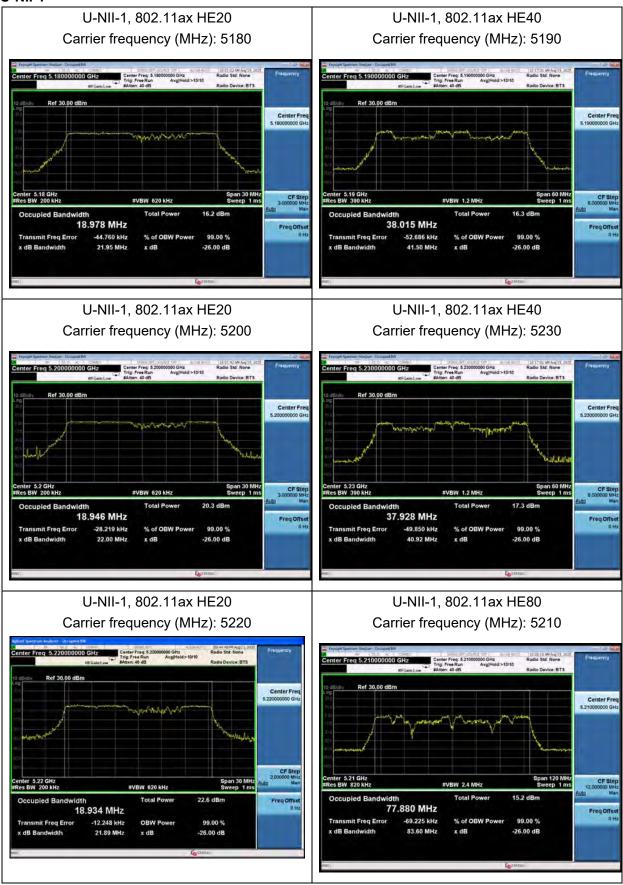

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
802.11ax HE20	5180	18.950	22.44	PASS
	5200	19.019	23.98	PASS
	5220	19.009	27.06	PASS
	5240	19.146	29.91	PASS
802.11ax HE40	5190	37.881	41.98	PASS
	5230	37.914	51.13	PASS
802.11ax HE80	5210	77.417	82.97	PASS

Network Standards	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
	5745	19.058	18.71	500	PASS
802.11ax HE20	5785	19.057	18.66	500	PASS
	5825	19.074	18.90	500	PASS
802.11ax HE40	5755	38.066	38.03	500	PASS
002.11dX HE40	5795	38.152	38.05	500	PASS
802.11ax HE80	5775	77.402	77.38	500	PASS

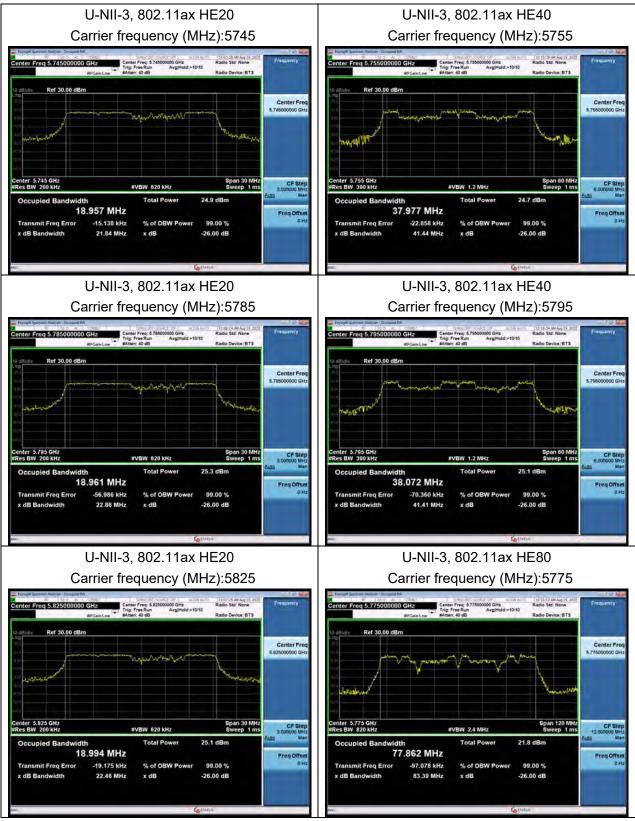

TB Mode

26-Tones

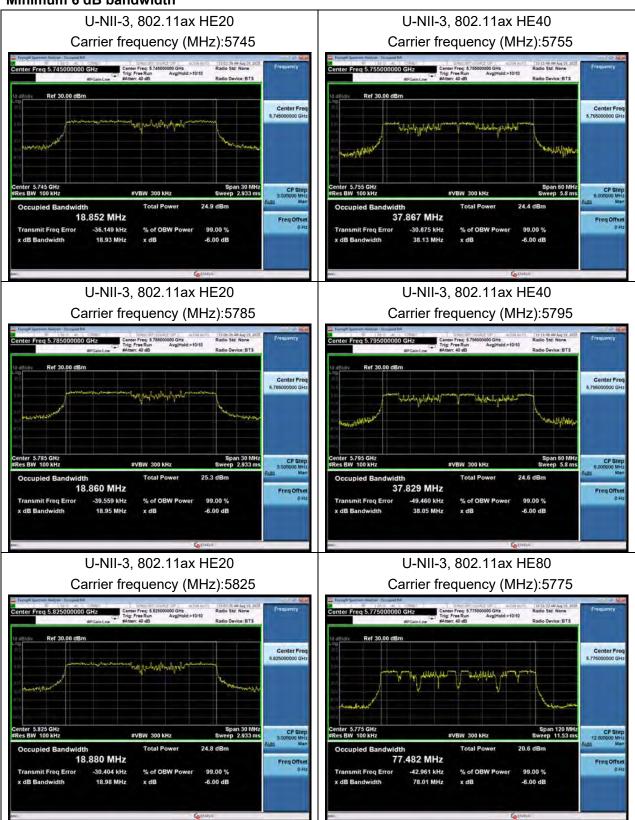


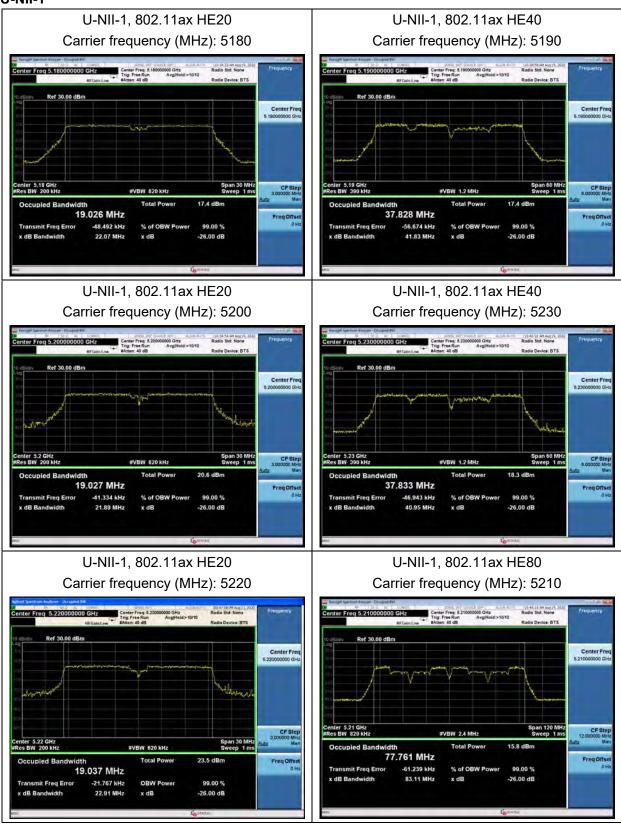


Minimum 6 dB bandwidth

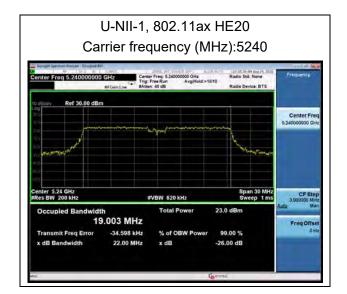

TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 24 of 289This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

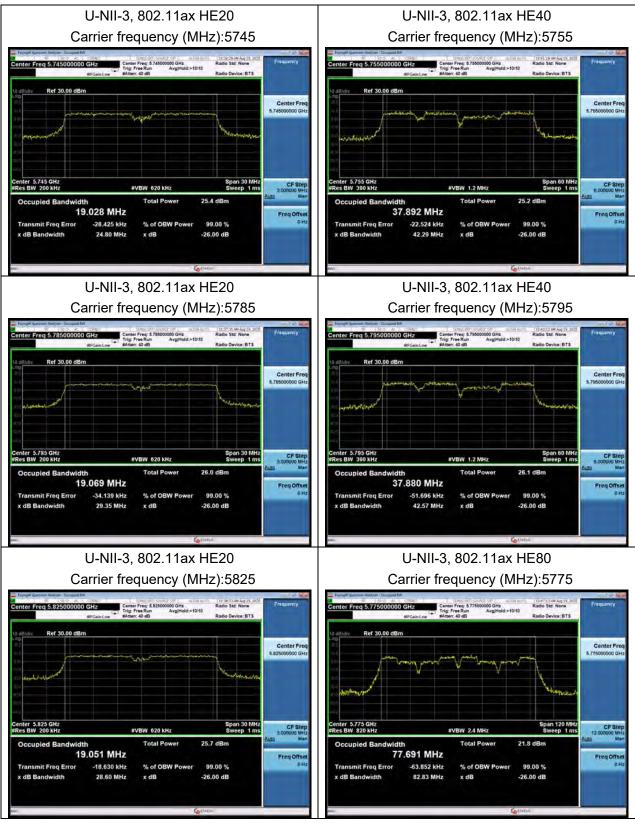
Center Freq 5.2-		Trig:	r Free 5.240000000 GHz Free Run Avg/Hold: n: 40 dB	Radio Sto		Frequency
ta dellaiv Ref	30.00 dBm					
201 101 101 102 102 102 102 102 102 102	<i>,</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	egyanian an an		-	Center Fre 5.240000000 GH
Center 5.24 GHz #Res BW 200 kH	2		VBW 620 kHz		an 30 MHz eep 1 ms	CF Ste 3.000000 MH
Occupied B		968 MHz	Total Power	22,6 dBm	A	uto Mai
Transmit Free		-62.165 kHz	% of OBW Powe	er 99.00 %		Freq Offse 0 H

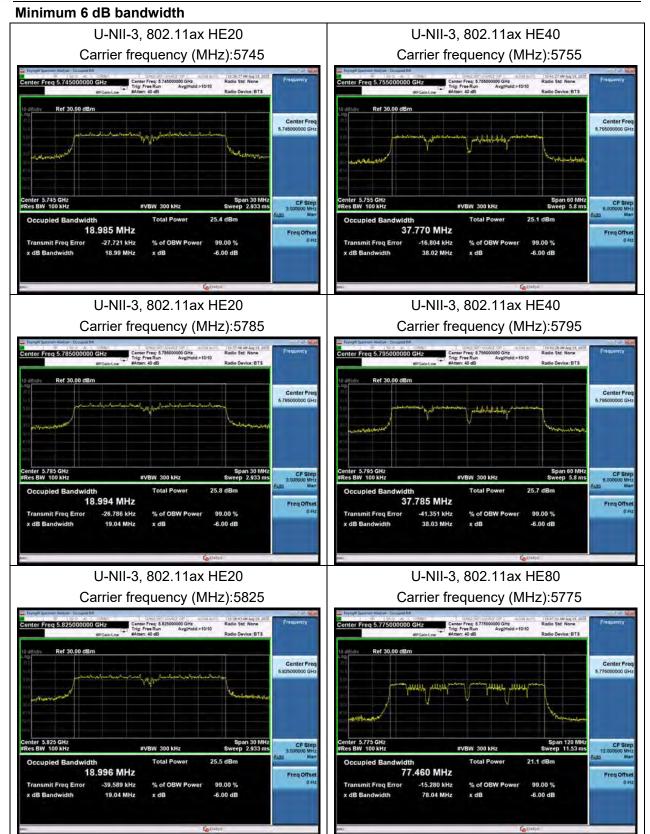


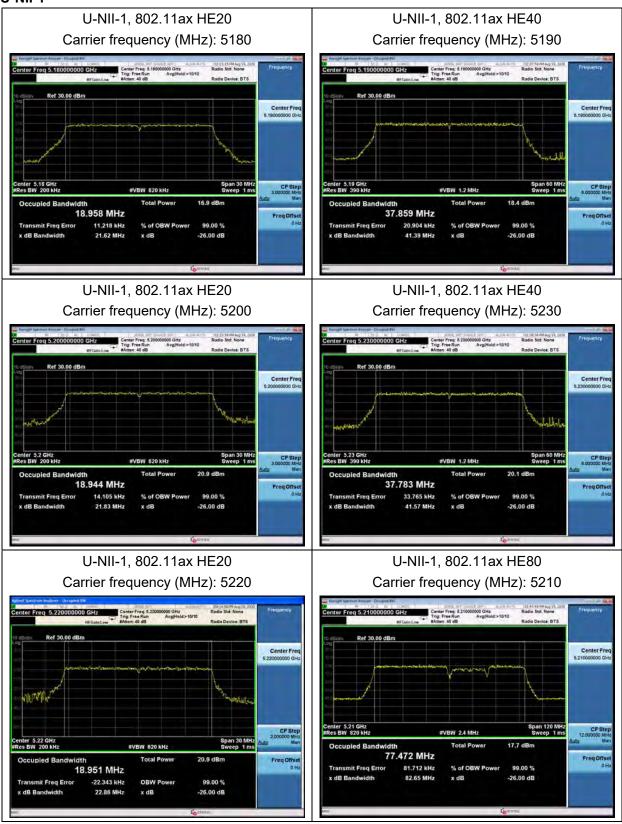


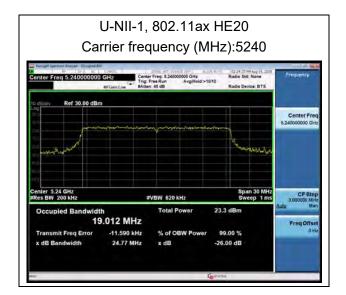
Minimum 6 dB bandwidth



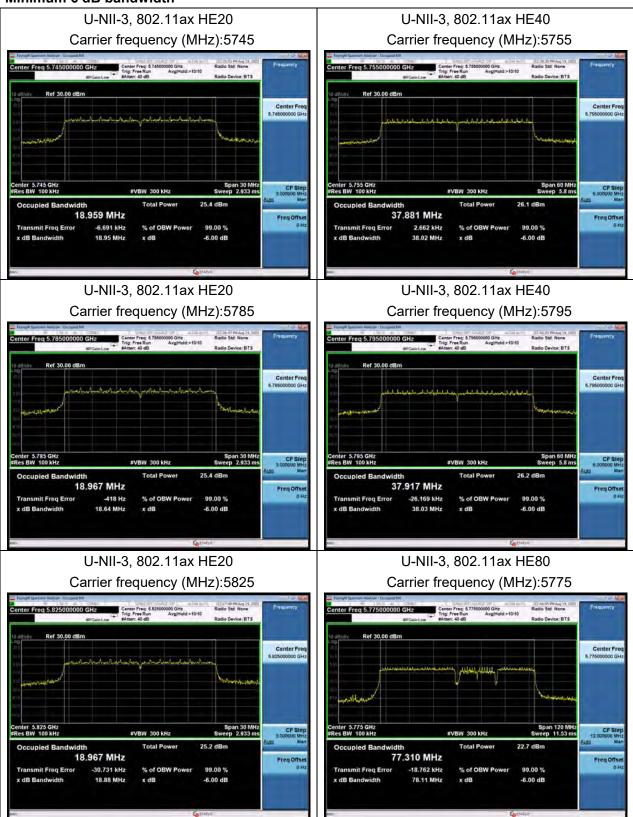


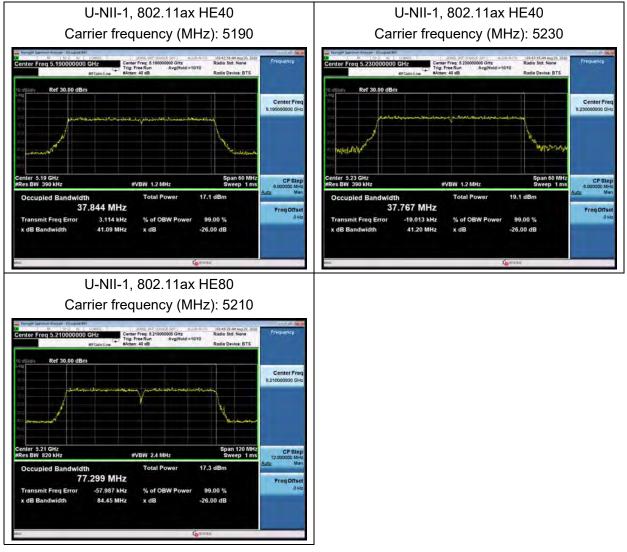




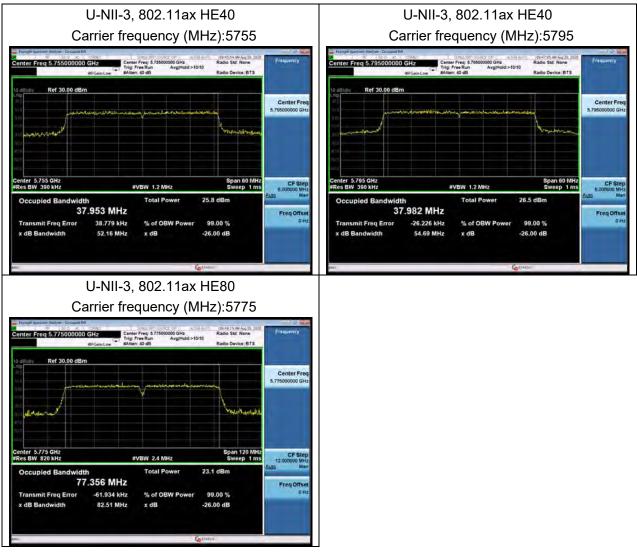


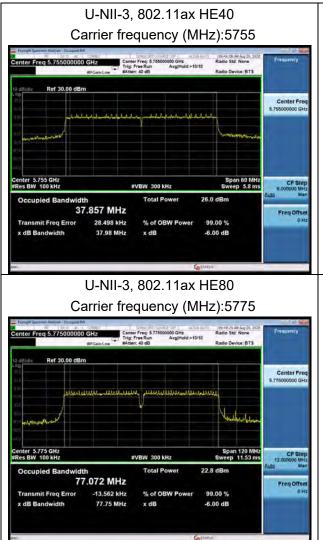


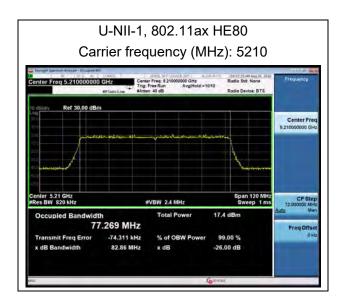




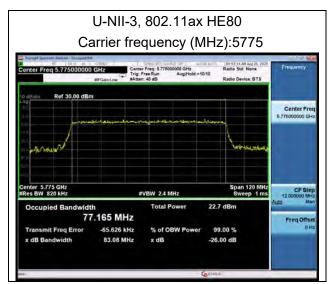
Minimum 6 dB bandwidth



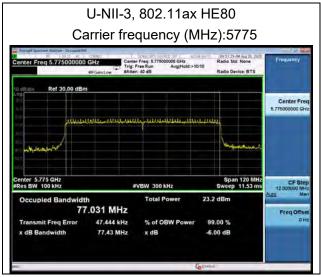

U-NII-3



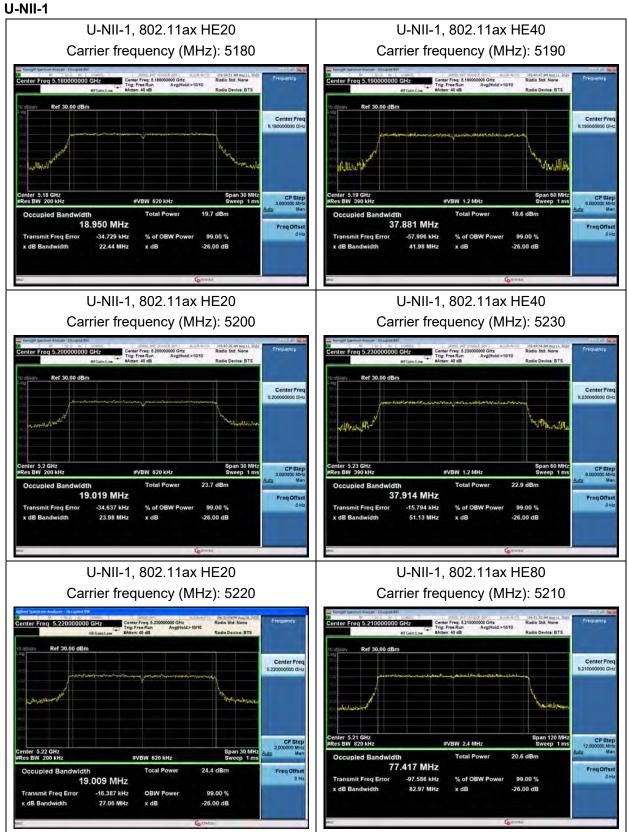
Minimum 6 dB bandwidth



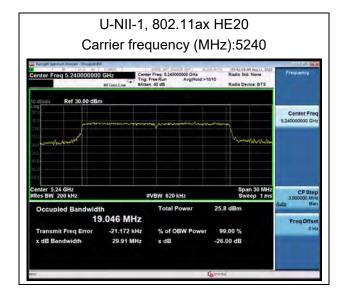
		802.11a quency (
Center Freq 5.795000000	Trig:	Street and Strates of Free S.79500000 GHz Free Run AvgiHol n: 40 dB	d>10/10	Radio Device: 815	Frequency
o delidiv Ref 30.00 dBm			_		
	المراجع المراجع	er grunden berkennen b	an a	Nerskinger og Vers	Center Freq 5.766000000 GHz
enter 5.795 GHz Res BW 100 kHz		VBW 300 kHz		Span 60 MHz Sweep 5.8 ms	CF Step
Occupied Bandwidth 37	865 MHz	Total Power	26.1	dBm	Freq Offset
Transmit Freq Error x dB Bandwidth	-8.554 kHz 37.95 MHz	% of OBW Pov x dB		00 % 0 dB	OH2
0			Contraine.		


996-Tones U-NII-1

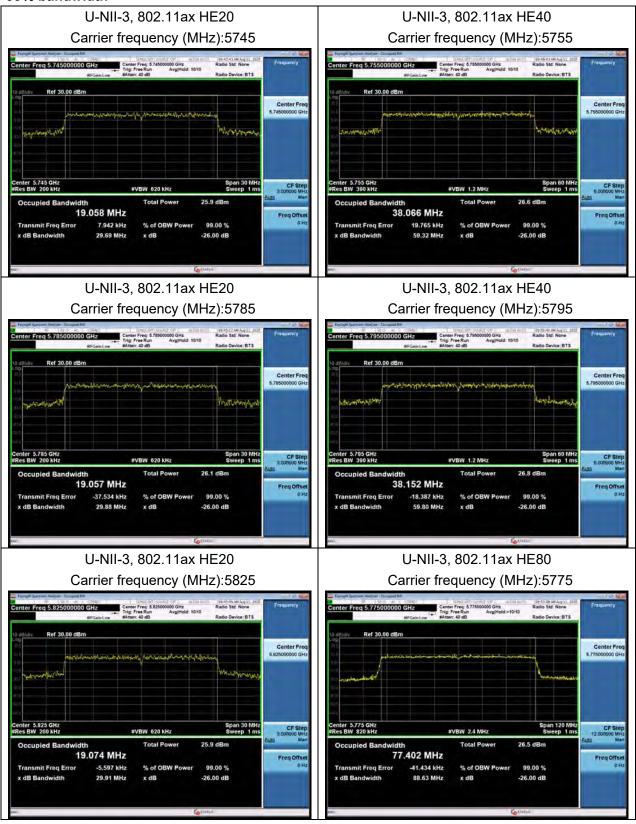
U-NII-3 99% bandwidth

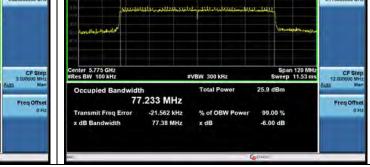


Minimum 6 dB bandwidth



SU Mode





nter 5.825 GH es BW 100 kH

RF Test Report Report No.: R2105A0471-R4V2 Minimum 6 dB bandwidth U-NII-3, 802.11ax HE20 U-NII-3, 802.11ax HE40 Carrier frequency (MHz):5745 Carrier frequency (MHz):5755 5.7450 Ref 30.00 dBr Ref 30.00 dB Center Fr Center Fr 5.745 5.755 G CE 300 88 19.106 MHz 38.668 MHz -17.057 kHz 248.99 kHz % of O % of C 18.71 MH U-NII-3, 802.11ax HE20 U-NII-3, 802.11ax HE40 Carrier frequency (MHz):5785 Carrier frequency (MHz):5795 53 119 AM Aug 1 00 GHz ETS BTS Ref 30.00 dl Center Fr Center Fr 5.795 GHz W 100 kHz 5.785 GH Span 30 M ep 2.933 r 28. 29.0 19.228 MHz 38.916 MHz 6.621 kHz % of O 00 00 % 213.87 kHz x dB Band 18.66 MHz x dB -6.00 dB x dB Bandy 38.05 MHz x dB -6.00 dB U-NII-3, 802.11ax HE20 U-NII-3, 802.11ax HE80 Carrier frequency (MHz):5825 Carrier frequency (MHz):5775 Ref 30.00 dB Ref 30.00 dl Center Fi Center Fr

Span 30 MH eep 2.933 m

SW

6.00 dB

27 5 dE

#VBW 300 kH

dB

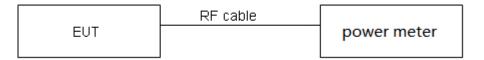
19.265 MHz

4.869 kHz

18 90 MHz

5.2. Average Power Output

Ambient condition


Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

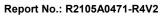
Methods of Measurement

During the process of the testing, The EUT was connected to the average power meter through an external attenuator and a known loss cable. The EUT is max power transmission with proper modulation. We use Maximum average Output Power Level Method in KDB789033 for this test

The Output Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test Setup

Limits


Rule FCC Part 15.407(a)(1)(2)(3)

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional

applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2)For the band 5.725-5.85 GHz, the maximum output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

TB Mode

26-Tones

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)			
802.11ax HE20	2.06	2.16	0.95	0.21			
802.11ax HE40 2.06 2.17 0.95 0.23							
Note: when Duty cycle>0.98, D	Duty cycle c	orrection Factor	not required.				

U-NII-1

		MIMO Antenna 1		MIMO Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	36/5180	6.33	6.54	6.54	6.75	9.66	30.00	PASS
802.11ax	40/5200	10.05	10.26	10.46	10.67	13.48	30.00	PASS
HE20	44/5220	12.25	12.46	12.49	12.70	15.60	30.00	PASS
	48/5240	12.44	12.65	12.77	12.98	15.83	30.00	PASS
802.11ax	38/5190	4.16	4.39	4.38	4.61	7.51	30.00	PASS
HE40	46/5230	7.42	7.65	7.59	7.82	10.75	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5 dBi<6dBi. So the power limt is 30dBm.

		MIMO Antenna 1		MIMO Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
000 11 av	149/5745	13.25	13.46	13.10	13.31	16.40	30.00	PASS
802.11ax HE20	157/5785	13.22	13.43	13.07	13.28	16.37	30.00	PASS
TILZU	165/5825	13.37	13.58	13.26	13.47	16.54	30.00	PASS
802.11ax	151/5755	12.56	12.79	12.43	12.66	15.74	30.00	PASS
HE40	159/5795	12.55	12.78	12.39	12.62	15.71	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And $N_{ss}\mbox{=}1.$ According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \ge 40 MHz for any N_{ANT};

Array Gain = $5 \log(N_{ANT}/N_{SS}) dB$ or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5dBi<6dBi. So the power limt is 30dBm.

52-Tones

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)
802.11ax HE20	1.06	1.16	0.91	0.41
802.11ax HE40	1.06	1.16	0.92	0.38
802.11ax HE80	1.07	1.18	0.91	0.40
Note: when Duty	cycle>0.98	, Duty cycle corre	ection Factor not	required.

U-NII-1

		MIMO Antenna 1		MIMO Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	36/5180	8.12	8.53	8.46	8.87	11.71	30.00	PASS
802.11ax	40/5200	11.95	12.36	12.44	12.85	15.62	30.00	PASS
HE20	44/5220	14.15	14.56	14.33	14.74	17.66	30.00	PASS
	48/5240	14.22	14.63	14.74	15.15	17.91	30.00	PASS
802.11ax	38/5190	4.71	5.09	4.82	5.20	8.15	30.00	PASS
HE40	46/5230	7.79	8.17	7.66	8.04	11.11	30.00	PASS
802.11ax HE80	42/5210	4.68	5.08	5.03	5.43	8.27	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1), The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

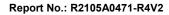
Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$. So directional gain = G_{ANT} + Array Gain =5.5+0=5.5 dBi<6dBi. So the power limt is 30dBm.

		MIMO Antenna 1		MIMO Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
000 11 ov	149/5745	15.40	15.81	15.52	15.93	18.88	30.00	PASS
802.11ax HE20	157/5785	15.59	16.00	15.31	15.72	18.87	30.00	PASS
TIL20	165/5825	15.13	15.54	15.25	15.66	18.61	30.00	PASS
802.11ax	151/5755	12.64	13.02	12.71	13.09	16.06	30.00	PASS
HE40	159/5795	12.84	13.22	12.55	12.93	16.08	30.00	PASS
802.11ax HE80	155/5775	12.22	12.62	11.81	12.21	15.43	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01


Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = $5 \log(N_{ANT}/N_{SS}) dB$ or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5dBi<6dBi. So the power limt is 30dBm.

106-Tones

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)			
802.11ax HE20	0.53	0.65	0.82	0.88			
802.11ax HE40	802.11ax HE40 0.55 0.66 0.84 0.75						
802.11ax HE80	0.55	0.64	0.86	0.64			
Note: when Duty cycle>0.98, I	Duty cycle c	orrection Factor	not required.				

U-NII-1

		MIMO Antenna 1		MIMO Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	36/5180	8.93	9.81	9.42	10.30	13.07	30.00	PASS
802.11ax	40/5200	13.04	13.92	13.55	14.43	17.19	30.00	PASS
HE20	44/5220	15.23	16.11	15.38	16.26	19.20	30.00	PASS
	48/5240	15.25	16.13	15.89	16.77	19.47	30.00	PASS
802.11ax	38/5190	5.72	6.47	5.63	6.38	9.44	30.00	PASS
HE40	46/5230	8.64	9.39	8.55	9.30	12.36	30.00	PASS
802.11ax HE80	42/5210	4.96	5.60	4.18	4.82	8.24	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5 dBi<6dBi. So the power limt is 30dBm.

		MIMO Antenna 1		MIMO Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
000 11 ov	149/5745	16.34	17.22	16.42	17.30	20.27	30.00	PASS
802.11ax HE20	157/5785	16.46	17.34	16.35	17.23	20.30	30.00	PASS
TIL20	165/5825	16.23	17.11	16.14	17.02	20.08	30.00	PASS
802.11ax	151/5755	14.05	14.80	13.86	14.61	17.72	30.00	PASS
HE40	159/5795	14.12	14.87	13.94	14.69	17.79	30.00	PASS
802.11ax HE80	155/5775	11.54	12.18	12.01	12.65	15.43	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \ge 40 MHz for any N_{ANT};

Array Gain = $5 \log(N_{ANT}/N_{SS}) dB$ or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5dBi<6dBi. So the power limt is 30dBm.

242-Tones

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)					
802.11ax HE20	0.28	0.38	0.74	1.33					
802.11ax HE40	0.28	0.39	0.72	1.42					
802.11ax HE80	0.28	0.40	0.71	1.49					
Note: when Duty cycle>0.98, I	Note: when Duty cycle>0.98, Duty cycle correction Factor not required.								

U-NII-1

		MII Antei			MO nna 2			Conclusion
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	
	36/5180	9.08	10.41	9.16	10.49	13.46	30.00	PASS
802.11ax	40/5200	12.97	14.30	13.29	14.62	17.47	30.00	PASS
HE20	44/5220	14.69	16.02	15.03	16.36	19.20	30.00	PASS
	48/5240	14.95	16.28	15.28	16.61	19.45	30.00	PASS
802.11ax	38/5190	6.96	8.38	6.73	8.15	11.27	30.00	PASS
HE40	46/5230	10.02	11.44	9.92	11.34	14.40	30.00	PASS
802.11ax HE80	42/5210	5.42	6.91	5.28	6.77	9.85	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with N_{ANT} \geq 5.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5 dBi<6dBi. So the power limt is 30dBm.

	MIMO Antenna 1				MO nna 2			
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
000 11 av	149/5745	15.85	17.18	15.77	17.10	20.15	30.00	PASS
802.11ax HE20	157/5785	16.12	17.45	15.86	17.19	20.33	30.00	PASS
TIL20	165/5825	15.92	17.25	15.78	17.11	20.19	30.00	PASS
802.11ax	151/5755	14.69	16.11	14.55	15.97	19.05	30.00	PASS
HE40	159/5795	14.75	16.17	14.63	16.05	19.12	30.00	PASS
802.11ax HE80	155/5775	11.82	13.31	11.65	13.14	16.23	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \ge 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5dBi<6dBi. So the power limt is 30dBm.

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)
802.11ax HE40	0.18	0.28	0.64	1.92
802.11ax HE80	0.18	0.28	0.65	1.89
Note: when Duty cycle>0.98, I	Duty cycle c	orrection Factor	not required.	

U-NII-1

		Mil Anter		Mil Anter	MO nna 2			
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
802.11ax	38/5190	6.32	8.24	6.64	8.56	11.41	30.00	PASS
HE40	46/5230	9.61	11.53	9.48	11.40	14.47	30.00	PASS
802.11ax HE80	42/5210	6.28	8.17	6.35	8.24	11.21	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5 dBi<6dBi. So the power limt is 30dBm.

MIMO MIMO Antenna 1 Antenna 2 Channel/ Total Average Average Network Limit Average Average Frequency Power Conclusion Power Power Standards (dBm) Power Power (MHz) (dBm) with duty with duty Measured Measured factor factor (dBm) (dBm) (dBm) (dBm) PASS 151/5755 14.60 16.52 14.35 16.27 19.41 30.00 802.11ax HE40 159/5795 14.52 16.44 14.49 16.41 19.43 30.00 PASS 802.11ax 155/5775 13.43 15.32 13.62 15.51 30.00 PASS 18.42 **HE80**

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss}=1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = $5 \log(N_{ANT}/N_{SS}) dB$ or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5dBi<6dBi. So the power limt is 30dBm.

Report No.: R2105A0471-R4V2

996-Tones

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)
802.11ax HE80	0.13	0.24	0.55	2.63
Note: when Duty cycle>0.98, D	Outy cycle c	orrection Factor	not required.	

U-NII-1

		MII Antei		MII Antei				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
802.11ax HE80	42/5210	6.11	8.74	5.46	8.09	11.43	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss}=1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5 dBi<6dBi. So the power limt is 30dBm.

Report No.: R2105A0471-R4V2

Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion	
155/5775	12.72	15.35	12.88	15.51	18.44	30.00	PASS	
	•			itter Output v02	2r01 1),			
ver =10log(10 ^{(F}	Power antenna1 in dBr	^{n/10)} +10 ^{(Power ante}	enna2 in dBm/10)).					
acturer declare	d the transmitte	er output signal	s is CDD mode	And N _{ss} =1. Ac	cording to I	KDB 66291	1 D01	
smitter Output v	/02r01 2)f)(i): If	all antennas h	ave the same g	ain, Directiona	l gain = G _{AN}	ı⊤ + Array (Gain,	
asurements or	n IEEE 802.11 (devices,						
Array Gain = 0 dB (i.e., no array gain) for N _{ANT} ≤ 4;								
Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N _{ANT} ;								
5 log(N _{ANT} /N _{SS})	dB or 3 dB, wl	nichever is less	, for 20-MHz cl	nannel widths v	/ith N _{ANT} ≥ {	5.		
	Frequency (MHz) 155/5775 Total Power, activer =10log(10 ^(F) acturer declare smitter Output ver assurements or 0 dB (i.e., no and 0 dB (i.e., no and	Channel/ Frequency (MHz)Average Power Measured (dBm)155/577512.72Total Power, according to KDB wer = 10log(10 (Power antenna1 in dBr acturer declared the transmitter smitter Output v02r01 2)f)(i): If pasurements on IEEE 802.11 cm 0 dB (i.e., no array gain) for NAD 0 dB (i.e., no array gain) for character	Frequency (MHz)Average Power Measured (dBm)Average Power with duty factor (dBm)155/577512.7215.35Total Power, according to KDB 662911 D01 M ver =10log($10^{(Power antenna1 in dBm/10)} + 10^{(Power antenna1 in dBm/10)} + 1$	Channel/ Frequency (MHz)Anter Average Power Measured (dBm)Average Power with duty factor (dBm)Average Power Measured (dBm)155/577512.7215.3512.88Total Power, according to KDB 662911 D01 Multiple Transmiver =10log(10 (Power antenna1 in dBm/10) +10 (Power antenna2 in dBm/10)).12.88Total Power, according to KDB 662911 D01 Multiple Transmiver = 10log(10 (Power antenna1 in dBm/10) 	Channel/ Frequency (MHz)Ante-ma 1Ante-ma 2Average Power (MHz)Average Power Measured (dBm)Average Power with duty factor (dBm)Average Power Measured (dBm)Average Power Measured (dBm)Average Power with duty factor (dBm)155/577512.7215.3512.8815.51Cotal Power, according to KDB 662911 D01 Multiple Transmitter Output v02 wer = 10log(10 ^(Power antenna1 in dBm/10) +10 ^(Power antenna2 in dBm/10)).Antenna 2Average Multiple Transmitter Output v02 wer = 10log(10 ^(Power antenna1 in dBm/10) +10 ^(Power antenna2 in dBm/10)).15.51Autor declared the transmitter output signals is CDD mode And Nss=1. Action assurements on IEEE 802.11 devices, 0 dB (i.e., no array gain) for NANT < 4; 0 dB (i.e., no array gain) for NANT < 4;	$\begin{array}{ c c c c } \hline \mbox{Anterma 1} & \mbox{Anterma 2} & \mbox{Average} & \mbox{Average} & \mbox{Average} & \mbox{Power} & \mbox{Average} & \mbox{Power} & \mbox{Average} & \mbox{Power} & \mbox{Average} & \mbox{Power} & \mbox{With duty} & \mbox{factor} & \mbox{(dBm)} & \mbox{(dBm)} & \mbox{factor} & \mbox{factor} & \mbox{(dBm)} & \mbox{factor} & \mbox{factor} & \mbox{(dBm)} & \mbox{factor} & \mbo$	Anterna 1Anterna 2Total Power with duty factor (dBm)Average Power Measured (dBm)Average Power Measured (dBm)Total Power (dBm)Total Power (dBm)Total Power (dBm)Limit (dBm)155/577512.7215.3512.8815.5118.4430.00155/577512.7215.3512.8815.5118.4430.00Colspan="4">Colspan="4"Colspan="4">Colspan="4"Col	

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5dBi<6dBi. So the power limt is 30dBm.

SU Mode

Band	T _{on} (ms)	T _(on+off) (ms)	Duty cycle	Duty cycle correction Factor(dB)				
802.11ax HE20	1.74	1.85	0.94	0.25				
802.11ax HE40	802.11ax HE40 0.91 1.02 0.90 0.47							
802.11ax HE80 0.46 0.55 0.84 0.75								
Note: when Duty cyc	Note: when Duty cycle>0.98, Duty cycle correction Factor not required.							

SISO Antenna 1

U-NII-1

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	12.54	12.79	30	PASS
	40/5200	16.51	16.76	30	PASS
802.11ax HE20	44/5220	17.08	17.33	30	PASS
	48/5240	18.72	18.97	30	PASS
902 11 ov UE 40	38/5190	10.74	11.21	30	PASS
802.11ax HE40	46/5230	13.68	14.15	30	PASS
802.11ax HE80	42/5210	8.86	9.61	30	PASS
Note: Average Power wi	th duty factor = Ave	erage Power	Measured +D	uty cycle corr	ection factor

U-NII-3

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	149/5745	20.11	20.36	30	PASS
802.11ax HE20	157/5785	20.21	20.46	30	PASS
	165/5825	20.05	20.30	30	PASS
802.11ax HE40	151/5755	18.84	19.31	30	PASS
002.118X HE40	159/5795	18.56	19.03	30	PASS
802.11ax HE80	155/5775	17.57	18.32	30	PASS
Note: Average Power	with duty factor	= Average Power N	Measured +Duty	y cycle corre	ection factor

SISO Antenna 2

U-NII-1

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	12.65	12.90	30	PASS
902 11 ov UE20	40/5200	16.72	16.97	30	PASS
802.11ax HE20	44/5220	17.96	18.21	30	PASS
	48/5240	18.73	18.98	30	PASS
902 11 ov UE 40	38/5190	10.59	11.06	30	PASS
802.11ax HE40	46/5230	13.56	14.03	30	PASS
802.11ax HE80	42/5210	8.64	9.39	30	PASS
Note: Average Power wi	th duty factor = Ave	erage Power	Measured +D	uty cycle corr	ection factor

U-NII-3

Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	149/5745	20.16	20.41	30	PASS
802.11ax HE20	157/5785	20.23	20.48	30	PASS
	165/5825	20.12	20.37	30	PASS
902 11 ov UE 40	151/5755	18.75	19.22	30	PASS
802.11ax HE40	159/5795	18.43	18.90	30	PASS
802.11ax HE80	155/5775	17.42	18.17	30	PASS
Note: Average Power	with duty factor	= Average Power N	Aeasured +Duty	y cycle corre	ection factor

MIMO(Without beamforming)

U-NII-1

		Mil Antei	MO nna 1		MO nna 2			
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	36/5180	9.28	9.53	9.93	10.18	12.88	30.00	PASS
802.11ax	40/5200	13.52	13.77	13.91	14.16	16.98	30.00	PASS
HE20	44/5220	14.22	14.47	14.59	14.84	17.67	30.00	PASS
	48/5240	15.72	15.97	16.36	16.61	19.31	30.00	PASS
802.11ax	38/5190	7.33	7.80	7.85	8.32	11.08	30.00	PASS
HE40	46/5230	10.63	11.10	11.15	11.62	14.38	30.00	PASS
802.11ax HE80	42/5210	5.44	6.19	5.89	6.64	9.44	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5 dBi<6dBi. So the power limt is 30dBm.

		MII Antei			MO nna 2			
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Power with duty factorAverage PowerPower with duty Measured (dBm)		Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
000 11 ov	149/5745	16.23	16.48	17.43	17.68	20.13	30.00	PASS
802.11ax HE20	157/5785	16.84	17.09	17.34	17.59	20.36	30.00	PASS
	165/5825	16.74	16.99	17.49	17.74	20.39	30.00	PASS
802.11ax	151/5755	15.66	16.13	15.98	16.45	19.30	30.00	PASS
HE40	159/5795	15.73	16.20	16.24	16.71	19.47	30.00	PASS
802.11ax HE80	155/5775	14.61	15.36	14.82	15.57	18.48	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And N_{ss} =1. According to KDB 662911 D01

Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain, For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = G_{ANT} + Array Gain =5.5+0=5.5dBi<6dBi. So the power limt is 30dBm.

MIMO(With beamforming)

U-NII-1

		Mil Ante	MO nna 1		MO nna 2			
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	36/5180	9.54	9.79	9.71	9.96	12.89	27.49	PASS
802.11ax	40/5200	13.71	13.96	14.32	14.57	17.29	27.49	PASS
HE20	44/5220	14.52	14.77	15.14	15.39	18.10	27.49	PASS
	48/5240	16.03	16.28	16.32	16.57	19.44	27.49	PASS
802.11ax	38/5190	7.31	7.78	7.83	8.30	11.06	27.49	PASS
HE40	46/5230	10.68	11.15	10.78	11.25	14.21	27.49	PASS
802.11ax HE80	42/5210	5.41	6.16	5.72	6.47	9.33	27.49	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. Direction gain calculation according to KDB662911 D01 Multiple Transmitter Output v02r01 F) 2) e)(i),If all antennas have the same gain, directional gain = GANT + 10 $\log(NANT/NSS)$ (ii) If antenna gains are not equal, directional gain = GANTMAX + 10 $\log(NANT/NSS)$). So the directional gain = 5.5+10log (2/Nss)=8.51>6. So the power limit=30-(8.51-6)=27.49.

		MII Antei			MO nna 2				
Network Standards	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion	
000 11 av	149/5745	16.21	16.46	17.41	17.66	20.11	27.49	PASS	
802.11ax HE20	157/5785	16.82	17.07	17.32	17.57	20.34	27.49	PASS	
	165/5825	16.66	16.91	17.46	17.71	20.34	27.49	PASS	
802.11ax	151/5755	15.56	16.03	15.94	16.41	19.23	27.49	PASS	
HE40	159/5795	15.65	16.12	16.17	16.64	19.40	27.49	PASS	
802.11ax HE80	155/5775	14.24	14.99	14.96	15.71	18.38	27.49	PASS	

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. Direction gain calculation according to KDB662911 D01 Multiple Transmitter Output v02r01 F) 2) e)(i), If all antennas have the same gain, directional gain = GANT + 10 log(NANT/NSS) (ii) If antenna gains are not equal, directional gain = GANTMAX + 10 log(NANT/NSS). So the directional gain = $5.5+10\log (2/Nss)=8.51>6$. So the power limit=30-(8.51-6)=27.49.

5.3. Frequency Stability

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

1. Frequency stability with respect to ambient temperature

a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.

b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.

c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.

e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.

f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

g) Measure the frequency at each of frequencies specified in 5.6.

h) Switch OFF the EUT but do not switch OFF the oscillator heater.

i) Lower the chamber temperature by not more that 10°C, and allow the temperature inside the chamber to stabilize.

j) Repeat step f) through step i) down to the lowest specified temperature.

2. Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature (+15°C to +25 °C). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

c) Measure the frequency at each of the frequencies specified in 5.6.

d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936Hz

Test Results

SU Mode

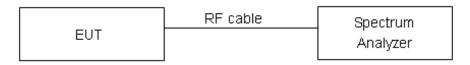
			U-NII-1 Te	est Results	
Voltage (V)	Temperature (°C)		5200	MHz	
(•)	(0)	1min	2min	5min	10min
12	0	5199.999731	5199.991912	5199.990598	5199.981018
12	5	5199.995676	5199.989423	5199.985094	5199.975463
12	10	5199.993359	5199.984618	5199.979920	5199.967515
12	15	5199.990373	5199.981907	5199.972433	5199.960987
12	20	5199.986431	5199.973441	5199.963245	5199.958836
12	30	5199.980951	5199.972881	5199.956483	5199.950607
12	40	5199.970964	5199.963567	5199.955855	5199.945730
12	50	5199.965725	5199.957689	5199.947012	5199.940907
10.8	25	5199.965277	5199.955616	5199.941966	5199.930981
13.2	25	5199.964830	5199.949078	5199.933910	5199.930870
	MHz	-0.035170	-0.050922	-0.066090	-0.069130
	PPM	-6.763512	-9.792618	-12.709692	-13.294189

	T	U-NII-3 Test Results						
Voltage	Temperature (°C)							
(V)	(0)	1min	2min	5min	10min			
12	0	5785.008850	5785.007049	5785.003974	5784.998375			
12	5	5785.005152	5785.003088	5784.999851	5784.993632			
12	10	5785.001534	5784.995049	5784.991623	5784.992102			
12	15	5784.999119	5784.988468	5784.989258	5784.987905			
12	20	5784.991966	5784.980117	5784.987763	5784.981532			
12	30	5784.987644	5784.974021	5784.985761	5784.976230			
12	40	5784.986850	5784.965624	5784.981900	5784.971361			
12	50	5784.982633	5784.955633	5784.977741	5784.967595			
10.8	25	5784.972932	5784.949620	5784.968405	5784.962490			
13.2	25	5784.972105	5784.945221	5784.963611	5784.961161			
	MHz	-0.027895	-0.054779	-0.036389	-0.038839			
	PPM	-4.821935	-9.469138	-6.290167	-6.713778			

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa


Method of Measurement

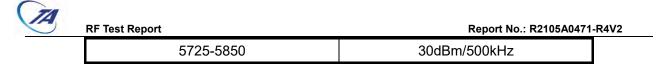
The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

Set RBW = 1MHz, VBW =3MHz for the band 5.150-5.250GHz. Set RBW = 470kHz, VBW =1.5MHz for the band 5.725-5.850GHz

The conducted PSD is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

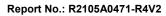
Test setup

Limits


Rule FCC Part 15.407(a)(1)/ Part 15.407(a)(2) / Part 15.407(a)(3)

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500kHz band. If transmittingantennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency Bands/MHz	Limits
5150-5250	11dBm/MHz

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 0.75dB.

Test Results:

TB Mode

26-Tones

U-NII-1

			Power Spectral Density					
	Channel/	Anteni	na 1	Antenr	na 2	Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
	36/5180	-3.40	-3.18	-2.97	-2.75	0.05	14.49	PASS
802.11ax	40/5200	0.97	1.19	0.69	0.90	4.06	14.49	PASS
HE20	44/5220	3.29	3.51	3.88	4.10	6.82	14.49	PASS
	48/5240	3.62	3.84	3.32	3.53	6.70	14.49	PASS
802.11ax	38/5190	-5.20	-4.97	-4.97	-4.74	-1.84	14.49	PASS
HE40	46/5230	-3.12	-2.89	-3.41	-3.18	-0.02	14.49	PASS
			_					

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49dBm.

U-NII-3

			Power	Spectral Dens	sity			
		Antenna 1		Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	、 500kHz)	Conclusion
000 11 ov	149/5745	2.91	3.39	2.88	3.36	6.39	27.49	PASS
802.11ax HE20	157/5785	3.48	3.97	3.12	3.60	6.80	27.49	PASS
TILZO	165/5825	3.56	4.04	3.82	4.30	7.19	27.49	PASS
802.11ax	151/5755	0.61	1.11	0.35	0.85	4.00	27.49	PASS
HE40	159/5795	0.90	1.40	0.90	1.40	4.41	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 30-(8.51-6 dBi) =27.49 dBm.

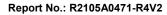
52-Tones U-NII-1

			Power					
	Channel/	Anten	na 1	Antenr	na 2	Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
	36/5180	-2.19	-1.78	-2.34	-1.93	1.15	14.49	PASS
802.11ax	40/5200	1.79	2.20	1.82	2.22	5.22	14.49	PASS
HE20	44/5220	4.10	4.51	4.55	4.96	7.75	14.49	PASS
	48/5240	3.99	4.40	4.26	4.66	7.54	14.49	PASS
802.11ax	38/5190	-4.61	-4.23	-4.54	-4.17	-1.19	14.49	PASS
HE40	46/5230	-4.16	-3.78	-4.04	-3.66	-0.71	14.49	PASS
802.11ax HE80	42/5210	-9.00	-8.60	-8.93	-8.53	-5.55	14.49	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49dBm.


	Channel/ Frequency (MHz)	Power Spectral Density						
Network Standards		Antenna 1		Antenna 2				
		Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	、 500kHz)	Conclusion
802.11ax HE20	149/5745	3.08	3.76	3.38	4.05	6.92	27.49	PASS
	157/5785	3.90	4.58	3.90	4.57	7.59	27.49	PASS
	165/5825	3.88	4.56	3.40	4.08	7.34	27.49	PASS
802.11ax HE40	151/5755	1.41	2.06	1.34	1.98	5.03	27.49	PASS
	159/5795	1.37	2.01	1.44	2.09	5.06	27.49	PASS
802.11ax HE80	155/5775	-5.56	-4.88	-5.72	-5.05	-1.95	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD

measurements on all devices,Array Gain=10log(Nant/Nss)dB,so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 30-(8.51-6 dBi) =27.49 dBm.

106-Tones

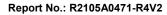
U-NII-1

	Channel/	Antenna 1		Antenna 2		Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
802.11ax HE20	36/5180	-2.34	-1.46	-2.09	-1.21	1.68	14.49	PASS
	40/5200	1.35	2.23	1.49	2.37	5.31	14.49	PASS
	44/5220	4.20	5.08	4.41	5.29	8.19	14.49	PASS
	48/5240	4.08	4.96	3.56	4.44	7.72	14.49	PASS
802.11ax HE40	38/5190	-5.13	-4.38	-5.00	-4.25	-1.30	14.49	PASS
	46/5230	-3.44	-2.69	-3.67	-2.92	0.20	14.49	PASS
802.11ax HE80	42/5210	-9.25	-8.61	-9.78	-9.14	-5.86	14.49	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49dBm.


			Power S	Spectral Dens	sity			
		Antei	nna 1	Antei	nna 2			
Network Standards	Channel/ Frequency (MHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	500kHz)	Conclusion
000 11 av	149/5745	3.19	4.35	2.89	4.04	7.21	27.49	PASS
802.11ax HE20	157/5785	3.87	5.02	3.32	4.47	7.76	27.49	PASS
11220	165/5825	3.05	4.20	3.09	4.24	7.23	27.49	PASS
802.11ax	151/5755	0.76	1.78	0.51	1.53	4.67	27.49	PASS
HE40	159/5795	1.09	2.10	1.07	2.08	5.10	27.49	PASS
802.11ax HE80	155/5775	-6.00	-5.09	-5.99	-5.07	-2.07	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD

measurements on all devices,Array Gain=10log(Nant/Nss)dB,so directional gain=GANT+Array Gain=5.5+10log〔2/1)=8.51>6 dBi. So the PSD limt is 30-(8.51-6 dBi) =27.49 dBm.

RF Test Report

242-Tones U-NII-1

			Power	Spectral Den	sity			
	Channel/	Antenna 1		Antenr	na 2	Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
	36/5180	-3.24	-1.92	-3.16	-1.83	1.13	14.49	PASS
802.11ax	40/5200	1.09	2.42	0.83	2.16	5.30	14.49	PASS
HE20	44/5220	2.41	3.73	1.21	2.53	6.18	14.49	PASS
	48/5240	3.49	4.81	3.63	4.96	7.89	14.49	PASS
802.11ax	38/5190	-5.17	-3.76	-5.22	-3.80	-0.77	14.49	PASS
HE40	46/5230	-3.16	-1.74	-3.12	-1.70	1.29	14.49	PASS
802.11ax HE80	42/5210	-9.33	-7.84	-9.44	-7.95	-4.89	14.49	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49dBm.

			Power S	Spectral Dens	sity			
		Antenna 1		Antei	Antenna 2			
Network Standards	Channel/ Frequency (MHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	、 500kHz)	Conclusion
000 11 av	149/5745	2.58	4.18	2.77	4.37	7.29	27.49	PASS
802.11ax HE20	157/5785	2.63	4.23	2.38	3.98	7.12	27.49	PASS
11220	165/5825	2.75	4.35	2.80	4.39	7.38	27.49	PASS
802.11ax	151/5755	0.45	2.14	0.04	1.73	4.95	27.49	PASS
HE40	159/5795	-0.05	1.64	-0.10	1.59	4.63	27.49	PASS
802.11ax HE80	155/5775	-6.82	-5.06	-6.48	-4.73	-1.88	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB,so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi.

So the PSD limt is 30-(8.51-6 dBi) =27.49 dBm.

484-Tones

U-NII-1

			Power	Spectral Den	sity			
	Channel/	Antenna 1		Antenr	Antenna 2		Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
802.11ax	38/5190	-6.66	-4.74	-7.24	-5.32	-2.01	14.49	PASS
HE40	46/5230	-4.53	-2.62	-4.30	-2.38	0.52	14.49	PASS
802.11ax HE80	42/5210	-10.53	-8.64	-10.27	-8.38	-5.50	14.49	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49dBm.

U-NII-3

			_					
		Antenna 1		Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	500kHz)	Conclusion
802.11ax	151/5755	-0.14	2.05	-0.51	1.68	4.88	27.49	PASS
HE40	159/5795	-0.56	1.63	-0.81	1.38	4.52	27.49	PASS
802.11ax HE80	155/5775	-6.83	-4.68	-7.59	-5.43	-2.03	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices,Array Gain=10log(Nant/Nss)dB,so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 30-(8.51-6 dBi) =27.49 dBm.

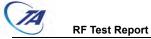
996-Tones

			Power Spectral Density						
Channel/		Antenna 1		Antenna 2		Total	Limit		
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion	
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)		
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)			
802.11ax	42/5210	-10.16	-7.53	-10.67	-8.04	-4.77	14,49	PASS	
HE80	42/3210	-10.10	-7.55	-10.07	-0.04	-4.77	14.49	FA00	
Noto: 1 Down	r Spectral Don	sity -Road Val		lo corroction for	ator				

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a), the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log 〔2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49dBm.


U-NII-3

		Power Spectral Density						
	-	Antenna 1		Antenna 2				
Network Standards	Channel/ Frequency (MHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	Limit (dBm/ 500kHz)	Conclusion
802.11ax HE80	155/5775	-7.64	-4.74	-7.84	-4.95	-1.83	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices,Array Gain=10log(Nant/Nss)dB,so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 30-(8.51-6 dBi) =27.49 dBm.

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	36	0.70	0.95	17	PASS
902 11 ov UE20	40	4.59	4.84	17	PASS
802.11ax HE20	44	5.63	5.88	17	PASS
	48	6.97	7.22	17	PASS
002 44 ov UE 40	38	-4.27	-3.80	17	PASS
802.11ax HE40	46	0.10	0.57	17	PASS
802.11ax HE80	42	-9.46	-8.71	17	PASS
Note: Power Spectral	Density =Re	ead Value+Dut	ty cycle correct	ction factor	

Network Standards	Channel Number	Read Value (dBm/470kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion
	149	3.21	3.73	30	PASS
802.11ax HE20	157	3.48	4.00	30	PASS
	165	3.24	3.76	30	PASS
902 11 ov UE 40	151	0.12	0.86	30	PASS
802.11ax HE40	159	0.73	1.47	30	PASS
802.11ax HE80	155	-2.96	-1.94	30	PASS
Note:PSD=Read Valu	ue+Duty cycl	e+10*LOG(500/47	70) correction fa	ctor	

RF Test Report

SISO Antenna 2

U-NII-1

Network Standards	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
000 44 1/500	36	1.19	1.44	17	PASS
	40	5.12	5.37	17	PASS
802.11ax HE20	44	6.12	6.37	17	PASS
	48	6.95	7.20	17	PASS
802.11ax HE40	38	-3.69	-3.22	17	PASS
002.118X HE40	46	-0.19	0.28	17	PASS
802.11ax HE80	42	-10.11	-9.35	17	PASS
Note: Power Spectral	Density =Re	ead Value+Dut	y cycle correc	tion factor	

Network Standards	Channel Number	Read Value (dBm/470kHz)	Power Spectral Density (dBm/500kHz)	Limit (dBm/500kHz)	Conclusion
	149	3.19	3.71	30	PASS
802.11ax HE20	157	2.91	3.43	30	PASS
	165	2.93	3.45	30	PASS
000 44 115 40	151	-0.27	0.47	30	PASS
802.11ax HE40	159	0.33	1.07	30	PASS
802.11ax HE80	155	-2.58	-1.55	30	PASS
Note:PSD=Read Valu	ue+Duty cycl	e+10*LOG(500/47	70) correction fa	ctor	

RF Test Report

MIMO without Beamforming

U-NII-1

		Power Spectral Density						
Channel/		Antenna 1		Antenna 2		Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
	36/5180	-2.07	-1.82	-1.78	-1.53	1.34	14.49	PASS
802.11ax	40/5200	1.85	2.10	2.08	2.33	5.23	14.49	PASS
HE20	44/5220	2.80	3.05	3.29	3.54	6.31	14.49	PASS
	48/5240	4.36	4.61	4.79	5.04	7.84	14.49	PASS
802.11ax	38/5190	-6.80	-6.33	-6.79	-6.32	-3.31	14.49	PASS
HE40	46/5230	-3.58	-3.11	-3.40	-2.93	-0.01	14.49	PASS
802.11ax HE80	42/5210	-12.41	-11.66	-12.22	-11.46	-8.55	14.49	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49dBm.

	Channel/ Frequency (MHz)	Power Spectral Density						
Network Standards		Antenna 1		Antenna 2				
		Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	、 500kHz)	Conclusion
802.11ax HE20	149/5745	1.86	2.39	2.30	2.82	5.62	27.49	PASS
	157/5785	2.11	2.63	2.36	2.88	5.77	27.49	PASS
	165/5825	2.46	2.98	2.72	3.24	6.13	27.49	PASS
802.11ax	151/5755	-4.64	-3.90	-4.79	-4.05	-0.97	27.49	PASS
HE40	159/5795	-1.17	-0.43	-1.32	-0.58	2.50	27.49	PASS
802.11ax HE80	155/5775	-4.72	-3.70	-5.11	-4.09	-0.88	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD

measurements on all devices,Array Gain=10log(Nant/Nss)dB,so directional gain=GANT+Array Gain=5.5+10log〔2/1)=8.51>6 dBi. So the PSD limt is 30-(8.51-6 dBi) =27.49 dBm.

MIMO with Beamforming

U-NII-1

		Power Spectral Density						
	Channel/	Antenna 1		Antenna 2		Total	Limit	
Network	Frequency	Read	PSD	Read	PSD	Power	(dBm	Conclusion
Standards	(MHz)	Value	(dBm	Value	(dBm	(dBm	/MHz)	
		(dBm/MHz)	/MHz)	(dBm/MHz)	/MHz)	/MHz)		
	36/5180	-1.23	-0.98	-1.22	-0.97	2.04	14.49	PASS
802.11ax	40/5200	2.78	3.03	2.58	2.83	5.94	14.49	PASS
HE20	44/5220	2.92	3.18	3.61	3.86	6.54	14.49	PASS
	48/5240	4.73	4.98	5.07	5.32	8.16	14.49	PASS
802.11ax	38/5190	-7.96	-7.49	-7.69	-7.22	-4.34	14.49	PASS
HE40	46/5230	-3.90	-3.43	-3.77	-3.30	-0.36	14.49	PASS
802.11ax HE80	42/5210	-12.35	-11.59	-12.84	-12.08	-8.82	14.49	PASS

Note: 1. Power Spectral Density =Read Value+Duty cycle correction factor

2. For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna1 in dBm/10)+10^(PSD antenna2 in dBm/10))

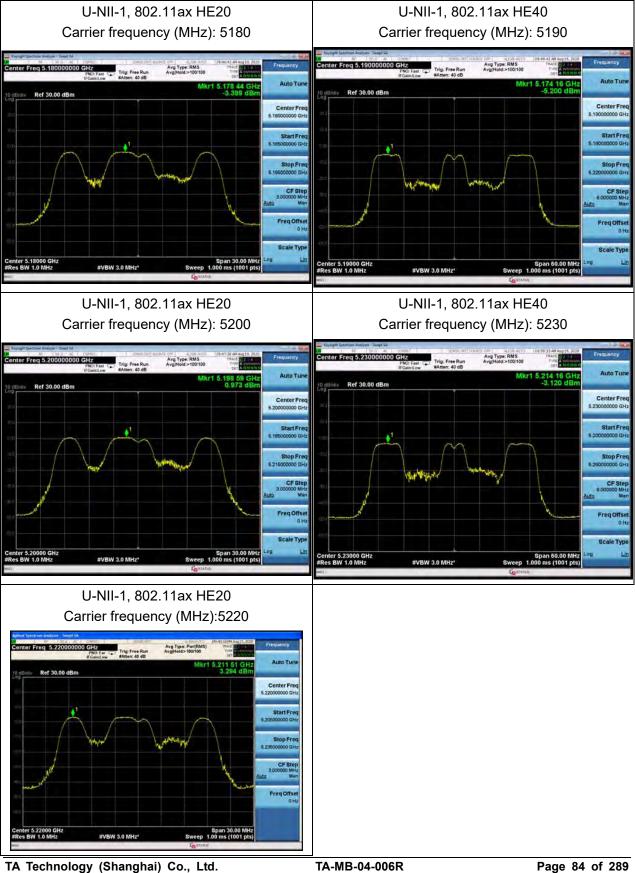
3. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi. So the PSD limt is 17-(directional gain-6 dBi) =17-(8.51-6)=14.49 dBm.

	Channel/ Frequency (MHz)	Power Spectral Density						
Network Standards		Antenna 1		Antenna 2				
		Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Read Value (dBm/ 470kHz)	Power Spectral Density (dBm/ 500kHz)	Total Power (dBm/ 500kHz)	Limit (dBm/ 500kHz)	Conclusion
802.11ax HE20	149/5745	2.29	2.81	2.26	2.78	5.81	27.49	PASS
	157/5785	2.43	2.95	2.00	2.52	5.75	27.49	PASS
	165/5825	2.15	2.67	2.16	2.68	5.69	27.49	PASS
802.11ax	151/5755	-4.91	-4.17	-4.91	-4.17	-1.16	27.49	PASS
HE40	159/5795	-1.14	-0.40	-1.28	-0.54	2.54	27.49	PASS
802.11ax HE80	155/5775	-4.49	-3.46	-4.31	-3.28	-0.36	27.49	PASS

Note: 1.Note:PSD=Read Value+Duty cycle+10*LOG(500/470) correction factor,

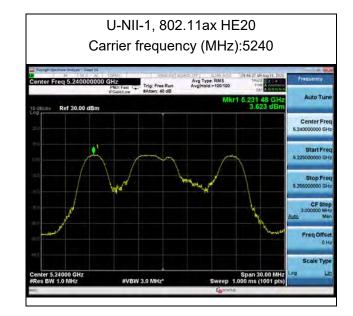
The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

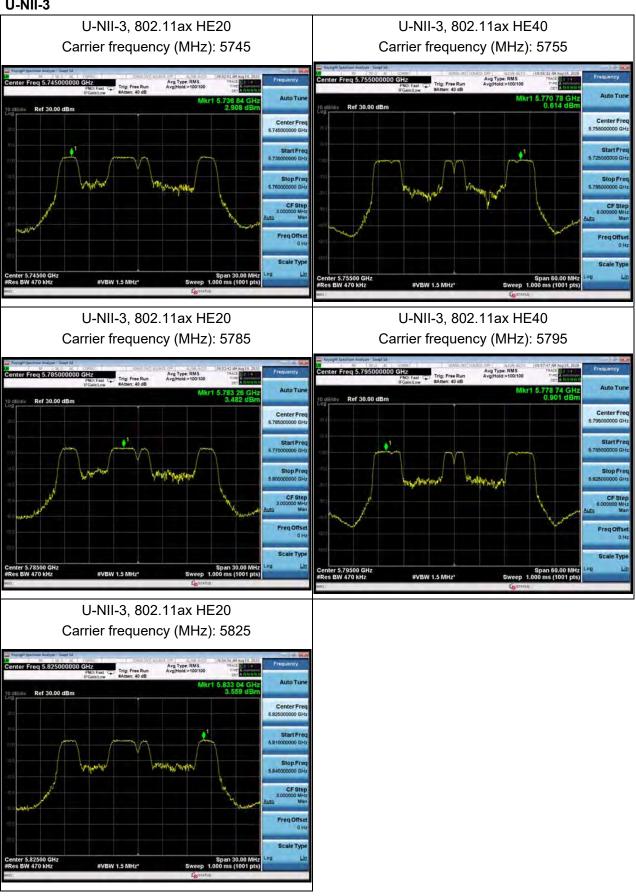
2. The manufacturer declared the transmitter output signals is CDD mode And Nss=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 2)f)(i): If all antennas have the same gain, Directional gain = GANT + Array Gain, For PSD measurements on all devices,Array Gain=10log(Nant/Nss)dB,so directional gain=GANT+Array Gain=5.5+10log (2/1)=8.51>6 dBi.

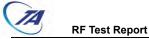

So the PSD limt is 30-(directional gain-6 dBi) =30-(8.51-6) =27.49dBm.

TB Mode 26-Tones

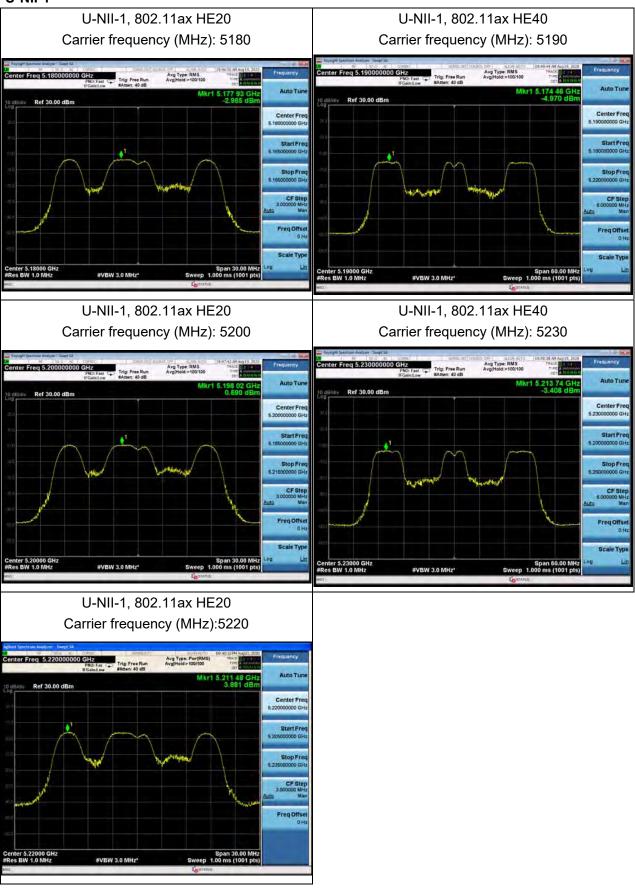
MIMO Antenna 1

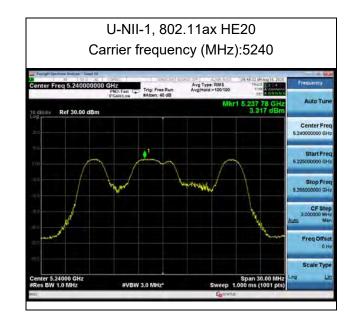

U-NII-1

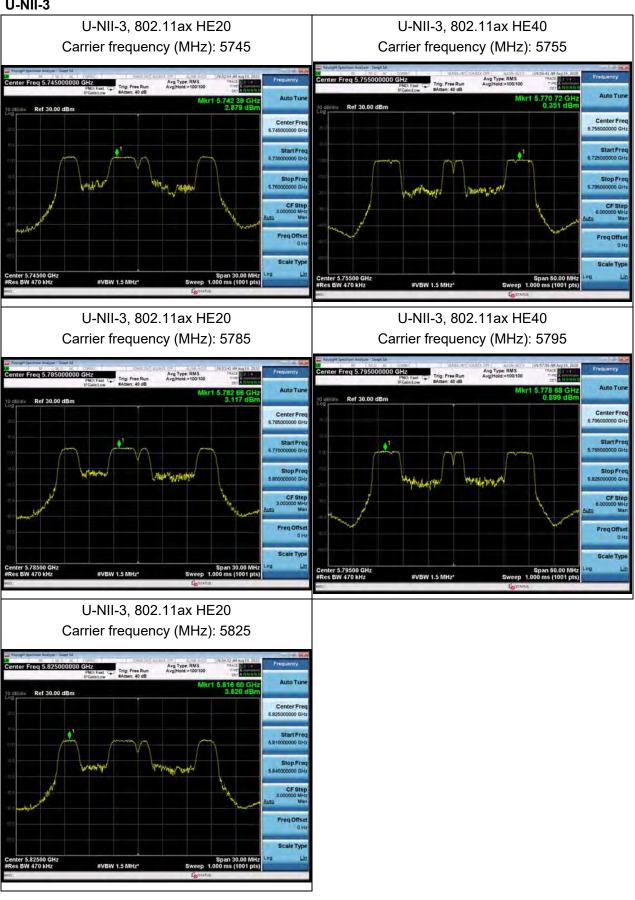

TA-MB-04-006R TA Technology (Shanghai) Co., Ltd. This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

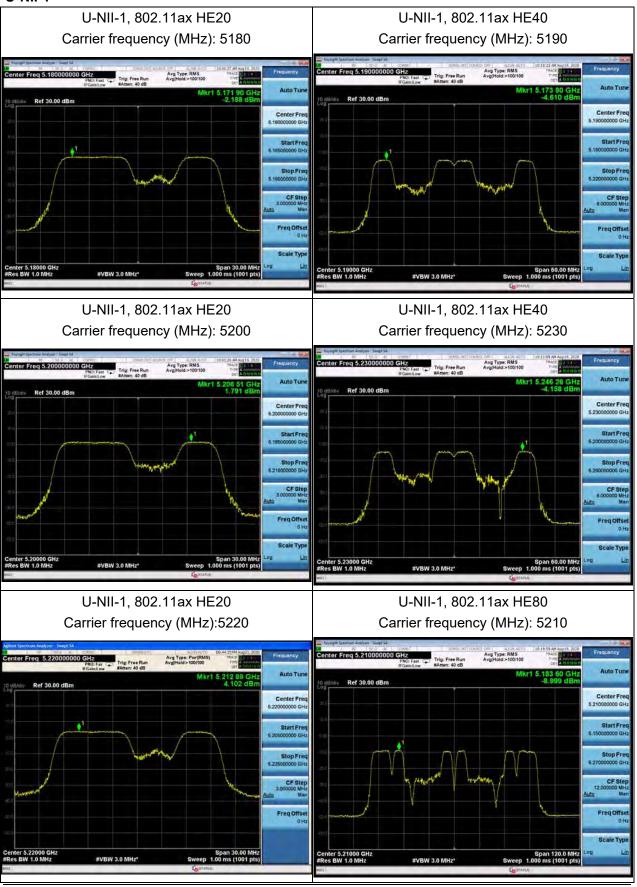


RF Test Report

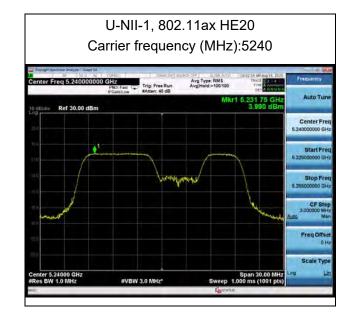




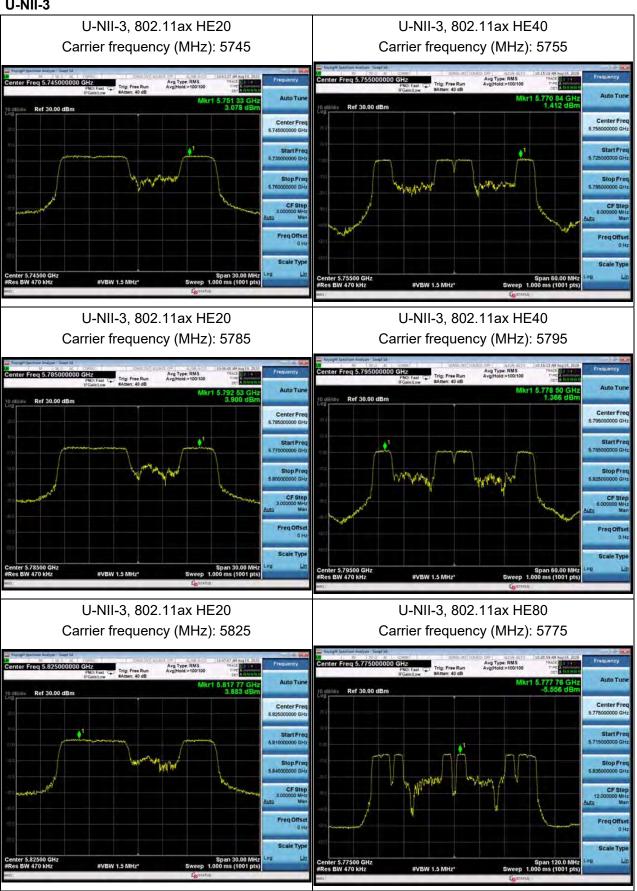

MIMO Antenna 2



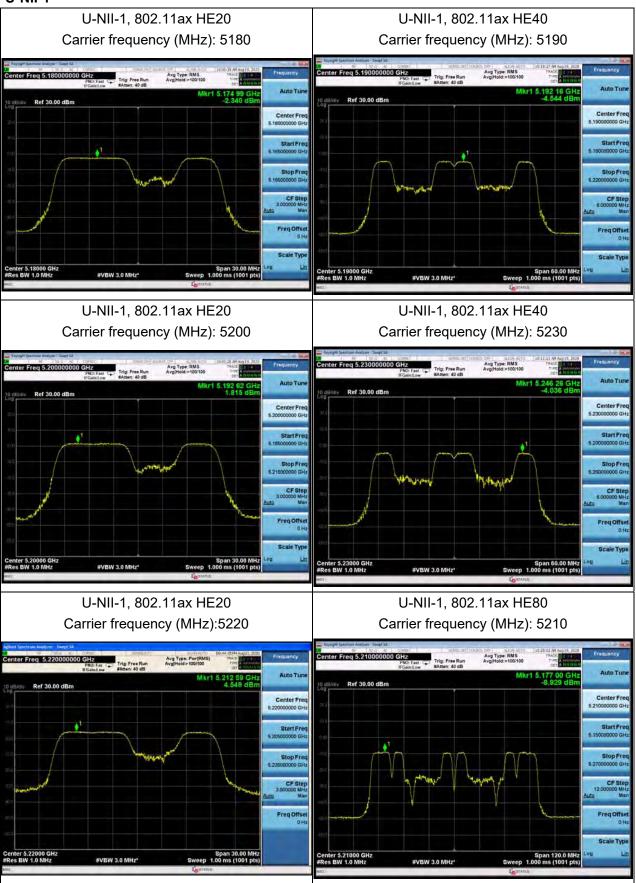
52-Tones

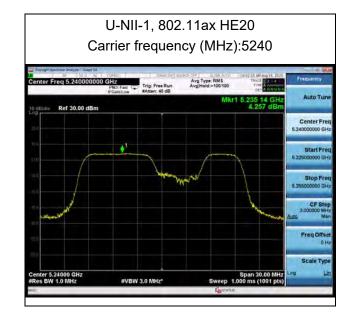

MIMO Antenna 1

U-NII-1

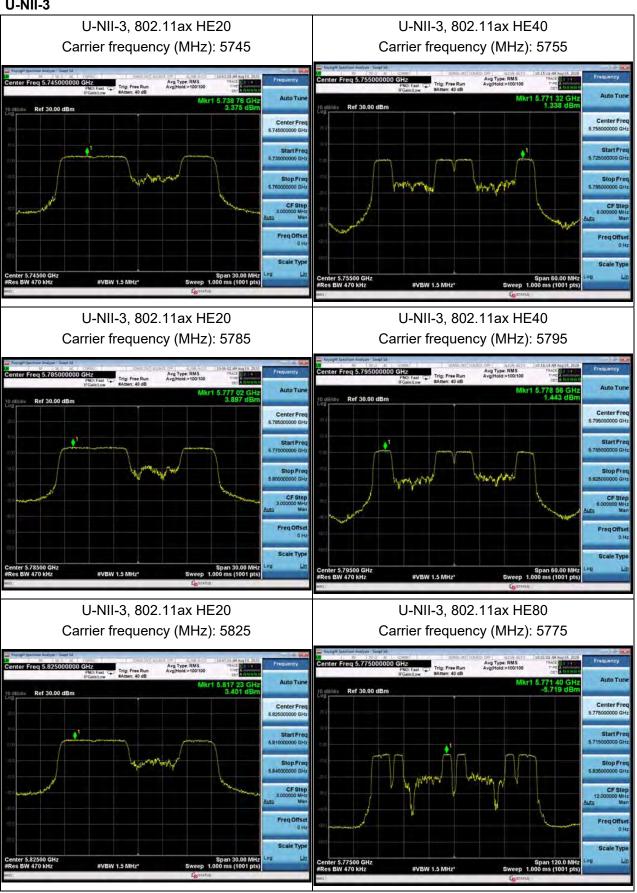


TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 90 of 289This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

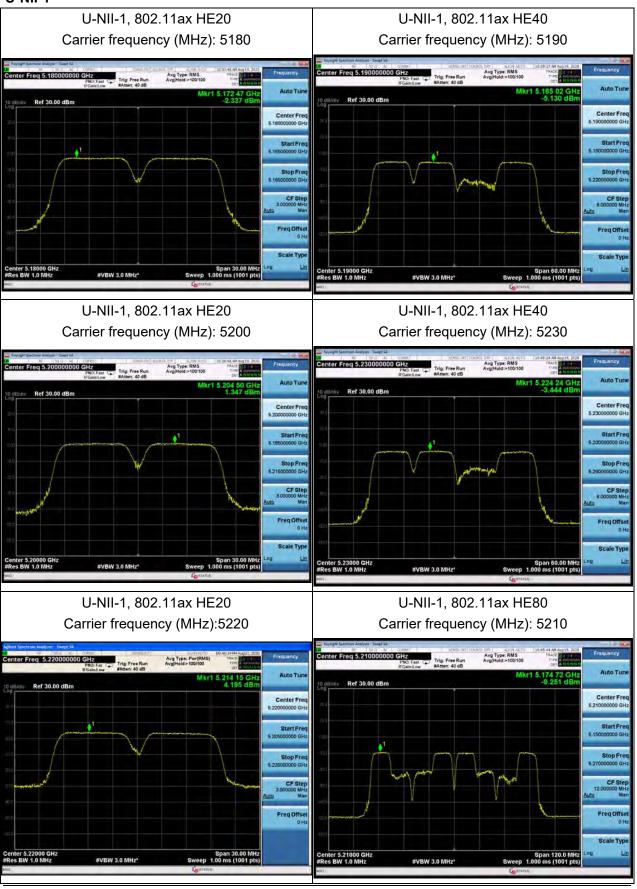


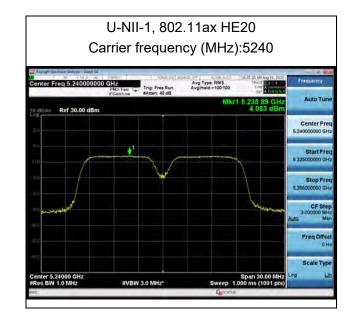

MIMO Antenna 2

U-NII-1

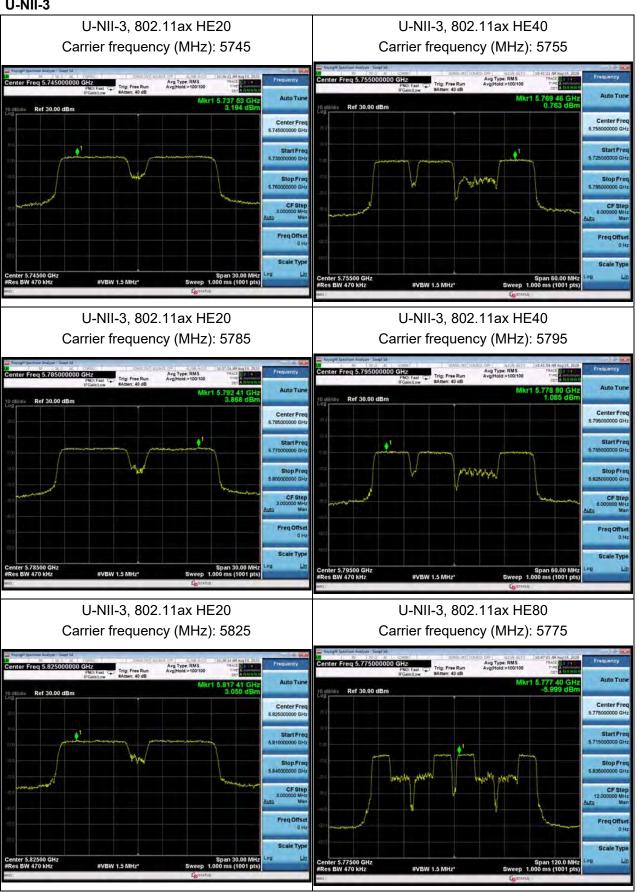


TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 93 of 289This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

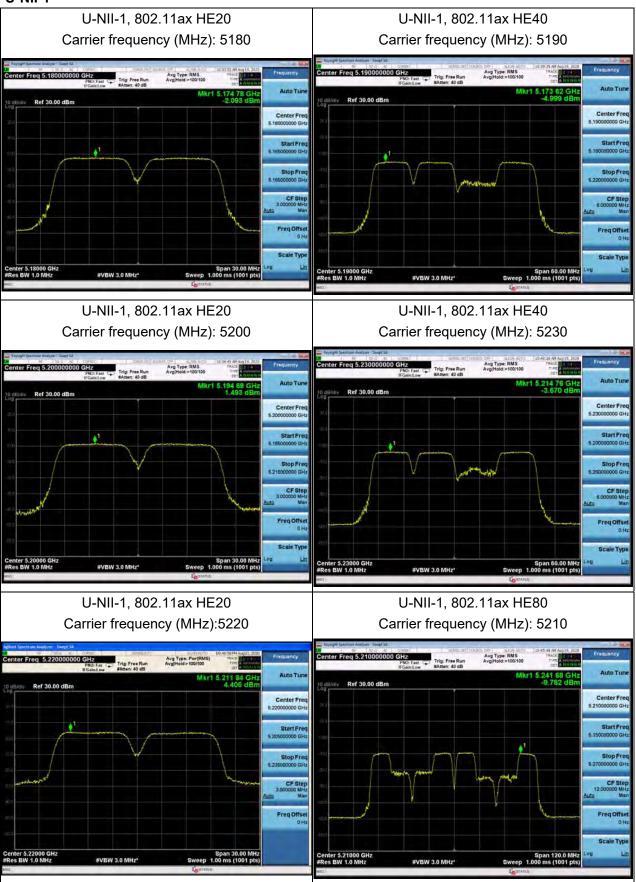


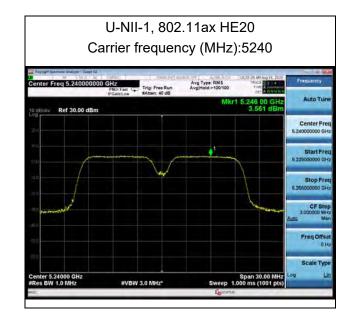

106-Tones MIMO Antenna 1

U-NII-1

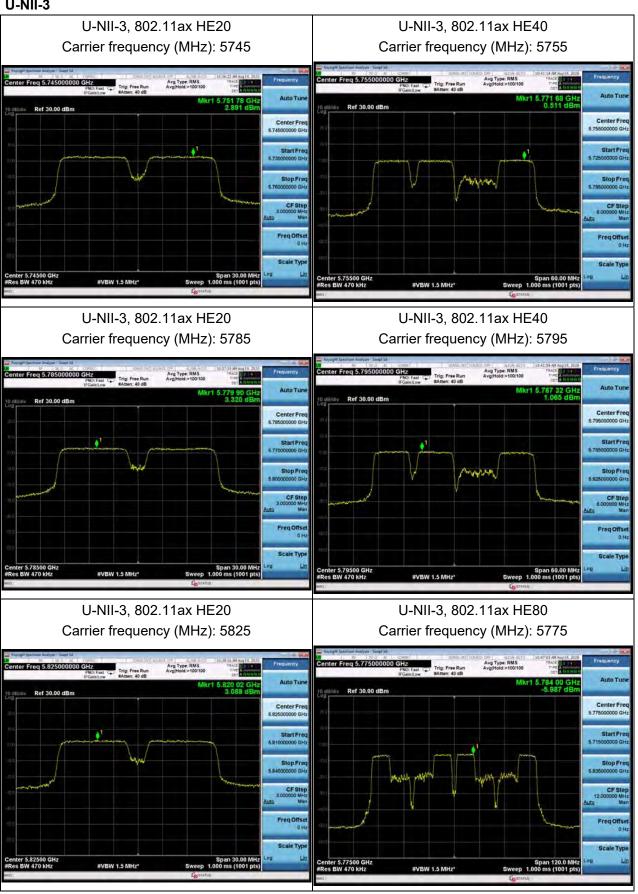


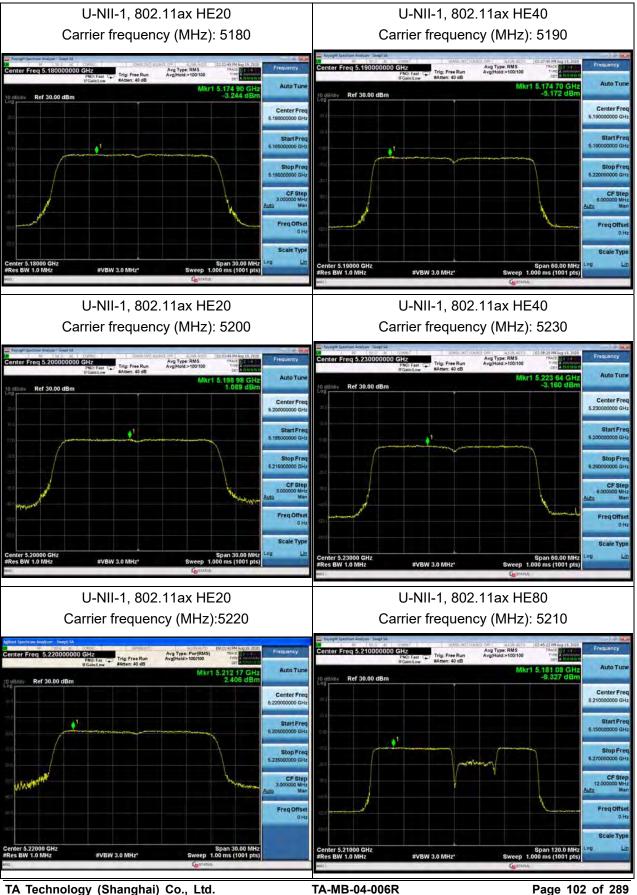
TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 96 of 289This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.



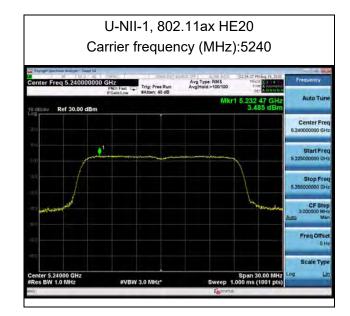


MIMO Antenna 2

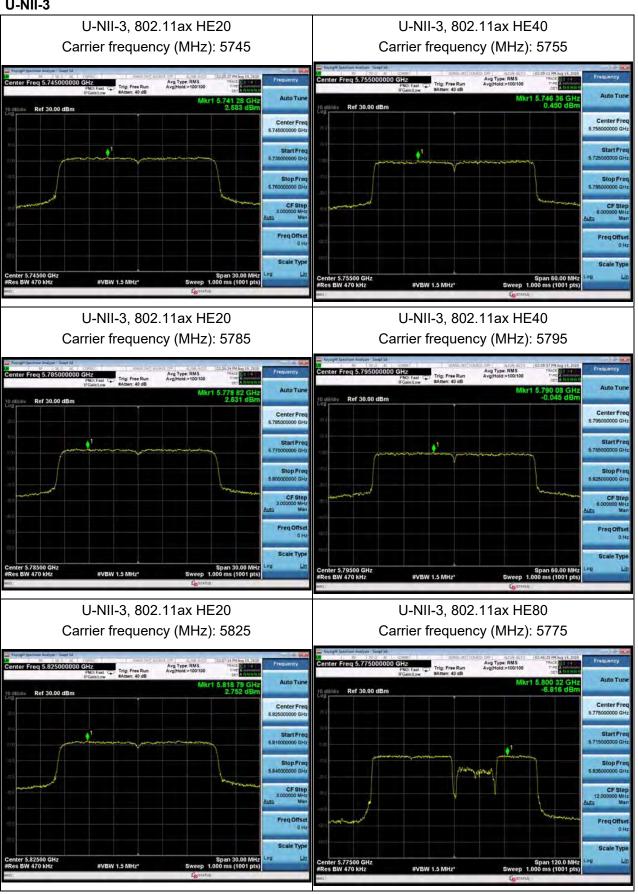




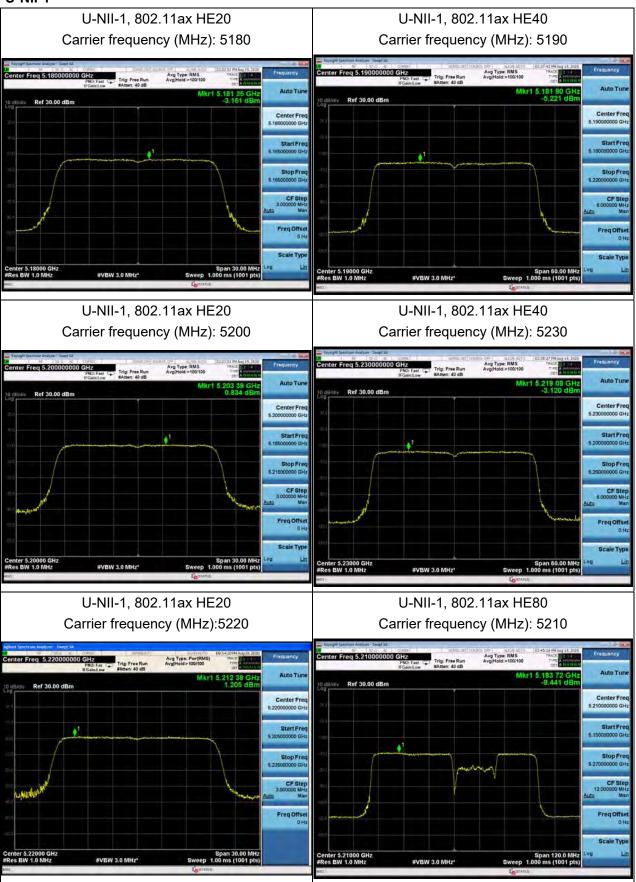
242-Tones


MIMO Antenna 1

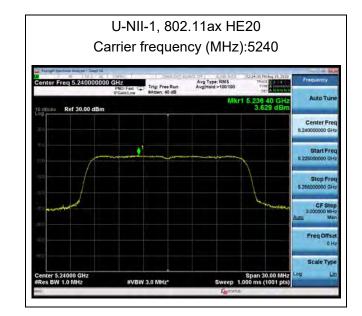
U-NII-1

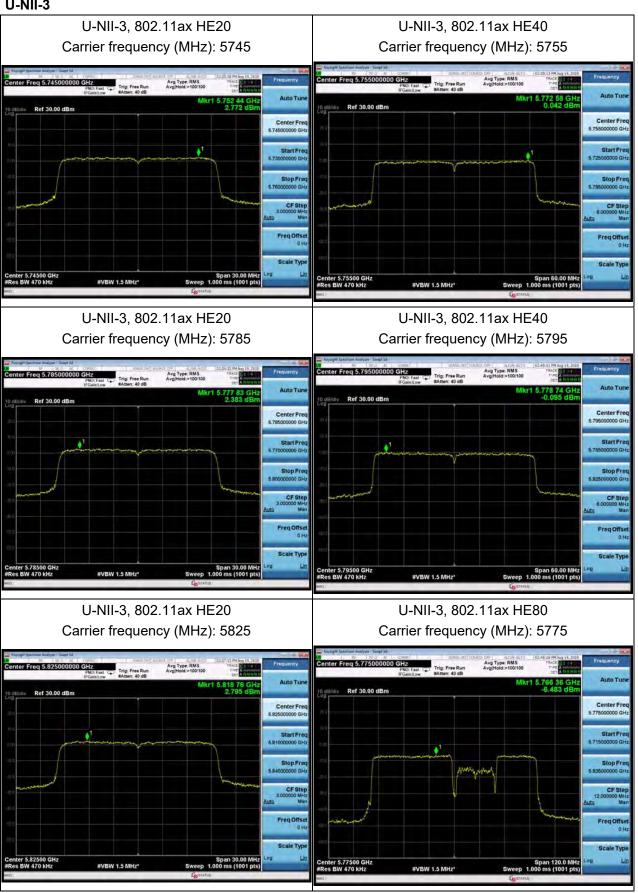


TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 102 of 3This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

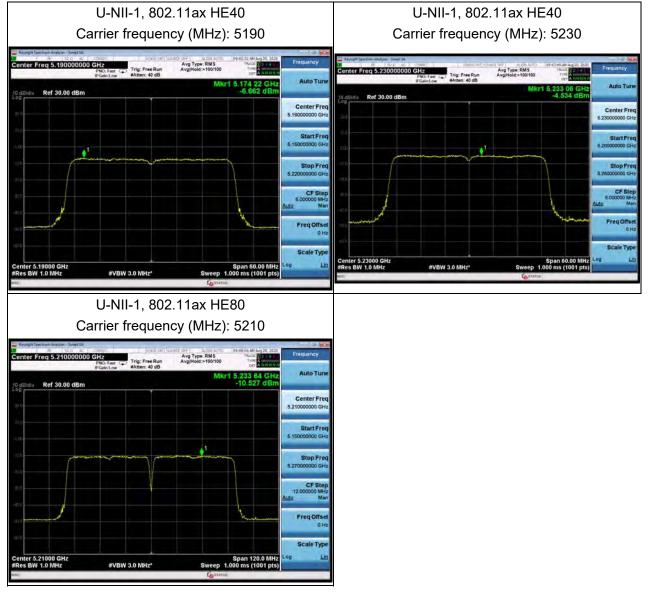


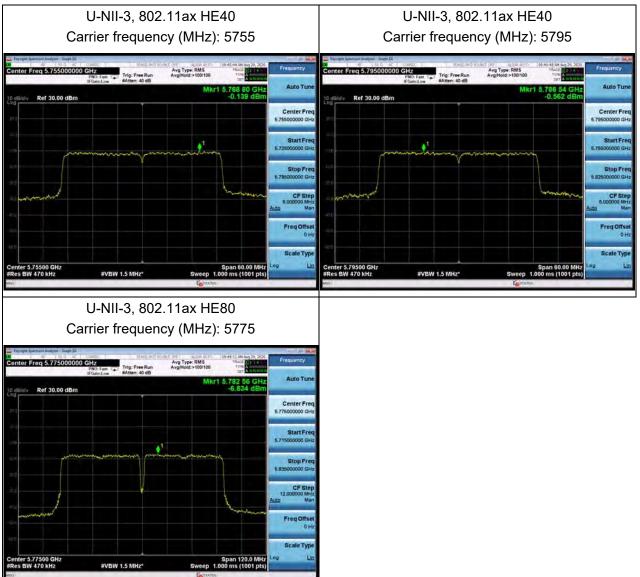
MIMO Antenna 2


U-NII-1


TA Technology (Shanghai) Co., Ltd.TA-MB-04-006RPage 105 of 289This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

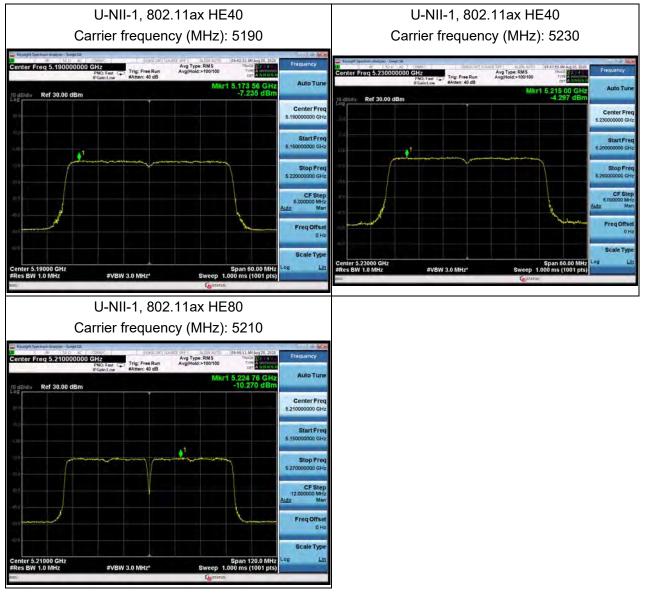
RF Test Report

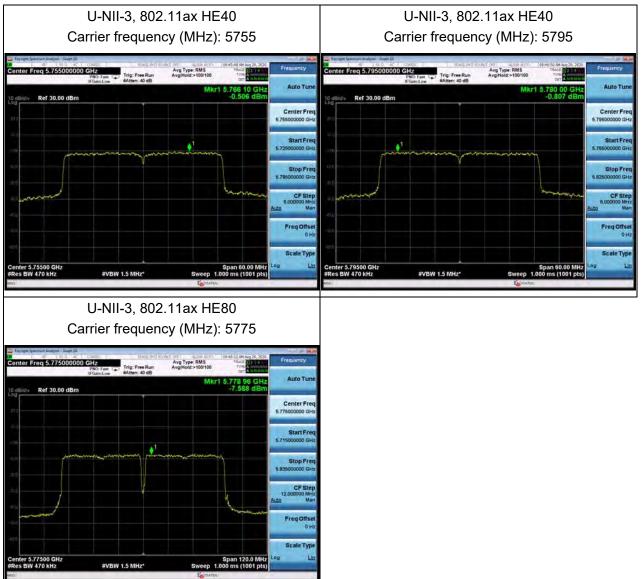




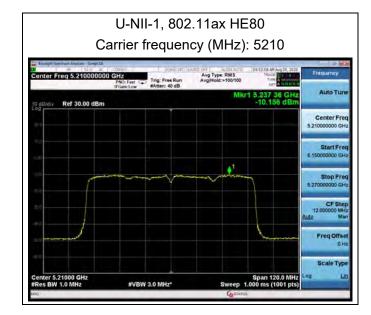
484-Tones

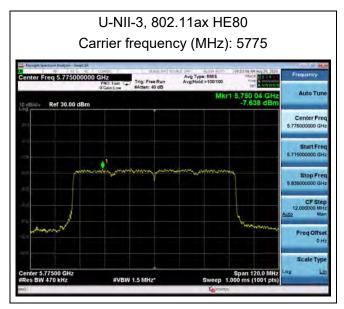
MIMO Antenna 1





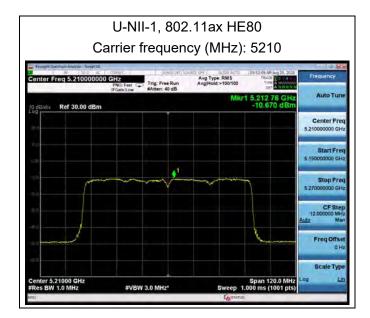
MIMO Antenna 2

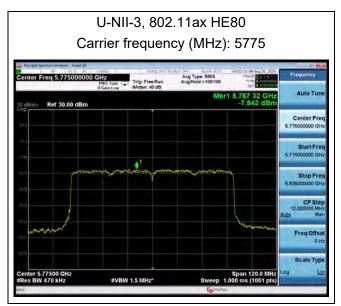




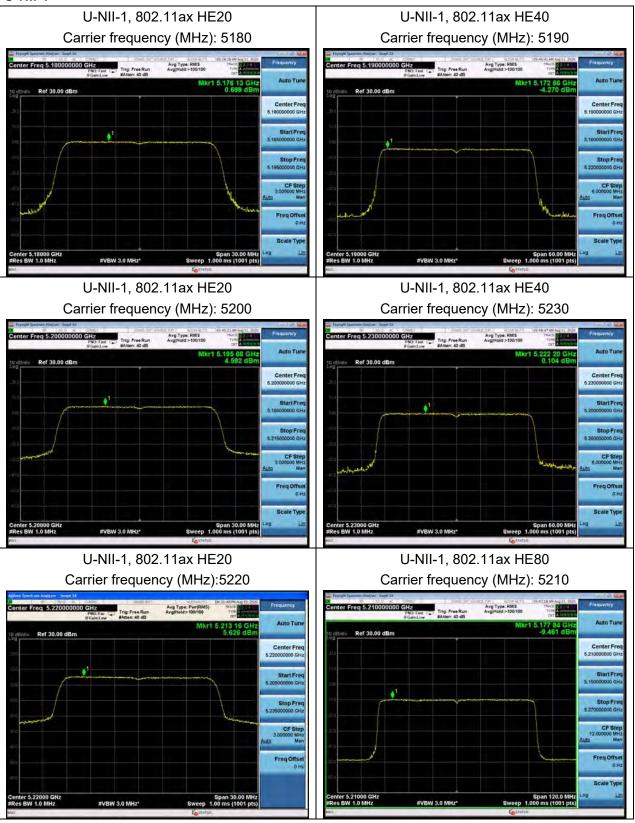
RF Test Report

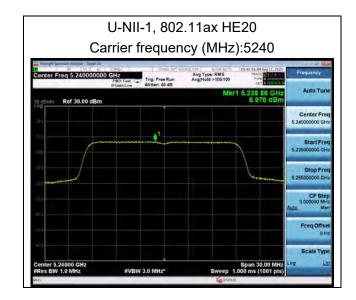
996-Tones MIMO Antenna 1


U-NII-1

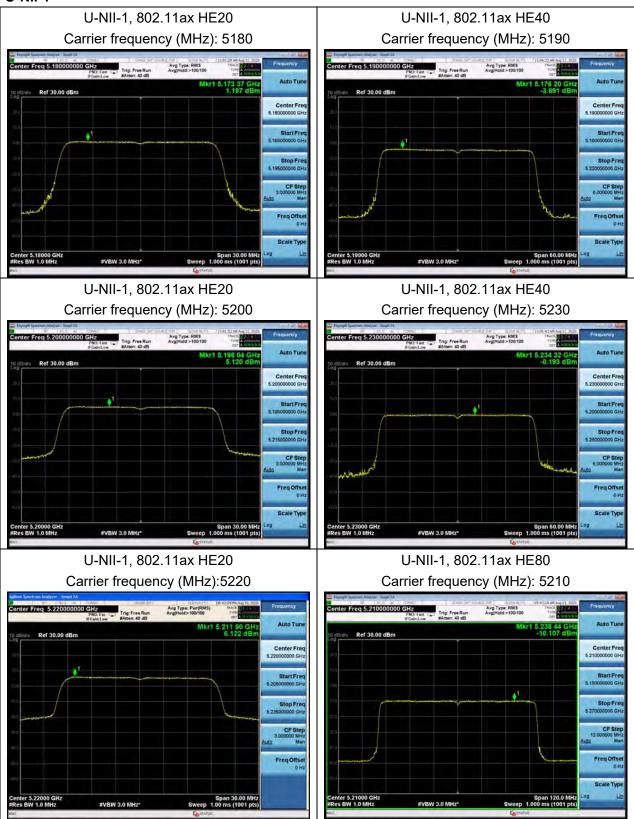


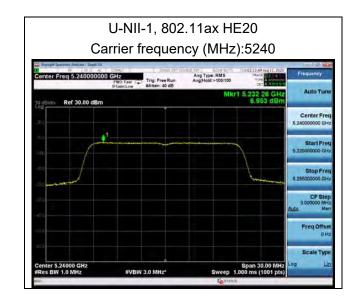
RF Test Report

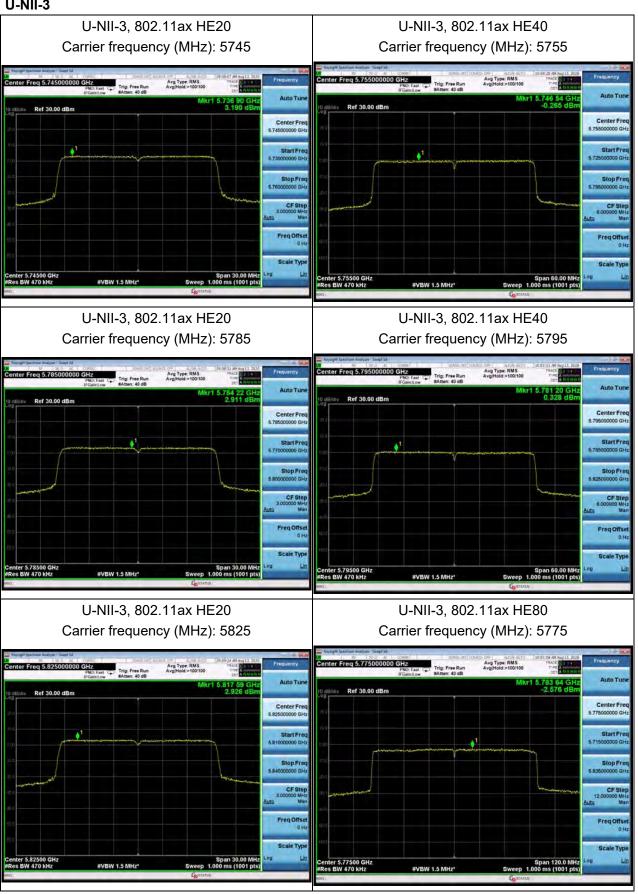

MIMO Antenna 2 U-NII-1

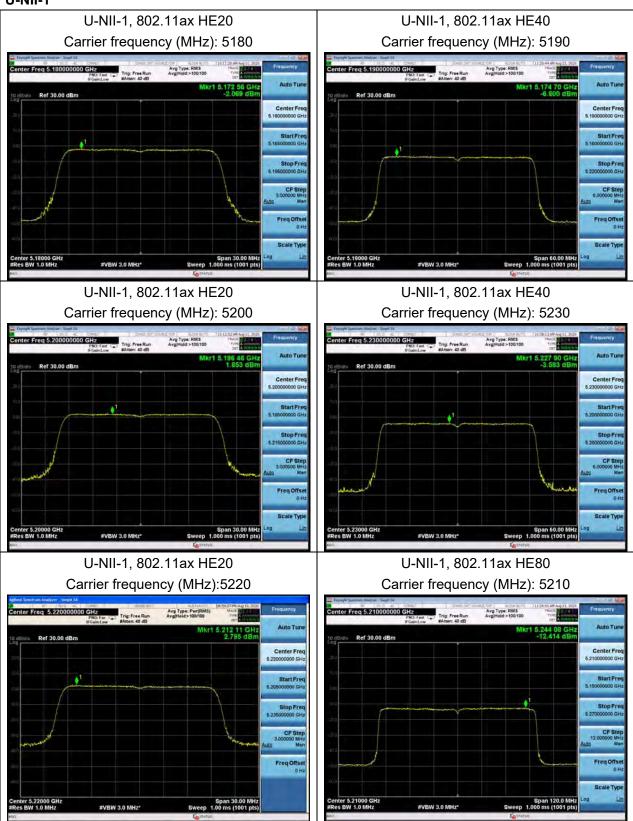


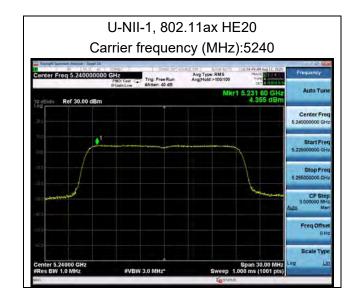
SU Mode SISO Antenna 1

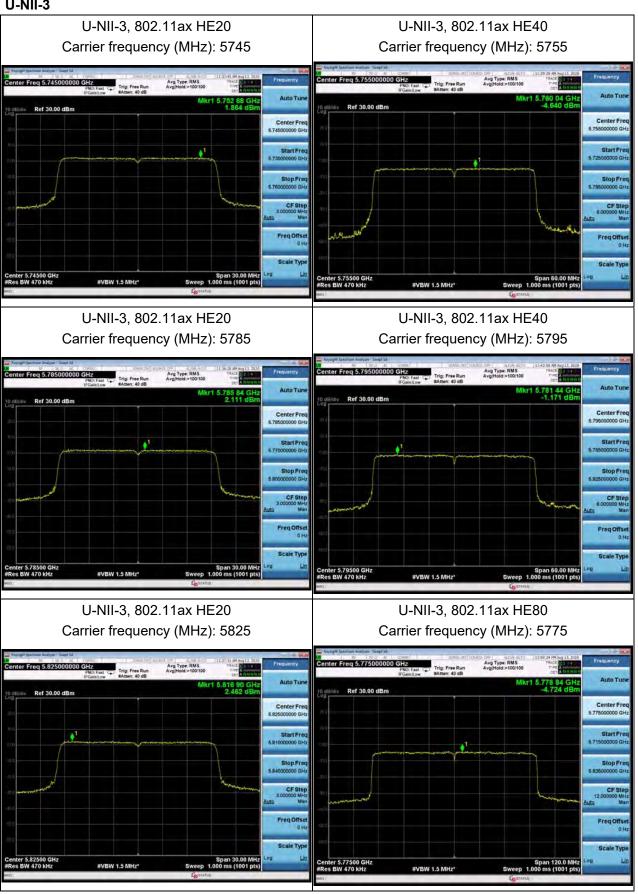


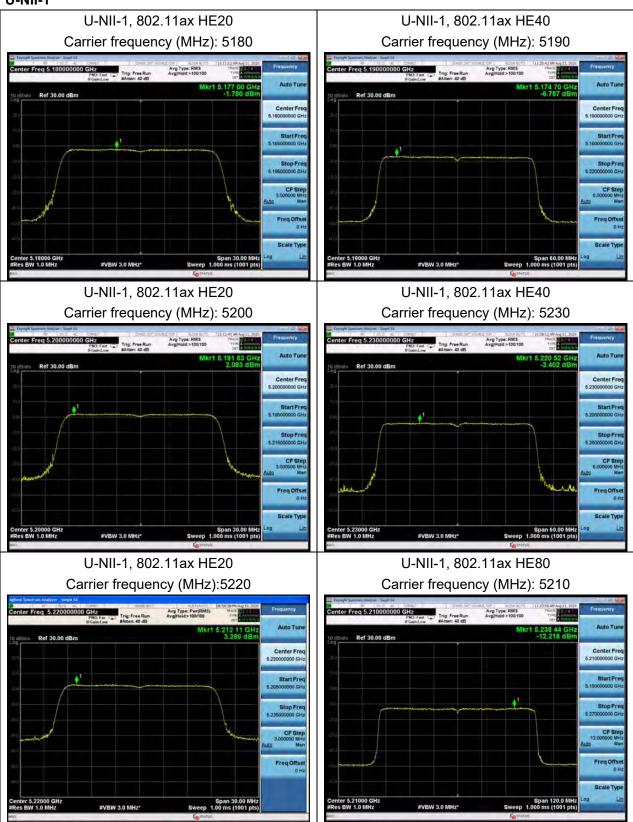


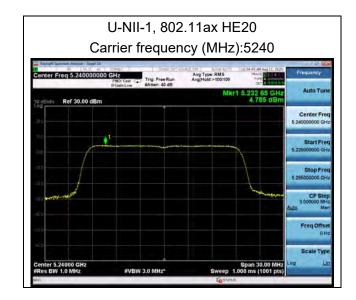

SISO Antenna 2

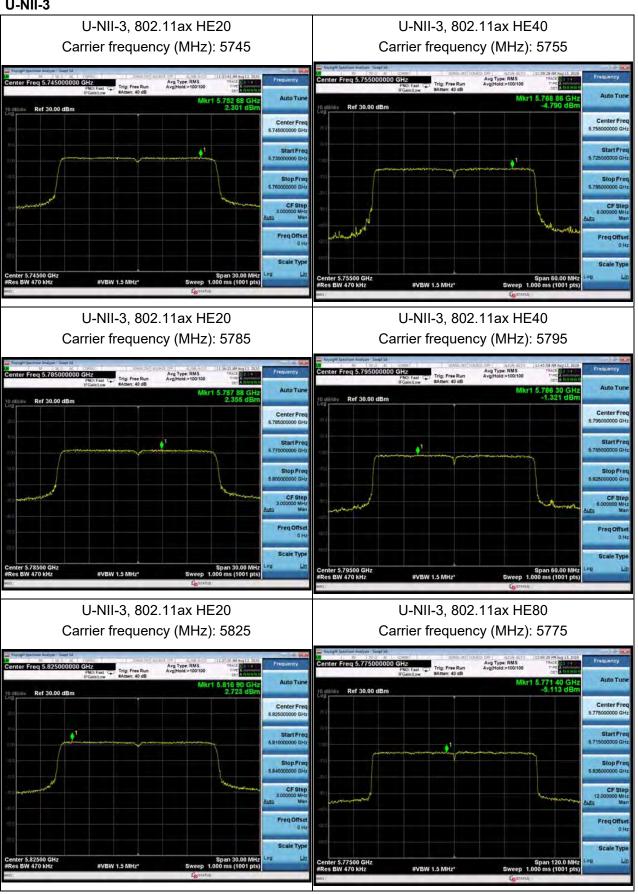


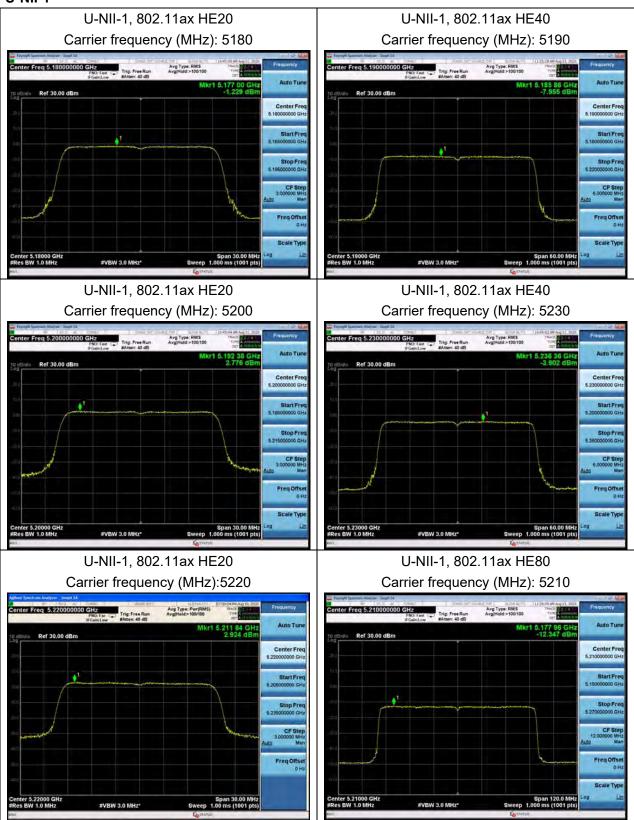


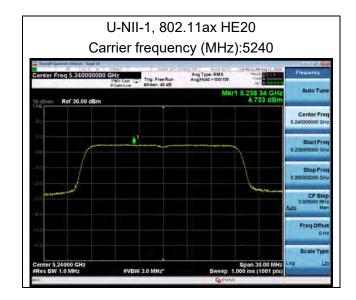

MIMO Antenna 1(without Beamforming)



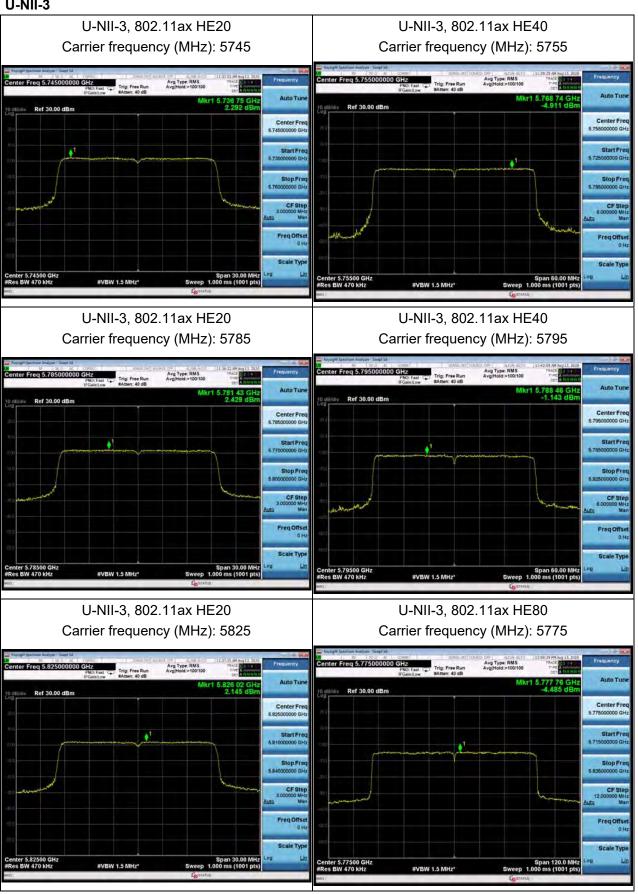


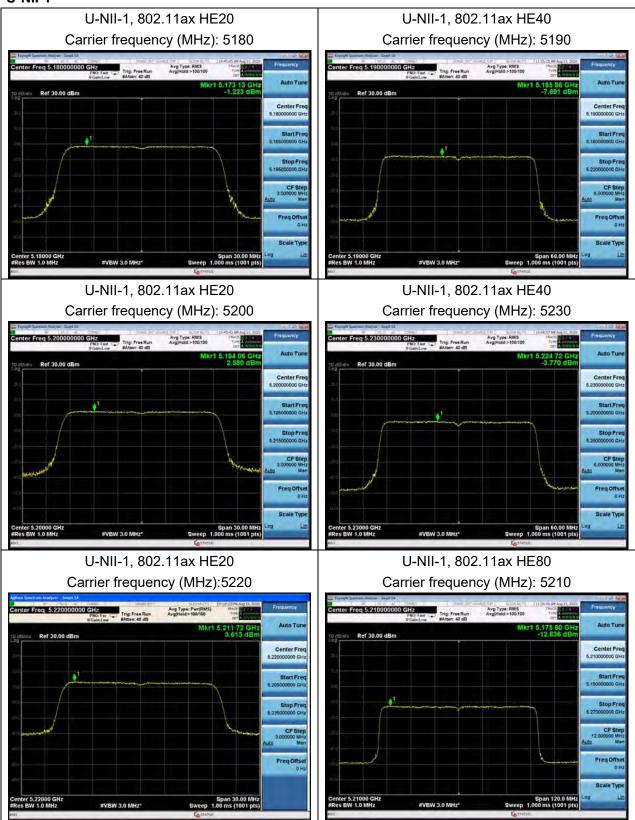

MIMO Antenna 2(without Beamforming)

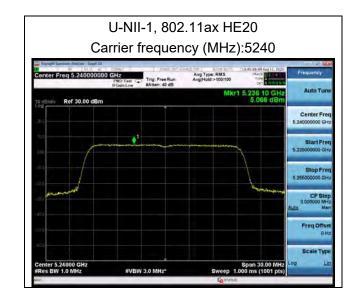


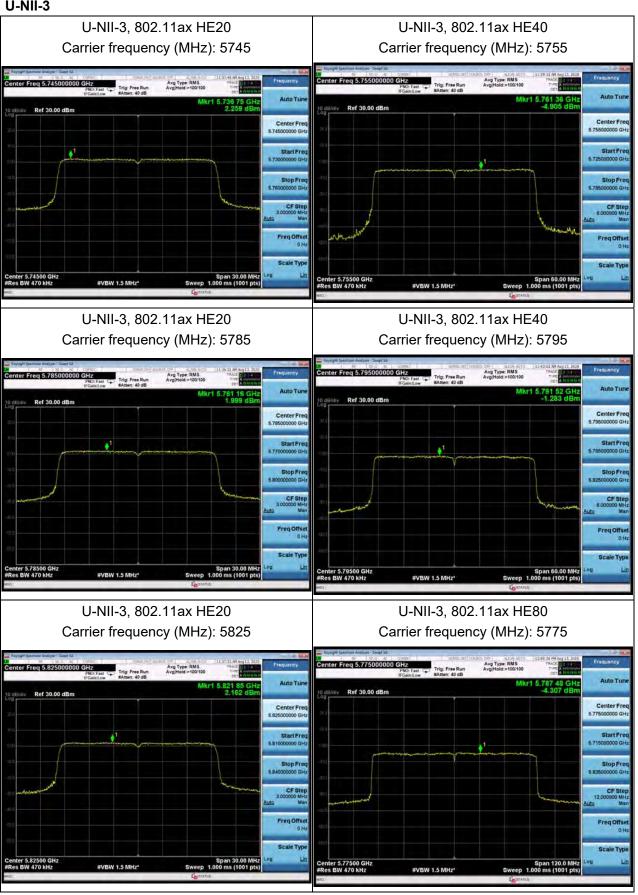


RF Test Report


MIMO Antenna 1(with Beamforming)






MIMO Antenna 2(with Beamforming)

5.5. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10-2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration. Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

Below 1GHz (detector: Peak and Quasi-Peak)

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz (detector: Peak):

I) Peak emission levels are measured by setting the instrument as follows:

- 1) RBW = 1 MHz.
- 2) VBW \ge [3 × RBW]
- 3) Detector = peak.
- 4) Sweep time = auto.
- 5) Trace mode = max hold.

6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D, where D is the duty cycle.

II) Average emission levels are measured by setting the instrument as follows:

a) RBW = 1 MHz.

b) VBW \geq [3 × RBW].

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

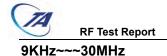
d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

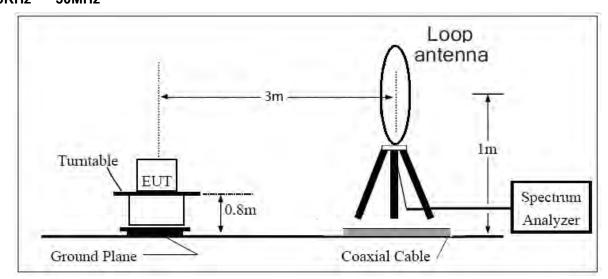
e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

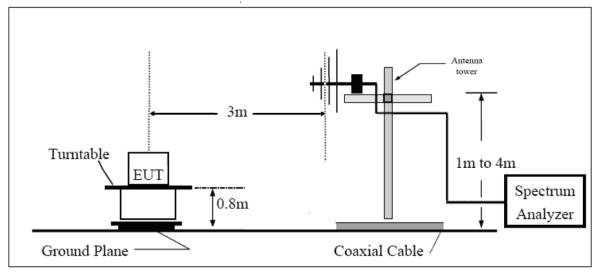
g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

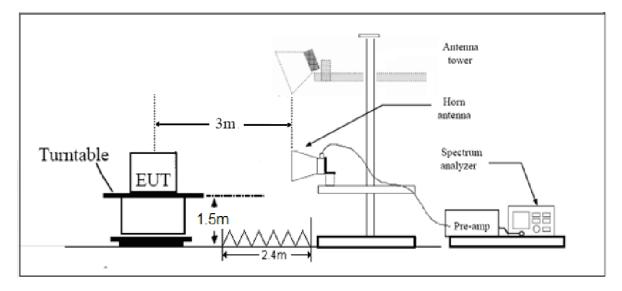

2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.


3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. For regulatory requirements that specify averaging only over the transmit duration (e.g., digital transmission system [DTS] and Unlicensed National Information Infrastructure [U-NII]), the video bandwidth shall be greater than [1 / (minimum transmitter on time)] and no less than 1 Hz.


The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the loop antenna is vertical, others antenna are vertical and horizontal.

The test is in transmitting mode.



Above 1GHz

Note: Area side:2.4mX3.6m

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).

- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).

Note: the following formula is used to convert the EIRP to field strength

- §1、E[dBµV/m] = EIRP[dBm] 20 log(d[meters]) + 104.77, where E = field strength and
- d = distance at which field strength limit is specified in the rules;
- $2 \in E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters
- (4) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table.

Frequency of emission (MHz)	Field strength(uV/m)	Field strength(dBuV/m)
0.009–0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54