

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

TEST REPORT FCC Rules and Regulations Part PART 15.249

Report Reference No.: GTS20190521016-1-4

FCC ID: 2ATEO-DT102

Compiled by

(position+printed name+signature)..: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)..: Test Engineer Aaron Tan

Approved by

(position+printed name+signature)..: Manager Jason Hu

Date of issue...... May 21, 2019

Testing Laboratory Name Shenzhen Global Test Service Co., Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and

Creative Garden, No.98, Pingxin North Road, Shangmugu Address.....:

Community, Pinghu Street, Longgang District, Shenzhen,

Guangdong, China

Applicant's name..... Dongguan Dogreat Electronic Technology Co., Ltd

Room 601, Building B, Chongji Industrial Park, No.168 Fusheng Address:

Road, Dalang Town, Dongguan, Guangdong, China

Standard:: FCC Rules and Regulations Part PART 15.249

Shenzhen Global Test Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Global Test Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Remote dog training collar

Trade Mark:

Manufacturer.....: DONGGUAN DOGREAT ELECTRONIC TECHNOLOGY CO., LTD

Model/Type reference....: DT102

DT101, DT103, DT530, DT540, DT740, DT750, DT760, AT868, Listed Models:

AT888

Ratings DC 3.7 V From Battery

Modulation ASK

Result..... PASS

TEST REPORT

Test Report No. :	GTS20190521016-1-4	May 21, 2019
rest Report No	G1320190321010-1-4	Date of issue

Equipment under Test : Remote dog training collar

Model /Type : DT102

Listed Models : DT101, DT103, DT530, DT540, DT740, DT750, DT760, AT868,

AT888

Applicant : Dongguan Dogreat Electronic Technology Co., Ltd

Address : Room 601, Building B, Chongji Industrial Park, No.168 Fusheng

Road, Dalang Town, Dongguan, Guangdong, China

Manufacturer : Dongguan Dogreat Electronic Technology Co., Ltd

Address : Room 601, Building B, Chongji Industrial Park, No.168 Fusheng

Road, Dalang Town, Dongguan, Guangdong, China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u> v .</u>	STANDARDS	
<u>SUMN</u>	MARY	<u>5</u>
General	Remarks	5
	Description	5
	ent Under Test	5
	escription of the Equipment under Test (EUT)	5
	eration mode	5
	iagram of Test Setup	6
Modifica	ations	6
TEST	ENVIRONMENT	7
TEST FA	ACILITY	7
Environ	mental conditions	7
Summai	ry of measurement results	7
Stateme	ent of the measurement uncertainty	7
Equipme	ents Used during the Test	8
TEST	CONDITIONS AND RESULTS	9
4.1.	AC Power Conducted Emission	9
4.2.	Radiated Emission and Band Edges	
4.3.	Occupied Bandwidth Measurement	
4.4.	Antenna Requirement	
TEST	SETUP PHOTOS OF THE EUT	20

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

Page 5 of 20 Report No.: GTS20190521016-1-4

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	May 02, 2019
Testing commenced on	:	May 02, 2019
Testing concluded on	:	May 21, 2019

2.2. Product Description

Name of EUT	Remote dog training collar
Model Number	DT102
List Model:	DT101, DT103, DT530, DT540, DT740, DT750, DT760, AT868, AT888
Power Rating	DC 3.7 V From Battery
Adapter(Auxiliary equipment provided by the laboratory)	Model: AS5010B Input: 100-240V~, 50/60Hz 0.15A Output:DC5V===1000m A
Operation frequency	915MHz
Modulation	ASK
Antenna Type	Internal antenna

2.3. Equipment Under Test

Power supply system utilised

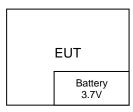
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)	

DC 3.7 V

2.4. Short description of the Equipment under Test (EUT)

This is a Remote dog training collar

For more details, refer to the user's manual of the EUT.


2.5. EUT operation mode

The Applicant provides test software to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 1 channels provided to the EUT. Channel 00 was selected to test.

Channel	Frequency(MHz)			
00	915			

Page 6 of 20 Report No.: GTS20190521016-1-4

2.6. Block Diagram of Test Setup

2.7. Modifications

No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. TEST FACILITY

Test Firm : Shenzhen Global Test Service Co., Ltd.

Address No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative

Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.3. Summary of measurement results

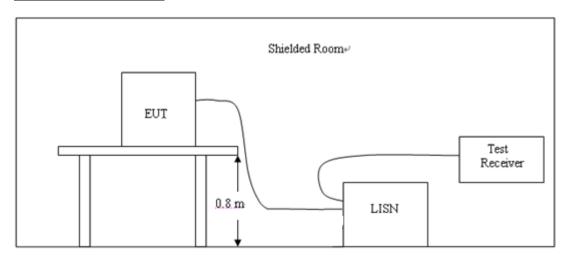
FCC PART 15.249		
FCC Part 15.249(a)	19(a) Field Strength of Fundamental	
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

3.4. Statement of the measurement uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

3.5. Equipments Used during the Test


Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2018/09/20	2019/09/19
LISN	R&S	ESH2-Z5	893606/008	2018/09/20	2019/09/19
Bilog Antenna	Schwarzbeck	VULB9163	976	2018/09/20	2019/09/19
EMI Test Receiver	R&S	ESCI7	101102	2018/09/20	2019/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2018/09/20	2019/09/19
Spectrum Analyzer	R&S	FSP40	100019	2018/06/05	2019/06/04
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2018/09/20	2019/09/19
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2018/09/20	2019/09/19
Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	971	2018/09/20	2019/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2018/09/20	2019/09/19
Amplifier	EMCI	EMC051845B	980355	2018/09/20	2019/09/19
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2018/09/20	2019/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2018/09/20	2019/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2018/09/20	2019/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2018/09/20	2019/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2018/09/20	2019/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2018/09/20	2019/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2018/09/20	2019/09/19
EMI Test Software	R&S	ES-K1	V1.7.1	2018/09/20	2019/09/19
EMI Test Software	JS Tonscend	JS32-RE	2.0.1.5	2018/09/20	2019/09/19

Note: The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

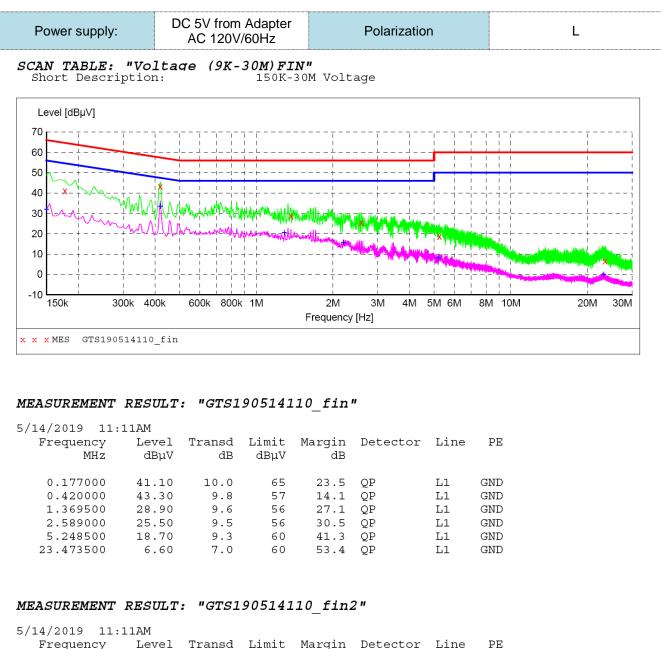
4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

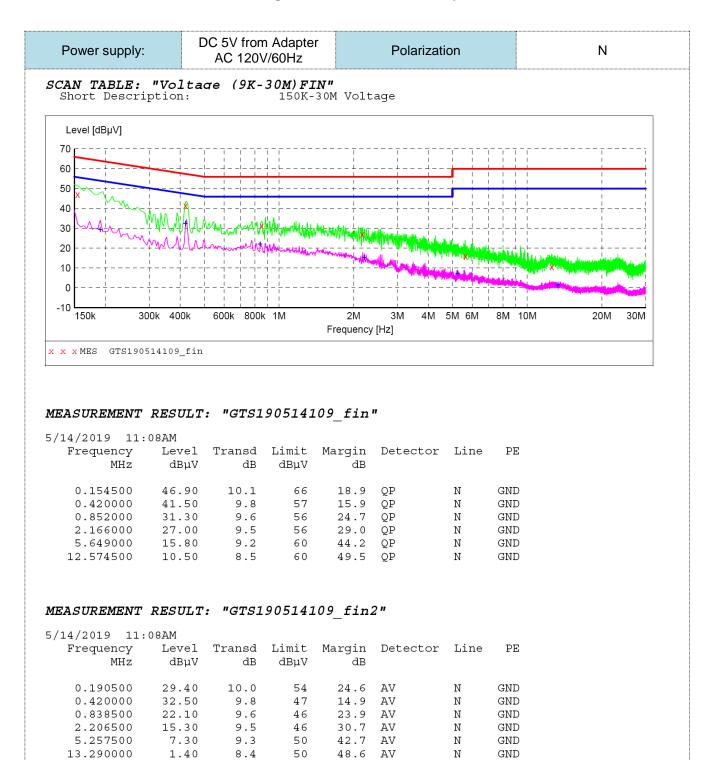
- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

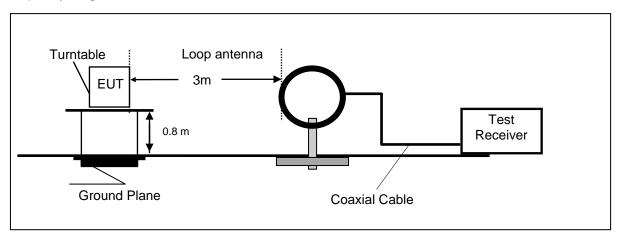
Frequency range (MHz)	Limit (dBuV)				
Frequency range (wiriz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequen	cy.				

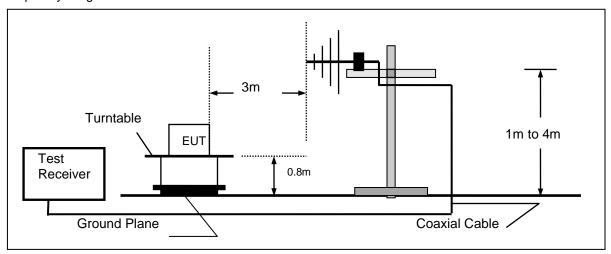
TEST RESULTS


Remark: Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

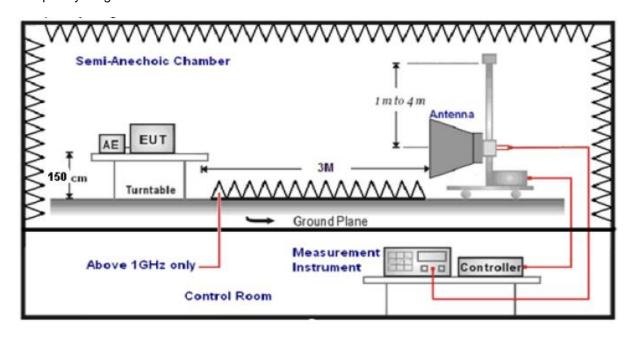
Report No.: GTS20190521016-1-4

5/14/2019 13	L:11AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dВ			
0.150000	32.00	10.1	56	24.0	AV	L1	GND
0.420000	33.40	9.8	47	14.0	AV	L1	GND
1.288500	20.60	9.6	46	25.4	AV	L1	GND
2.206500	15.70	9.5	46	30.3	AV	L1	GND
5.190000	8.10	9.3	50	41.9	AV	L1	GND
23.203500	0.00	7.0	50	50.0	AV	L1	GND


Report No.: GTS20190521016-1-4


4.2. Radiated Emission and Band Edges

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range Test Receiver/Spectrum Setting		Detector
9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto		QP
150KHz-30MHz	150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto	
30MHz-1GHz		
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

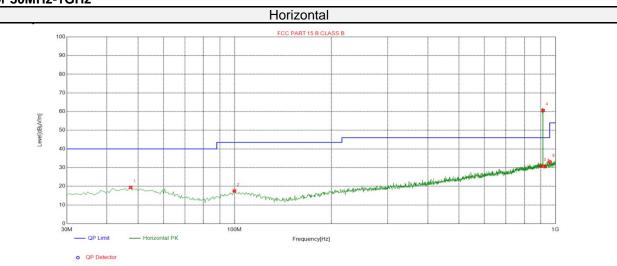
RADIATION LIMIT

According 15.249, the field strength of emissions from intentional radiators operated within 902MHz-928 MHz shall not exceed $94dB\mu V/m$ (50mV/m):

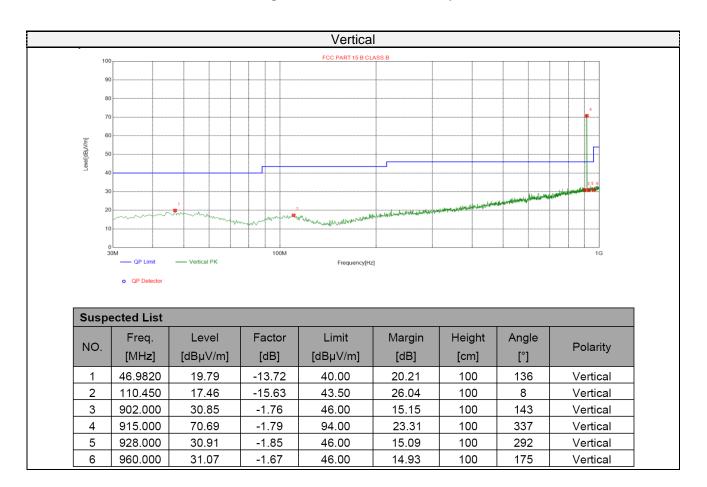
FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS


For 9 KHz-30MHz

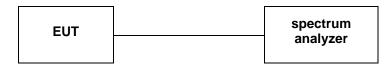
Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result
0.38	46.62	96.01	49.39	QP	PASS
1.55	52.05	63.80	11.75	QP	PASS
19.68	57.08	69.54	12.46	QP	PASS
24.62	41.07	69.54	28.47	QP	PASS

For 30MHz-1GHz

Suspe	Suspected List								
NIO	Freq.	Level	Factor	Limit	Margin	Height	Angle	Delevito	
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	47.4700	19.45	-13.72	40.00	20.55	100	88	Horizontal	
2	99.8400	17.62	-15.56	43.50	25.88	100	316	Horizontal	
3	902.000	30.76	-1.76	46.00	15.24	100	256	Horizontal	
4	915.000	60.57	-1.79	94.00	33.43	100	179	Horizontal	
5	928.000	30.43	-1.85	46.00	15.57	100	172	Horizontal	
6	960.000	33.12	-1.67	46.00	12.88	100	329	Horizontal	

For 1GHz to 25GHz

Horizontal:


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
1240	57.61	-9.08	48.53	74	-25.47	peak	
1240	42.75	-9.08	33.67	54	-20.33	AVG	
1830	61.59	-8.79	52.8	74	-21.2	peak	
1830	46.71	-8.79	37.92	54	-16.08	AVG	
2745	57.62	-4.05	53.57	74	-20.43	peak	
2745	43.51	-4.05	39.46	54	-14.54	AVG	
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	_
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	58.72	-9.08	49.64	74	-24.36	peak
1240	43.29	-9.08	34.21	54	-19.79	AVG
1830	62.71	-8.79	53.92	74	-20.08	peak
1830	45.35	-8.79	36.56	54	-17.44	AVG
2745	55.89	-4.05	51.84	74	-22.16	peak
2745	43.08	-4.05	39.03	54	-14.97	AVG
Remark: Fact	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.					

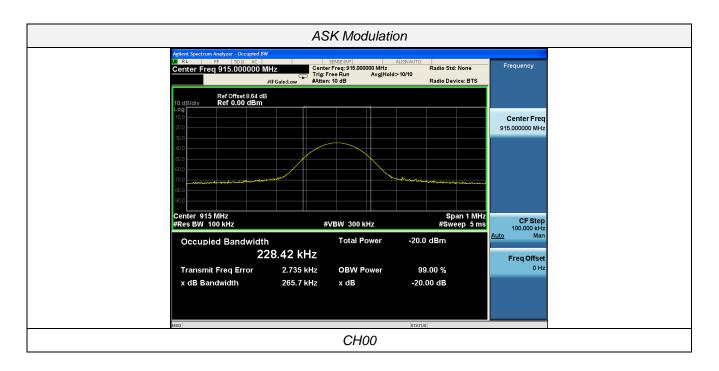
4.3. Occupied Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


<u>LIMIT</u>

N/A

TEST RESULTS

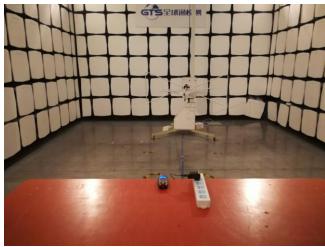
Modulation	Channel	99% OBW (kHz)	20dB bandwidth (kHz)	Result
ASK	CH00	224.82	260.9	Pass

Note: 1.The test results including the cable lose.

4.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The directional gains of antenna used for transmitting is 0.00 dBi.

5. Test Setup Photos of the EUT

.....End of Report.....