
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.04.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1155

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5400 MHz,

Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz

Medium parameters used: f=5250 MHz; $\sigma=5.52$ S/m; $\epsilon_r=47.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5400 MHz; $\sigma=5.73$ S/m; $\epsilon_r=47$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=6$ S/m; $\epsilon_r=46.6$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.21$ S/m; $\epsilon_r=46.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5850 MHz; $\sigma=6.35$ S/m; $\epsilon_r=46.2$; $\rho=1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz,
 ConvF(5.07, 5.07, 5.07) @ 5400 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz,
 ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.61, 4.61, 4.61) @ 5850 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.24 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 7.35 W/kg; SAR(10 g) = 2.06 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 66.9%

Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5400 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.41 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.17 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.5%

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.39 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.15 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.5%

Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.83 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.06 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

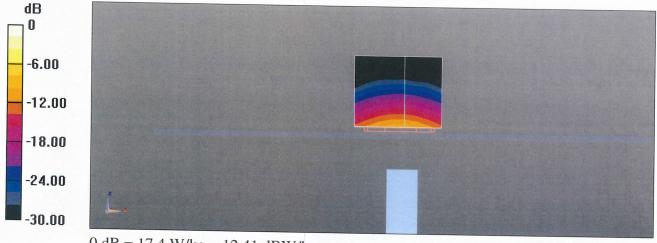
Ratio of SAR at M2 to SAR at M1 = 62%

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan,

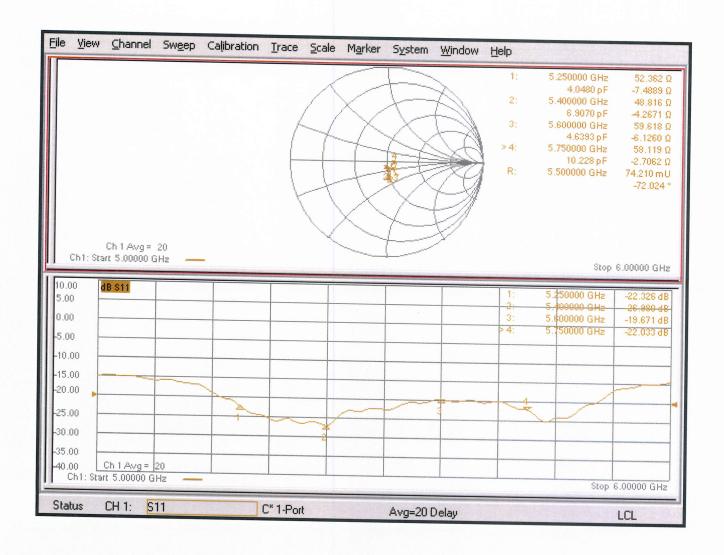
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.87 V/m; Power Drift = -0.05 dB

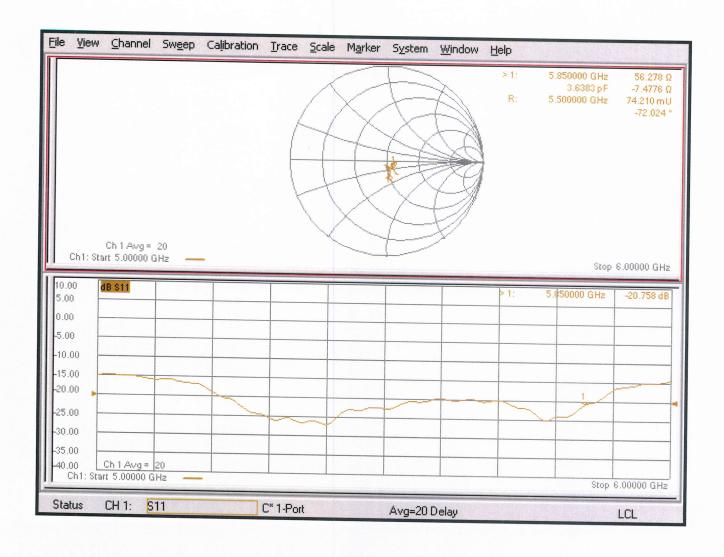

Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.13 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

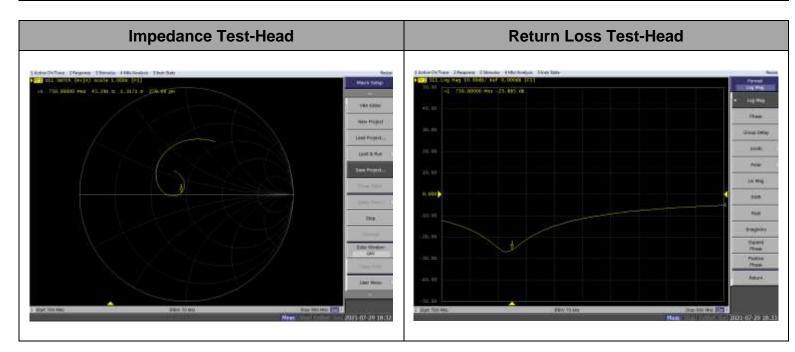

Ratio of SAR at M2 to SAR at M1 = 62.1%

Maximum value of SAR (measured) = 19.2 W/kg



0 dB = 17.4 W/kg = 12.41 dBW/kg

Impedance Measurement Plot for Body TSL (5250, 5400, 5600, 5750 MHz)

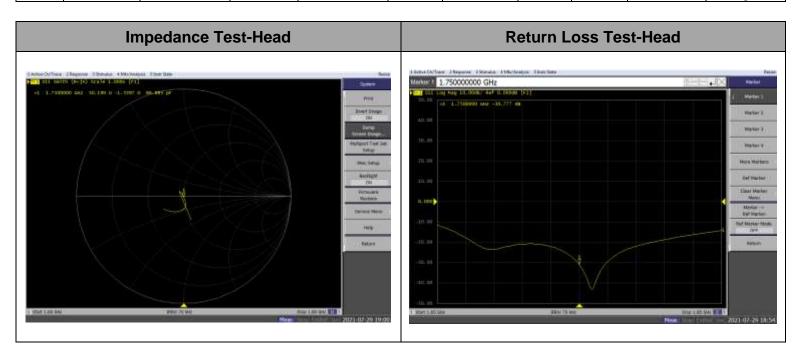

Impedance Measurement Plot for Body TSL (5850 MHz)

Justification of the extended calibration of Dipole D750V3 SN:1044

Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return loss is <- 20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole SN	Tissue Type	Target Tissue		Measured Tissue		Deviation		Ambiet		Test
		Impedance transformed to feed point	Return Loss(dB)	Impedance transformed to feed point	Return Loss	Δ(5Ω)	Δ(Wit hin +/- 20%)	Temp	Test Date	Engineer
1044	750MHz Head	54.6Ω+0.2jΩ	-27.0	54.3Ω+1.3jΩ	-25.9	R=-0.3Ω, X=1.1jΩ	-4.1%	22°C	2021/7/29	Zeng yongguan g

Self-confirmation results:


- After self-confirmation, the performance meets the requirements and can continue to be used. (PASS)
- □ After self-confirmation, the performance exceeds the deviation, and suspend to use. (Fail)

------END-------

Justification of the extended calibration of Dipole D1750V2 SN:1123

Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return loss is <- 20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipol	Tissue Type	Target Tissue		Measured Tissue		Deviation		Ambiet		Test
e SN		Impedance transformed to feed point	Return Loss(dB)	Impedance transformed to feed point	Return Loss	Δ(5Ω)	Δ(Wit hin +/- 20%)	Temp	Test Date	Engineer
1123	1750MHz Head	49.3Ω-2.3jΩ	-32.3	50.2Ω-1.4jΩ	-30.8	R=0.9Ω, X=0.9jΩ	-4.6%	22°C	2021/7/29	Zeng yongguan g

Self-confirmation results:

- After self-confirmation, the performance meets the requirements and can continue to be used. (PASS)
- □ After self-confirmation, the performance exceeds the deviation, and suspend to use. (Fail)

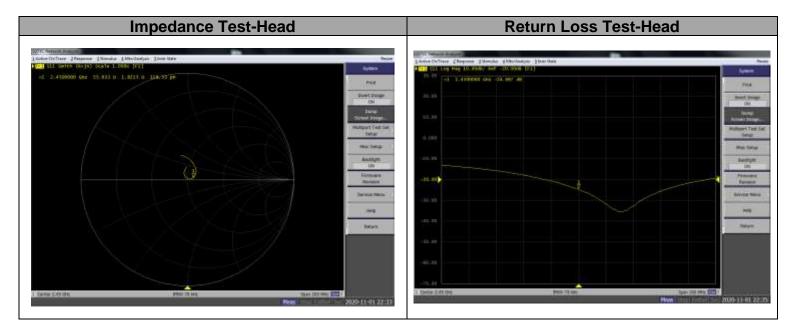
------END-------

Justification of the extended calibration of Dipole D1900V2 SN:5d143

Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return loss is <- 20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole	Tissue Type	Target Tissue		Measured Tissue		Deviation		Ambiet		Test
SN		Impedance transformed to feed point	Return Loss(dB)	Impedance transformed to feed point	Return Loss	Δ(5Ω)	Δ(Wit hin +/- 20%)	Temp	Test Date	Engineer
5d143	1900MH z Head	52.2Ω+5.0jΩ	-25.4	51.4Ω+3.6jΩ	-28.6	R=-0.8Ω, X=-1.4jΩ	12.6%	22°C	2021/7/29	Zeng yongguan g

Self-confirmation results:


- After self-confirmation, the performance meets the requirements and can continue to be used. (PASS)
- □ After self-confirmation, the performance exceeds the deviation, and suspend to use. (Fail)

------END-------

Justification of the extended calibration of Dipole D2450V2 SN:860

Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return loss is <- 20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole SN	Tissue Type	Target Tissue		Measured Tissue		Deviation		Ambie	Test	Test
		Impedance transformed to feed point	Return Loss(dB	Impedance transformed to feed point	Return Loss(d B)	Δ(5Ω)	Δ(With in +/- 20%)	t Temp	Date	Engineer
860	2450MH z Head	55.0Ω+4.0j Ω	-24.3	55.6Ω+1.8jΩ	-24.7	R=0.6Ω, X=-2.2jΩ	1.6%	22°C	2020/11 /01	Zeng yongguang

Self-confirmation results:

- After self-confirmation, the performance meets the requirements and can continue to be used. (PASS)
- □ After self-confirmation, the performance exceeds the deviation, and suspend to use. (Fail)

------END-------END------