

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... GTS20200109007-1-11-1

FCC ID.....: 2ATEXBIRDYSL2

Compiled by

(position+printed name+signature)..: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)..: Test Engineer Aaron Tan

Approved by

(position+printed name+signature)..: Manager Jason Hu

Date of issue...... Jan. 04, 2020

Representative Laboratory Name.: Shenzhen Global Test Service Co., Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Address...... Garden, No.98, Pingxin North Road, Shangmugu Community,

Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name...... TPL SYSTEMES

Address ZAE du Perigord Noir SARLAT 24200 FRANCE

Test specification:

Standard FCC Part 15.247

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF...... Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Pager

Trade Mark TPL

Manufacturer TPL SYSTEMES

Model/Type reference..... Birdy Slim IoT

Listed Models Birdy Slim IoT Pager, Safety IoT Pager, CR68 IoT Pager,

Epoc-S IoT Pager

Modulation Type: Lora

Operation Frequency...... From 902.3MHz~914.9MHz

Hardware version BIRDY SLIM IOT V6

Software version...... BirdyIOT-1.00.1-03

Rating DC 3.7V from battery charged by AC/DC adapter

Result..... PASS

TEST REPORT

Test Report No. :	GTS20200109007-1-11-1	Jan. 04, 2020
	G1320200109007-1-11-1	Date of issue

Equipment under Test : Pager

Model /Type : Birdy Slim IoT

Listed Models : Birdy Slim IoT Pager, Safety IoT Pager, CR68 IoT Pager,

Epoc-S IoT Pager

Applicant : TPL SYSTEMES

Address : ZAE du Perigord Noir SARLAT 24200 FRANCE

Manufacturer : TPL SYSTEMES

Address : ZAE du Perigord Noir SARLAT 24200 FRANCE

Factory : Shenzhen Wex Technology Co. Ltd.

Address : 5th Floor, 501, Makin FuyongInteligent Manufacturing Port, Huai De

Yin Shan Building, Fuyong Town, Baoan District, Shenzhen, China,

518103

Test Result: PASS	
-------------------	--

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

TEST STANDARDS	4
SUMMARY	5
	_
General Remarks	5
Product Description	5
Equipment Under Test	5
Short description of the Equipment under Test (EUT)	5
EUT operation mode	6
Related Submittal(s) / Grant (s)	6
Modifications	6
TEST ENVIRONMENT	7
Address of the test laboratory	7
Test Facility	7
Environmental conditions	7
Summary of measurement results	8
Statement of the measurement uncertainty	9
Equipments Used during the Test	9
TEST CONDITIONS AND RESULTS	11
AC Power Conducted Emission	11
Radiated Emission	14
Maximum Peak Conducted Output Power	20
Power Spectral Density	22
20dB and 99% Bandwidth	24
Frequency Separation	26
Number of hopping frequency	27
Time of Occupancy (Dwell Time)	28
Out-of-band Emissions	29
Pseudorandom Frequency Hopping Sequence	32
Antenna Requirement	33
TEST SETUP PHOTOS OF THE EUT	34
PHOTOS OF THE EUT	31

Report No.: GTS20200109007-1-11-1 Page 4 of 34

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

Report No.: GTS20200109007-1-11-1 Page 5 of 34

2 **SUMMARY**

2.1 General Remarks

Date of receipt of test sample	:	Dec. 21, 2019
	_	2 22 22 22
Testing commenced on	:_	Dec. 22, 2019
	-	
Torday and Indian	-	100.0040
Testing concluded on	:	Jan. 03, 2019

2.2 Product Description

Product Name:	Pager			
Model/Type reference:	Birdy Slim IoT			
Power supply:	DC 3.7V from battery			
Adapter information : Model: K06S050100U Input: 100-240V~, 50/60Hz, 0.3A Output: 5.0V===1.0A				
Lora 125KHz(Hybrid):				
Operation frequency:	902.3MHz~914.9MHz			
Modulation:	LoRa			
Channel number:	64			
Channel separation:	200KHz			
Antenna type:	PIFA antenna			
Antenna gain:	2.0 dBi			

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	0	230V / 50 Hz	0	120V / 60Hz	
	0	12 V DC	0	24 V DC	
	•	Other (specified in blank below)			

DC 3.70V

2.4 Short description of the Equipment under Test (EUT)

This is a Pager.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 51 channels provided to the EUT and Channel 00/32/63 were selected to test.

Operation Frequency:

- Cporation Froquency:	
Channel	Frequency (MHz)
00	902.3
01	902.5
:	:
31	908.5
32	908.7
30	908.9
:	:
62	914.7
63	914.9

2.6 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20200109007-1-11-1 Page 7 of 34

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Middle☑ Highest	Lora DR0		Pass
§15.247(a)(1)	Number of Hopping channels	Lora DR0 Lora DR1 Lora DR2 Lora DR3	⊠ Full	Lora DR0	⊠ Full	Pass
§15.247(a)(1)	Time of Occupancy (dwell time)	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Middle☑ Highest	Lora DR0	⊠ Middle	Pass
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	Lora DR0 Lora DR1 Lora DR2 Lora DR3	∠ Lowest∠ Middle∠ Highest	Lora DR0	∠ Lowest∠ Middle∠ Highest	Pass
§15.247(b)(1)	Maximum output power	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Middle☑ Highest	Lora DR0	✓ Lowest✓ Middle✓ Highest	Pass
§15.247(e)	Power spectral density	Lora DR0 Lora DR1 Lora DR2 Lora DR3	∠ Lowest∠ Middle∠ Highest	Lora DR0		Pass
§15.247(d)	Band edge compliance conducted	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Highest	Lora DR0	☑ Lowest☑ Highest	Pass
§15.205	Band edge compliance radiated	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Highest	Lora DR0	☑ Lowest☑ Highest	Pass
§15.247(d)	TX spurious emissions conducted	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR0	✓ Lowest✓ Middle✓ Highest	Pass
§15.247(d)	TX spurious emissions Radiated Above 1GHz	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR0		Pass
§15.209(a)	TX spurious Emissions radiated Below 1GHz	Lora DR0 Lora DR1 Lora DR2 Lora DR3	☑ Lowest☑ Middle☑ Highest	Lora DR0	⊠ Middle	Pass
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	Lora DR0 Lora DR1 Lora DR2 Lora DR3		Lora DR0	⊠ Middle	Pass

Note: DR means DateRate refer to LoRaWAN Specification as below:

DataRate	Configuration	Indicative physical bit rate [bit/sec]
0	LoRa: SF10 / 125 kHz	980
1	LoRa: SF9 / 125 kHz	1760
2	LoRa: SF8 / 125 kHz	3125
3	LoRa: SF7 / 125 kHz	5470
4	LoRa: SF8 / 500 kHz	12500

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

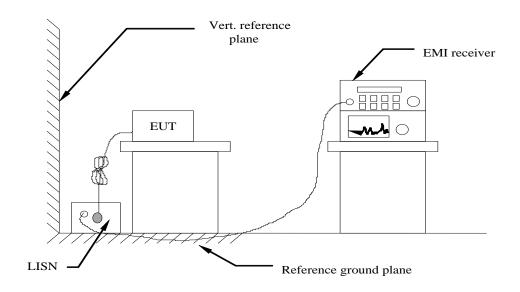
Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2019/09/20	2020/09/19
LISN	R&S	ESH2-Z5	893606/008	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESPI 3	101841-cd	2019/09/20	2020/09/19
EMI Test Receiver	R&S	ESCI7	101102	2019/09/20	2020/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2019/09/20	2020/09/19
Spectrum Analyzer	R&S	FSV40	100019	2019/09/20	2020/09/19
Controller	EM Electronics	Controller EM 1000	N/A	2019/09/21	2020/09/20
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2019/10/12	2020/10/11
By-log Antenna	SCHWARZBECK	VULB9163	000976	2019/05/26	2020/05/25
Double Ridged Horn Antenna (1~18GHz)	SCHWARZBECK	BBHA 9120D	01622	2019/09/23	2020/09/22
Horn Antenna (18GHz~40GHz)	Schwarzbeck	BBHA9170	791	2019/09/20	2020/09/19
Amplifier (30MHz~1GHz)	Schwarzbeck	BBV 9743	#202	2019/09/20	2020/09/19
Amplifier (1GHz~18GHz)	Taiwan Chengyi	EMC051845B	980355	2019/09/20	2020/09/19
Amplifier (26.5GHz~40GHz)	Schwarzbeck	BBV9179	9719-025	2019/09/20	2020/09/19
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2019/09/20	2020/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	N/A	2019/09/20	2020/09/19


High-Pass Filter	K&L	41H10- 1375/U12750- O/O	N/A	2019/09/20	2020/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2019/09/20	2020/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2019/09/20	2020/09/19
RF Cable	HUBER+SUHNER	RG214	N/A	2019/09/20	2020/09/19
Conducted Emission	JS32-CE	V2.5	N/A	N/A	N/A
Radiated Emission	JS32-RE	Ver 2.5.1.8	N/A	N/A	N/A

Note: The Cal.Interval was one year.

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the freque	ncy.					

TEST RESULTS

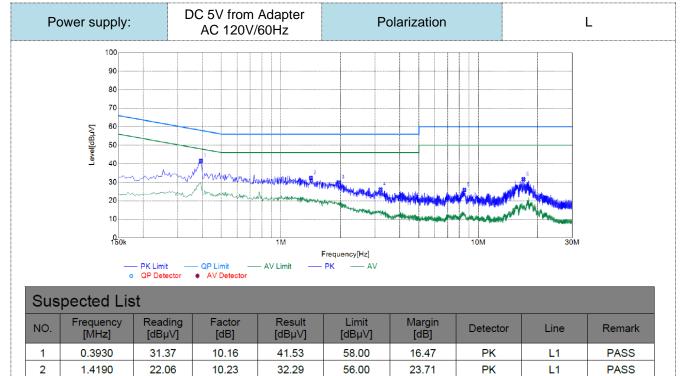
Remark:

3

4

5

6


1.9680

3.1965

8.5065

16.9620

Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply(charge from adapter)have been tested, only the worst result of 120 VAC, 60 Hz with middle channel was reported as below:

56.00

56.00

60.00

60.00

26.08

29.91

34.19

28.42

PΚ

PΚ

PΚ

PΚ

L1

L1

L1

L1

PASS

PASS

PASS

PASS

20.36 Note:1. Result ($dB\mu V$) = Reading ($dB\mu V$) + Factor (dB).

19.65

15.74

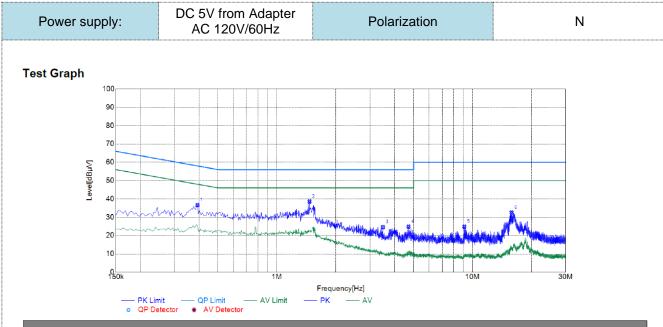
15.25

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

10.27

10.35

10.56


11.22

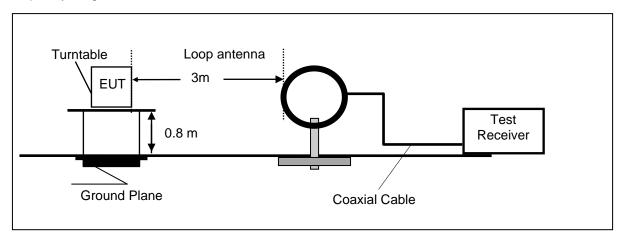
29.92

26.09

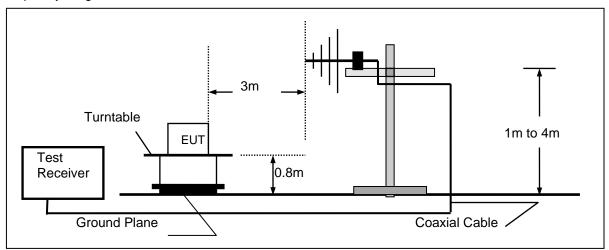
25.81

31.58

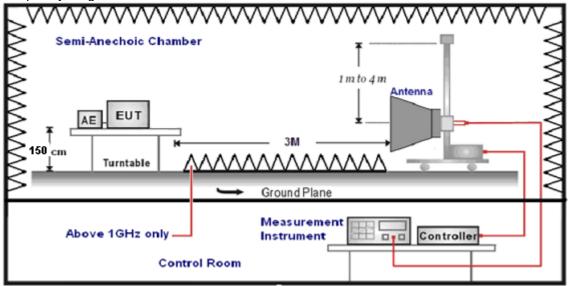
Sus	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV]	Factor [dB]	Result [dBµV]	Limit [dBµV]	Margin [dB]	Detector	Line	Remark		
1	0.3930	26.43	10.16	36.59	58.00	21.41	PK	N	PASS		
2	1.4685	28.32	10.23	38.55	56.00	17.45	PK	Ν	PASS		
3	3.4845	14.24	10.35	24.59	56.00	31.41	PK	N	PASS		
4	4.7130	14.49	10.35	24.84	56.00	31.16	PK	N	PASS		
5	9.0960	14.29	10.55	24.84	60.00	35.16	PK	N	PASS		
6	15.8595	21.46	11.12	32.58	60.00	27.42	PK	N	PASS		


Note:1. Result ($dB\mu V$) = Reading ($dB\mu V$) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: GTS20200109007-1-11-1 Page 15 of 34

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 10GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	i can
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

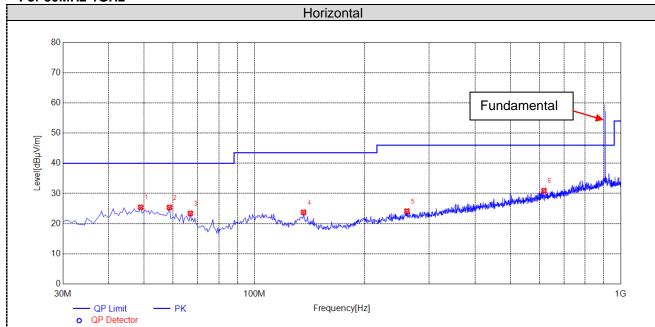
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

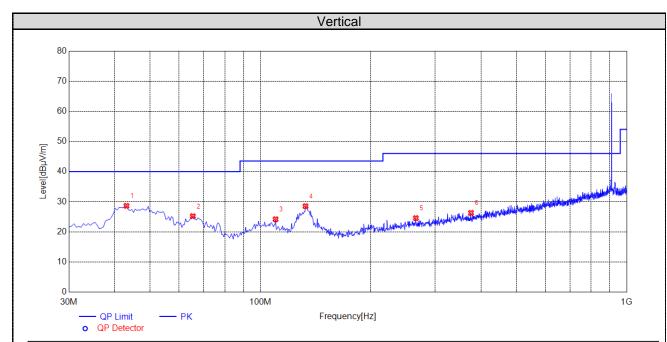
The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. For below 1GHz testing recorded worst mode at Lora low channel.
- 2. Radiated emission test from 9 KHz to 10th harmonic of was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.


For 30MHz-1GHz

Sus	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	48.9150	31.86	-6.45	25.41	40.00	14.59	100	123	PK	Horizonta	PASS
2	58.6150	33.40	-8.03	25.37	40.00	14.63	100	24	PK	Horizonta	PASS
3	66.8600	32.84	-9.44	23.40	40.00	16.60	100	180	PK	Horizonta	PASS
4	136.2150	35.98	-12.24	23.74	43.50	19.76	100	2	PK	Horizonta	PASS
5	260.8600	32.13	-7.99	24.14	46.00	21.86	100	311	PK	Horizonta	PASS
6	617.3350	32.39	-1.47	30.92	46.00	15.08	100	290	PK	Horizonta	PASS

Note:1. Result $(dB\mu V/m) = Reading(dB\mu V/m) + Factor (dB)$.

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Susp	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	43.0950	35.17	-6.56	28.61	40.00	11.39	100	309	PK	Vertical	PASS
2	65.4050	34.59	-9.41	25.18	40.00	14.82	100	102	PK	Vertical	PASS
3	110.0250	32.71	-8.53	24.18	43.50	19.32	100	178	PK	Vertical	PASS
4	132.8200	40.88	-12.38	28.50	43.50	15.00	100	76	PK	Vertical	PASS
5	265.7100	32.58	-8.04	24.54	46.00	21.46	100	173	PK	Vertical	PASS
6	375.8050	32.20	-5.92	26.28	46.00	19.72	100	262	PK	Vertical	PASS

Note:1. Result $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: GTS20200109007-1-11-1

For 1GHz to 10GHz

Frequency(MHz):			902.3		Polarity:		HORIZONTAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
1805.00	57.87	PK	74.00	16.13	62.14	27.17	4.01	35.45	-4.27	
1805.00	49.46	AV	54.00	4.54	53.73	27.17	4.01	35.45	-4.27	
2707.50	55.98	PK	74.00	18.02	57.13	29.34	4.94	35.43	-1.15	
2707.50	46.29	AV	54.00	7.71	47.44	29.34	4.94	35.43	-1.15	
3610.00	42.15	PK	74.00	31.85	39.74	32.08	5.95	35.62	2.41	
3610.00		AV	54.00							

Frequency(MHz):			902.3		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
1805.00	58.56	PK	74.00	15.44	62.83	27.17	4.01	35.45	-4.27	
1805.00	50.23	AV	54.00	3.77	54.50	27.17	4.01	35.45	-4.27	
2707.50	56.87	PK	74.00	17.13	58.02	29.34	4.94	35.43	-1.15	
2707.50	48.11	AV	54.00	5.89	49.26	29.34	4.94	35.43	-1.15	
3610.00	43.69	PK	74.00	30.31	41.28	32.08	5.95	35.62	2.41	
3610.00		AV	54.00							

Frequency(MHz):			908.7		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
1817.50	57.26	PK	74.00	16.74	61.44	27.24	4.03	35.44	-4.18	
1817.50	48.95	AV	54.00	5.05	53.13	27.24	4.03	35.44	-4.18	
2726.00	55.36	PK	74.00	18.64	56.43	29.40	4.96	35.43	-1.07	
2726.00	46.98	AV	54.00	7.02	48.05	29.40	4.96	35.43	-1.07	
3634.50	42.12	PK	74.00	31.88	39.53	32.23	5.98	35.63	2.59	
3634.50		AV	54.00							

Frequency(MHz):		908.7		Polarity:		VERTICAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1817.50	58.56	PK	74.00	15.44	62.74	27.24	4.03	35.44	-4.18
1817.50	49.75	AV	54.00	4.25	53.93	27.24	4.03	35.44	-4.18
2726.00	56.35	PK	74.00	17.65	57.42	29.40	4.96	35.43	-1.07
2726.00	47.57	AV	54.00	6.43	48.64	29.40	4.96	35.43	-1.07
3634.50	44.11	PK	74.00	29.89	41.52	32.23	5.98	35.63	2.59
3634.50		AV	54.00						

Frequency(MHz):		914.9		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1830.00	58.87	PK	74.00	15.13	62.96	27.31	4.04	35.43	-4.09
1830.00	50.25	AV	54.00	3.75	54.34	27.31	4.04	35.43	-4.09
2745.00	55.98	PK	74.00	18.02	56.96	29.47	4.98	35.43	-0.98
2745.00	46.21	AV	54.00	7.79	47.19	29.47	4.98	35.43	-0.98
3660.00	41.52	PK	74.00	32.48	38.75	32.39	6.01	35.64	2.77
3660.00		AV	54.00						

Frequency(MHz):		914.9		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1830.00	59.22	PK	74.00	14.78	63.31	27.31	4.04	35.43	-4.09
1830.00	51.27	AV	54.00	2.73	55.36	27.31	4.04	35.43	-4.09
2745.00	56.22	PK	74.00	17.78	57.20	29.47	4.98	35.43	-0.98
2745.00	48.07	AV	54.00	5.93	49.05	29.47	4.98	35.43	-0.98
3660.00	42.45	PK	74.00	31.55	39.68	32.39	6.01	35.64	2.77
3660.00		AV	54.00						

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level.

 -- Mean the PK detector measured value is below average limit.
 The other emission levels were very low against the limit. 1. 2. 3. 4. 5.

Report No.: GTS20200109007-1-11-1 Page 20 of 34

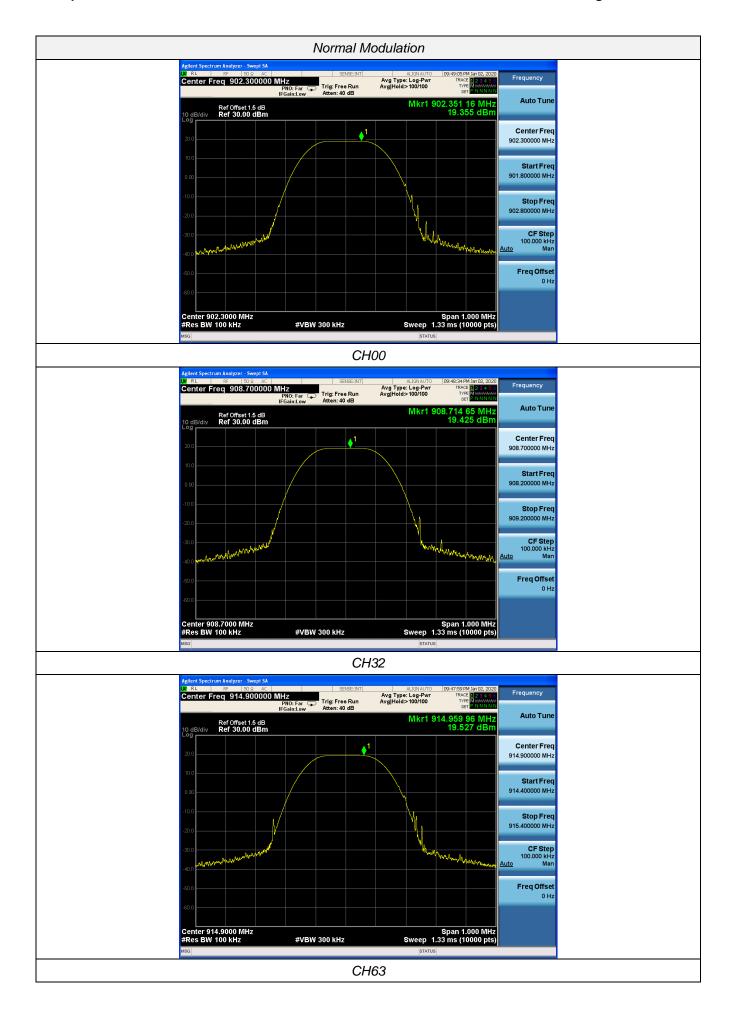
4.3 Maximum Peak Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum. Spectrum set RBW 100KHz, VBW ≥ RBW, Peak Detector, Trace MaxHold.


Test Configuration

Test Results

Channel	Output power (dBm)	Limit (dBm)	Result
00	19.355		
32	19.425	30.00	Pass
63	19.527		

Note: 1. The test results including the cable lose.

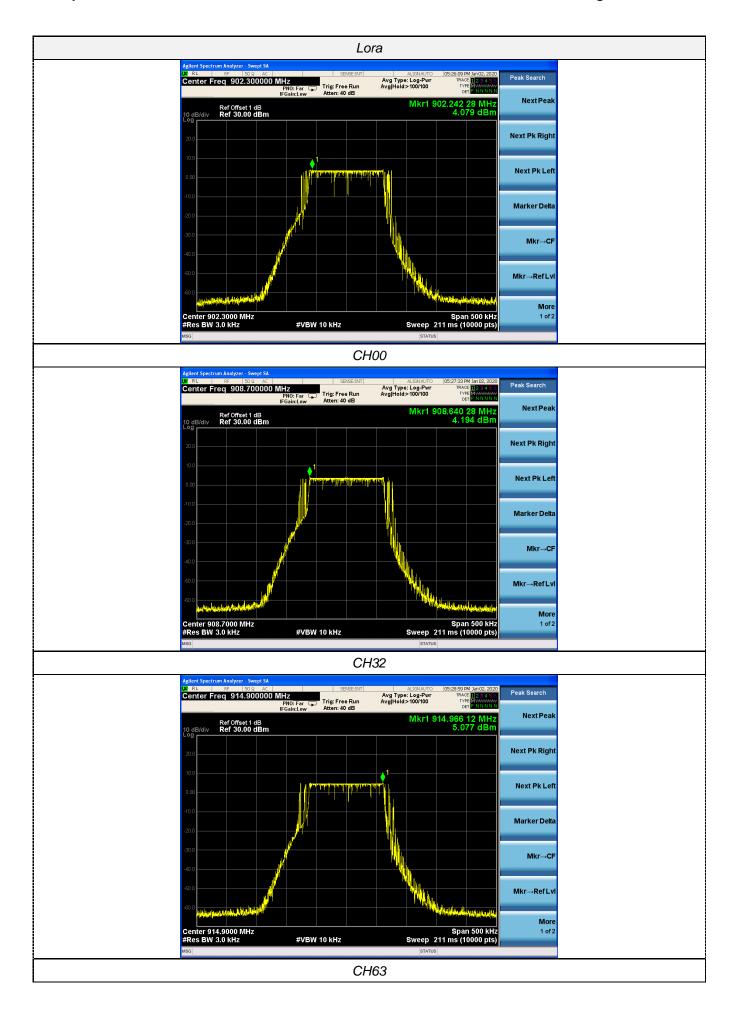
Report No.: GTS20200109007-1-11-1 Page 22 of 34

4.4 Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	4.079		
Lora	32	4.194	8.00	Pass
	63	5.077		

Report No.: GTS20200109007-1-11-1 Page 24 of 34

4.5 20dB and 99% Bandwidth

Limit

For frequency hopping systems operating in the 902-928 MHz band. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

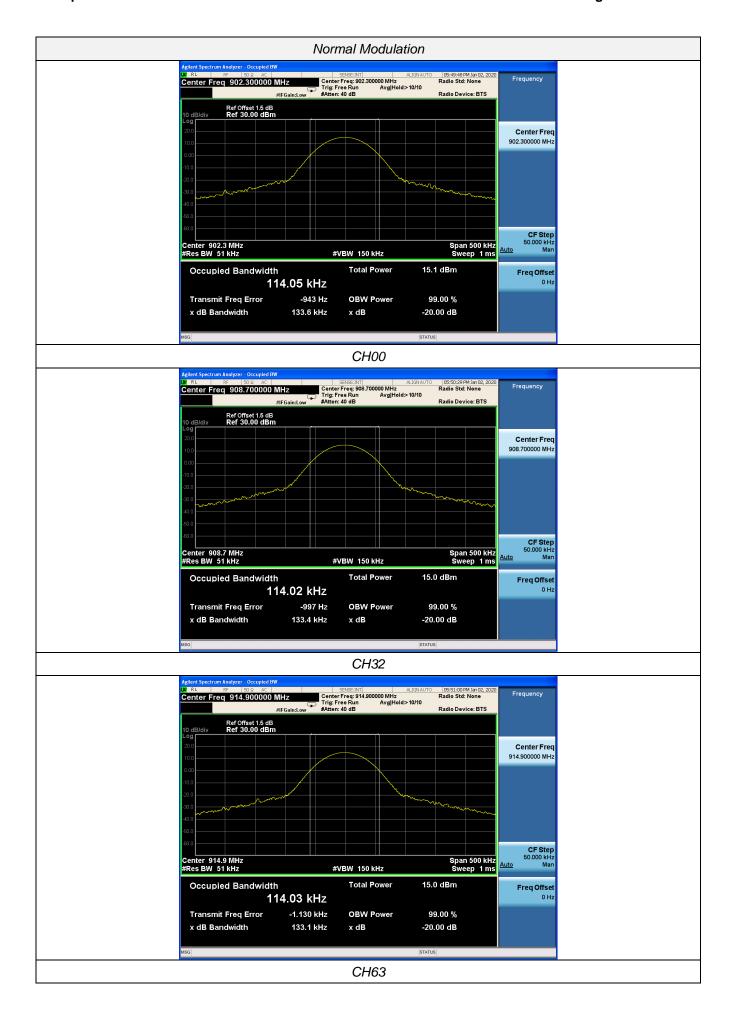
The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW VBW=approximately 3 X RBW

Detector=Peak

Trace Mode: Max Hold


Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

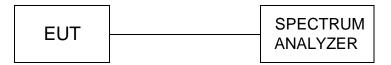
Test Configuration

Test Results

Channel	20dB bandwidth (KHz)	99% OBW(KHz)	Result
CH00	133.6	114.05	
CH32	133.4	114.02	Pass
CH63	133.1	114.03	

Report No.: GTS20200109007-1-11-1 Page 26 of 34

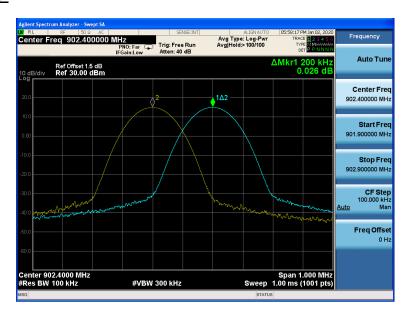
4.6 Frequency Separation


LIMIT

FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.


TEST CONFIGURATION

TEST RESULTS

Channel	Channel Separation (MHz)	Limit	Result
CH00	0.200	25KHz or 20dB bandwidth	Pass
CH01	0.200	23KHZ OI ZOOB DAHUWIUUH	Pa55

Note: We have tested all mode at high, middle and low channel, and recorded worst case at low channel

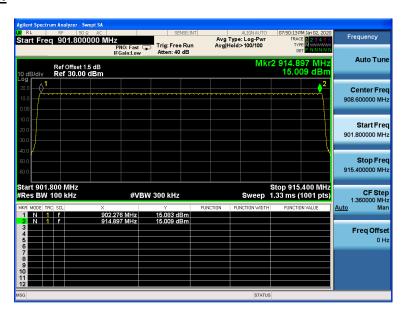
Report No.: GTS20200109007-1-11-1 Page 27 of 34

4.7 Number of hopping frequency

<u>Limit</u>

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period.

Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 902MHz to 928MHz.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
FHSS	64	≥50	Pass

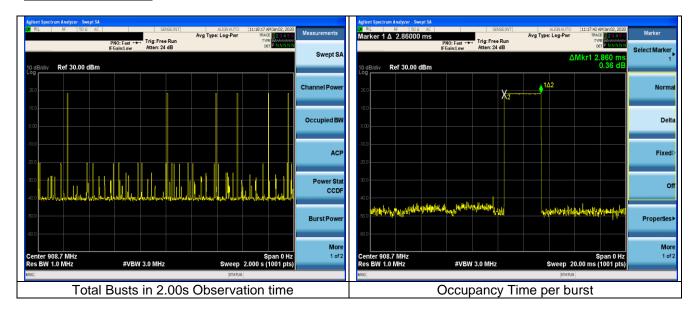
Report No.: GTS20200109007-1-11-1 Page 28 of 34

4.8 Time of Occupancy (Dwell Time)

<u>Limit</u>

For FHSs in the band 902-928 MHz: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20-second period. If the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping channels and the average time of occupancy on any channel shall not be greater than 0.4 seconds within a 10-second period.

Test Procedure


The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

In measurement time of 2s, total of 6 transmissions occurred. The duration of one transmission was 2.860ms.Based on these measurements the transmitter operated 10*6*2.860ms=0.1716s during the 20s period. The measurement result 0.1716s<0.4s,The test result is pass.

Report No.: GTS20200109007-1-11-1 Page 29 of 34

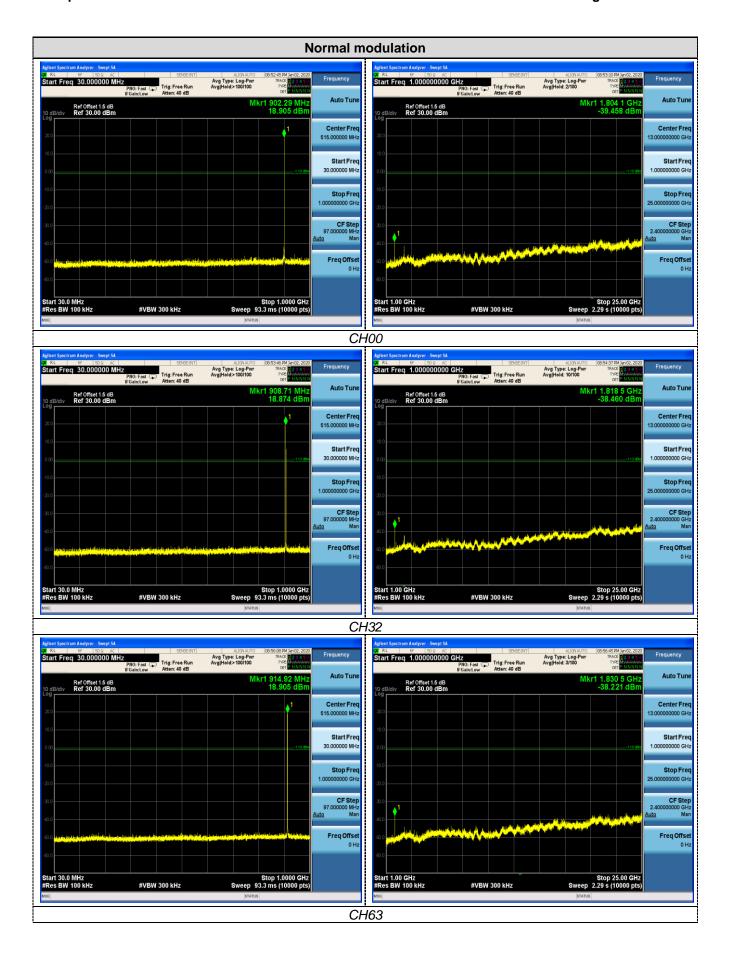
4.9 Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure


Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Report No.: GTS20200109007-1-11-1 Page 32 of 34

4.10 Pseudorandom Frequency Hopping Sequence TEST APPLICABLE

For 47 CFR Part 15C section 15.247 (a) (1) & RSS 247 requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test result

The device hops on 64 channel frequencies that are selected in a pseudo random order.

An example of the order is:

{48, 25,53,17, 20, 41, 37, 36, 10, 52,15, 44, 30, 6, 54, 42, 33, 5,55, 8, 28, 56, 1,58, 57, 23, 49, 16, 3, 19, 29, 21,59, 43, 31, 9,60, 18, 27, 22, 45, 61, 13, 0, 2, 32, 11, 14, 62, 46, 12, 24, 4, 7, 38, 47, 35, 40, 50, 34, 39, 26, 51,63}

where Channel 0 is 902.3 MHz and Channel 63 is 914.90 MHz.

The dwell time of the hopping is 180ms. Each channel is used equally on average.

Report No.: GTS20200109007-1-11-1 Page 33 of 34

4.11 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 2.00dBi.

Report No.: GTS20200109007-1-11-1 Page 34 of 34

5 Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

6 Photos of the EUT

External Photos of EUT

Please refer to separated files for External Photos of the EUT.

Internal Photos of EUT

Please refer to separated files for Internal Photos of the EUT.	
****** End of Report *****	******