

FCC ID: 2ATE7-S600A Page 1 of 85

FCC SAR TEST REPORT

Client Name : UOSHON TELECOM GROUP LIMITED

Address RM.B, 6/F TEDA BUILDING, 87 WING LOKST SHEUNG WAN HONGKONG

Product Name : Mobile Phone

Date : Jul. 23, 2019

Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 2 of 85

Contents

anter antor pri all motor				bear.
1. Statement of Compliance	and a state of the	Partico.	Lotek	6
2. General Information			AP ²	7
2.1. Client Information				
2.2. Testing Laboratory Information			8	7
2.3. Description of Equipment Under Test (EUT)		000 Pro-		7
2.4. Device Category and SAR Limits	1010 ¹⁰	mboten And		9
2.5. Applied Standard		- appolek		9
2.6. Environment of Test Site	An parton and	Hatooto	- Managers	9
2.7. Test Configuration 3. Specific Absorption Rate (SAR)	and hope in		Amotek	9
3. Specific Absorption Rate (SAR)		And		10
3.1. Introduction		stek pobou		10
3.2. SAR Definition		ang Mangar	See. No	10
4. SAR Measurement System	popole N		Suglek	11
4.1. E-Field Probe				
4.2. Data Acquisition Electronics (DAE)		pupolo		12
4.3. Robot		100 ¹	199	13
4.4. Measurement Server	abote Ante	(a) (a)	. Anbor	13
4.5. Phantom	And And		la,	15
4.6. Device Holder	March March	ipoto Anu		16
4.7. Data Storage and Evaluation	Part	A Maloten	doo.	17
5. Test Equipment List	Ano	motek	Annor	19
6. Tissue Simulating Liquids	stell Anbor		anboter	21
7 System Verification Procedures				23
8. EUT Testing Position	or Alan Mark	ten Anbo		25
8.1. Define two imaginary lines on the handset				
8.2. Position for Cheek/Touch	Anbor An	Note Note	poten	26
8.3. Position for Ear / 15°Tilt				26
8.4. Body Worn Position	usk unbotek	Anbo	Par	27
9. Measurement Procedures	hotek hotek	Anbolo	Anu	28
9.1. Spatial Peak SAR Evaluation	por An	ek anbolen		28
9.2. Power Reference Measurement	hinboten Anu	iont	ek Anb	29
9.3. Area Scan Procedures	abotek An	90°	notek i	29
9.4. Zoom Scan Procedures				
9.5. Volume Scan Procedures	No stell	anbole	Ann	
9.6. Power Drift Monitoring	And rek	obotek	Anbou	31
10. Conducted Power	potek Anbo	wotek	Anbolo	32
11. Antenna Location	hotek Anboli			
12. SAR Test Results Summary	Anton Matak	oton Anb		35
12.1. Head SAR Results	Ante	uboteh An		
Shenzhen Anbotek Compliance Laboratory Limited	Aupon	Martek.	Anbolen	
Address: 1/F, Building D, Sogood Science and Technology Park, Sanw Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@		Anbotek	Hotline 400-003- vw.anbotek	

Anbotek Product Safety

Report No.: SZAWW190415002-01 12.2. Body SAR Results	FCC ID: 2ATE7-S600A	Page 3 of 85	
13. Simultaneous Transmission Analysis	ale Alle potek potek		Lex.
13.1. Simultaneous TX SAR Considerations	Allocation Allocation Allocation		200
13.2. Evaluation of Simultaneous SAR	Antosten Antos		,
14. Measurement Uncertainty	hotek Astborn Al		Pul
Appendix A. EUT Photos and Test Setup Photos	her antionte A)
Appendix B. Plots of SAR System Check	Alter unboken)
Appendix C. Plots of SAR Test Data	Ken Andre sk solek		de.
Appendix D. DASY System Calibration Certificate.	anolek Anborr Arran		

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 4 of 85

TEST REPORT

Applicant :	UOSHON TELECOM GROUP LIMITED
Manufacturer :	SHENZHEN NEWDELL SCIENCE & TECHNOLOGY CO., LTD.
Product Name :	Mobile Phone
Model No. :	S600A
Trade Mark :	Uoshou
Rating(s) :	DC 3.7V, 800mAh Battery inside

Test Standard(s) : IEEE 1528-2013; IEC 62209-2:2010; ANSI/IEEE C95.1:2005; FCC 47 CFR Part 2 (2.1093:2013);

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528-2013, IEC 62209-2:2010, ANSI/IEEE C95.1:2005 and FCC 47 CFR Part 2 (2.1093:2013) requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anotek Compliance Laboratory Limited.

Date of Receipt

Date of Test

Anbotek Limited ē Approved *

Apr. 15, 2019

Apr. 16~19, 2019

Prepared By

Reviewer

Bobby Warg

(Engineer / Bobby Wang)

Snowy Meng

(Supervisor / Snowy Meng)

(Manager / Sally Zhang)

Shenzhen Anbotek Compliance Laboratory Limited

Approved & Authorized Signer

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ATE7-S600A Page 5 of 85

Version

Version No.	Date	Description
Scholen 01 March	Jul. 23, 2019	Original
Anbote And	K Anbotek An	otek Anbolek Anbolek Anbo
Anbour Anb	otek Anbotes	Antoneotek Antootek Antootek Antootek Ar
stek sobotek	inboten Anbourtek	Anbotek Anbotek Anbotek Anbotek
hotek Anbotek	Anboro Anto	Anthotek Anthone Anthotek Anthotek
Anbotek Anbotek	Anber Pil	otek Anbole Annotek Anbolek Anbolek Anbolek Anbole

Shenzhen Anbotek Compliance Laboratory Limited

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

Francisco David	Highest Report	ed 1g-SAR(W/Kg)	SAR Test Limit
Frequency Band	Head	Body	(W/Kg)
GSM 850	0.214	0.668	Anboten Anbo
PCS 1900	0.218	0.312	1.6
Simultaneous SAR	0.574	0.980	ek abolek Anbole
Test Result	Anbore And	PASS	ak hotek priboto

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and IEC 62209-2:2010

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 7 of 85

2. General Information

2.1. Client Information

Applicant	:	UOSHON TELECOM GROUP LIMITED
Address	:	RM.B, 6/F TEDA BUILDING, 87 WING LOKST SHEUNG WAN HONGKONG
Manufacturer	:	SHENZHEN NEWDELL SCIENCE & TECHNOLOGY CO., LTD.
Address	:	2/F, NO.2 Plant, NO.139, Zhongxing Road, Bantian, Longgang, Shenzhen, China
Factory	:	SHENZHEN NEWDELL SCIENCE & TECHNOLOGY CO., LTD.
Address	:	2/F, NO.2 Plant, NO.139, Zhongxing Road, Bantian, Longgang, Shenzhen, China

2.2. Testing Laboratory Information

Test Site:	:	Shenzhen Anbotek Compliance Laboratory Limited
Addresse	•	1/F, Building D, Sogood Science and Technology Park, Sanwei community
Address:		Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2.3. Description of Equipment Under Test (EUT)

Product Name	:	Mobile Phone	Anbotek Anbotek Anbotek Anbotek
Model No.	:	S600A	tek abatek Anbotek Anbotek Anbotek Anb
Trade Mark	:	Uoshou	toolek Anbolek Anbolek Anbolek
Test Power Supply	:	DC 3.7V Battery inside	Andrek Anbolen Anti-
Test Sample No.	:	1-2-1(Normal Sample), 1-	2-2(Normal Sample)
Product Description	:	Operation Frequency:	BDR+EDR: 2402MHz~2480MHz GSM/GPRS 850 TX:824.2~848.8 MHz; RX:869.2~893.8 MHz PCS/GPRS 1900 TX:1850.2~1909.8 MHz; RX:1930.2~1989.8 MHz
		Transfer Rate:	BDR+EDR: 1/2/3 Mbits/s

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAW	W190415002-01	FCC ID: 2ATE7-S600A Page 8 of 85
	Number of Channel:	BDR+EDR: 79 Channels
	GPRS Class	N/A Manager Manager Manager
	Modulation Type:	GSM/GPRS: GMSK BDR+EDR: GFSK, π/4-DQPSK, 8-DPSK

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 9 of 85

2.4. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.5. Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- IEEE 1528-2013
- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEC 62209-2:2010
- KDB 447498 D01
- KDB 648474 D04
- KDB 865664 D01

2.6. Environment of Test Site

Items	Required	Actual
Temperature (℃)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.7. Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 10 of 85

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. general, In occupational/controlled exposure limits higher are than the limits general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ).The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

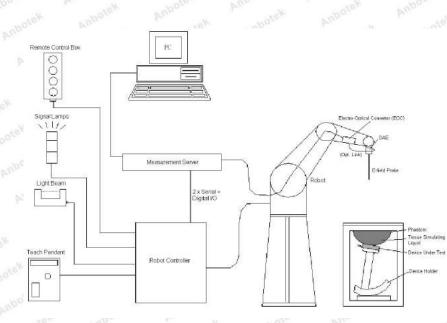
$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δ tisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.


Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 11 of 85

4. SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety

Report No.: SZAWW190415002-01

4.1. E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

FCC ID: 2ATE7-S600A

E-Field Probe Specification <EX3DV4 Probe>

	B-11		1000
Construction	Symmetrical design with triangular core		P
0	Built-in shielding against static charges		
	PEEK enclosure material (resistant to		100
9	organic solvents, e.g., DGBE)		oter
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		-100
Directivity	 ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) 	nho ¹	A.
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	Photo of EX3DV4	ootek
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		Anbo Ar

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Page 12 of 85

Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ATE7-S600A

Page 13 of 85

Photo of DAE

4.3. **Robot**

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
 - High reliability (industrial design)
 - Jerk-free straight movements
 - > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

Anbotek Product Safety Product Safety

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A Page 14 of 85

detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

Shenzhen Anbotek Compliance Laboratory Limited

4.5. Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;	Alek Entroit
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	A DE TEN
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	
Measurement	Left Hand, Right Hand, Flat	
Areas	Phantom	
	Anbotek Anbotek Anbotek	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	r. rub.	
Filling Volume	Approx. 30 liters		P.
Dimensions	Major ellipse axis: 600 mm		
	Minor axis:400 mm		
	Anbotek Anbor A hotek		re _k
	ek abotek Anbote And de		
	An otek Anboten Anbo		840
	spoten Anbound well potek Anbound	ALC: NOT	PQ
	Anbolet Anbole An oter Interes Photo a	f ELI4 Phantom	
	Photo o	I ELI4 Phantom	¥-

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

CC ID: 2ATE7-S600A Page 15 of 85

Anbotek Testing

Anbotek 安博检测

FCC ID: 2ATE7-S600A

Page 16 of 85

4.6. Device Holder

Product Safety

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP).Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent $\overline{\delta}$ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 17 of 85

4.7. Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a	_{i0} , a _{i1} ,
	- Conversion factor	ConvFi	
	- Diode compression point	dcpi	
Device parameters	- Frequency	Anbore Ar	
	- Crest factor	cf	
Media parameters:	- Conductivity	o otek	
	- Density	ρ potek	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 18 of 85

The formula for each channel can be given as:

$$\mathbf{V}_i = \mathbf{U}_i + \mathbf{U}_i^2 \cdot \frac{\mathbf{cf}}{\mathbf{dcp}_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

F

H-field Probes: $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{\epsilon}$

with V_i = compensated signal of channel i,(i = x, y, z)

Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

aij= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel i in V/m

H_i= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2} + \mathbf{E_y^2} + \mathbf{E_z^2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

CC ID: 2ATE7-S600

Page 19 of 85

5. Test Equipment List

Manufacture		Turne/Medici	Serial Number	Calibration		
r	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	835MHz System Validation Kit	D835V2	4d154	Jun. 16,2018	Jun. 15,2021	
SPEAG	1900MHz System Validation Kit	D1900V2	5d175	Jun. 15, 2016	Jun. 14, 2019	
SPEAG	Data Acquisition Electronics	DAE4	387	Sept. 06,2018	Sept. 05,2019	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 12,2018	May 11,2019	
R&S	UNIVERSAL RADIO COMMUNICATION TESTER	CMU 200	117888	Nov. 05, 2018	Nov. 04, 2019	
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Jun.12,2018	Jun.11, 2019	
SPEAG	DAK	DAK-3.5	1226	NCR	NCR	
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR	
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR	
Agilent	Power Meter	N1914A	MY50001102	Dec. 06, 2018	Nov. 06, 2019	
Agilent	Power Sensor	N8481H	MY51240001	Dec. 06, 2018	Nov. 06, 2019	
R&S	Spectrum Analyzer	N9020A	MY51170037	May.23, 2018	May. 22, 2019	
Agilent	Signal Generation	N5182A	MY48180656	May.23, 2018	May. 22, 2019	
Worken	Directional Coupler	0110A05601O-1 0	COM5BNW1A2	May.23, 2018	May. 22, 2019	

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A Page 20 of 85

power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 21 of 85

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

Frequency (MHz)	Wate r (%)	Sugar (%)	Cellulose (%)	Salt (%)	Prevento I (%)	DGBE (%)	Conductivity (σ)	Permittivity (ɛr)
		<u> </u>		For Hea	ıd			
900	40.3	57.9	0.2	1.4	0.2	0 Antoo	0.97	41.5
1750	55.2	0	0	0.3	ex 0 mbot	44.5	1.37	40.1
1800,1900,2000	55.2	0 otel	Onbotor	0.3	0	44.5	1.40	40.0
2450	55.0	0	tek 0 Anbo	0	0	45.0	1.80	39.2
2600	54.8	0	botet 0 M	0.1	0	45.1	1.96	39.0
				For Boo	ły			
900	50.8	48.2	Otek	0.9	0.1	0	0.97	55.2
1750	70.2	0 0	0 potek	0.4	0	29.4	1.49	53.4
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	05000	0	0	unboto 0	31.4	1.95	52.7

The following table gives the recipes for tissue simulating liquid.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190415002-01			8	FCC I	D: 2ATE7-S	600A	Pag	e 22 of 85
2600	68.1	0.000	0	0.1	Lnboten 0	31.8	2.16	52.5

Anbol

	Measured	Target T	issue	Measured Tissue						
Tissue Type	Frequenc y (MHz)	٤r	σ	٤r	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Data	
900HSL	850 M	41.5	0.97	41.68	0.43	0.96	-1.03	21.9	04/16/2019	
900MSL	850	55.00	1.05	55.26	0.47	1.06	0.95	22.4	04/17/2019	
1900HSL	1900	40.0	1.40	40.19	0.47	1.43	2.14	22.6	04/18/2019	
1900MSL	1900	53.30	1.52	53.41	0.21	1.53	0.66	22.1	04/19/2019	

The following table shows the measuring results for simulating liquid

Shenzhen Anbotek Compliance Laboratory Limited

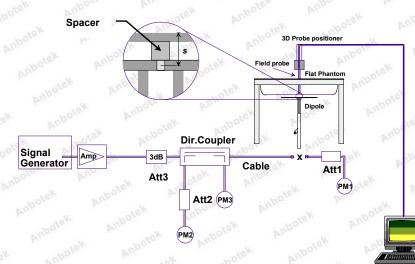
Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Anb

FCC ID: 2ATE7-S600A

Page 23 of 85

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 24 of 85

Photo of Dipole Setup

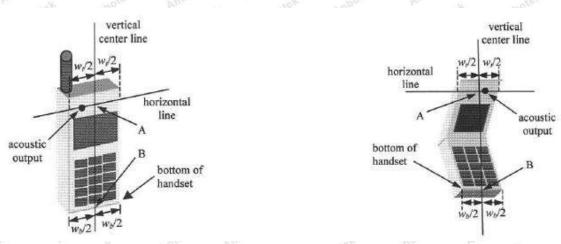
Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Frequenc y (MHz)	Liquid Type	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)	Date
850	Head	250	9.50	2.31	9.24	-2.74	04/16/2019
850	Body	250	9.52	2.53	10.12	6.30	04/17/2019
1900	Head	250	39.70	9.99	39.96	0.65	04/18/2019
1900	Body	250	39.60	9.26	37.04	-6.46	04/19/2019

Target and Measurement SAR after Normalized

Shenzhen Anbotek Compliance Laboratory Limited



FCC ID: 2ATE7-S600A Page 25 of 85

8. EUT Testing Position

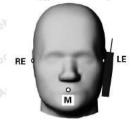
8.1. Define two imaginary lines on the handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Handset Vertical and Horizontal Reference Lines

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety

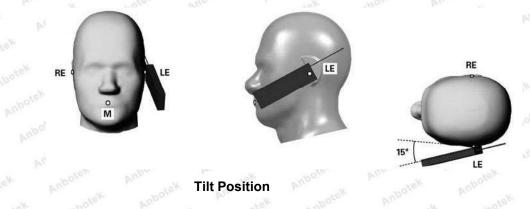

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 26 of 85

8.2. Position for Cheek/Touch

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.


RE

LE

Cheek Position

8.3. Position for Ear / 15°Tilt

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 8.3).

Shenzhen Anbotek Compliance Laboratory Limited

Product Safety Anbotek Testing

Anbotek 安博检测

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 27 of 85

8.4. Body Worn Position

monnend seld

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body.

wojueud jeis

Body Worn Position

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 28 of 85

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from **Shenzhen Anbotek Compliance Laboratory Limited**

Anbotek Product Safety

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A Pa

Page 29 of 85

sensor to surface

(f) Calculation of the averaged SAR within masses of 1g and 10g

9.2. Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3. Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3-4$ GHz: ≤ 12 mm $4-6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution x or y dimension of the test of measurement point on the te	on, is smaller than the above, must be \leq the corresponding device with at least one

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 30 of 85

9.4. Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz
10 Val.	abore	Po.	dek vopo, bu	with motor
Maximum zoom scan s	patial reso	plution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$
	uniform	grid: ∆z _{Zoom} (n)	\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z$	Z _{Zoom} (n-1)
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: > 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Shenzhen Anbotek Compliance Laboratory Limited

9.5. Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

FCC ID: 2ATE7-S600A

9.6. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

Page 31 of 85

Anbotek Product Safety

FCC ID: 2ATE7-S600A

Page 32 of 85

10. Conducted Power

GSM850 Burst Average Power (dBm) Frame-Average Power (dBm) **TX Channel** 128 190 251 128 190 251 Frequency (MHz) 824.2 836.6 848.6 824.2 836.6 848.6 GSM (GMSK, 1 Tx slot) 31.24 31.35 32.21 22.21 22.32 23.18 GPRS (GMSK, 1 Tx slot) - CS1 31.24 22.21 22.14 31.30 31.17 22.27 GPRS (GMSK, 2 Tx slots) - CS1 28.31 28.52 28.35 22.29 22.50 22.33 GPRS (GMSK, 3 Tx slots) - CS1 26.36 26.30 26.27 22.10 22.04 22.01 GPRS (GMSK, 4 Tx slots) - CS1 25.41 25.47 25.32 22.40 22.46 22.31 PCS1900 Burst Average Power (dBm) Frame-Average Power (dBm) **TX** Channel 512 661 810 512 661 810 Frequency (MHz) 1850.2 1880.0 1909.8 1850.2 1880.0 1909.8 GSM (GMSK, 1 Tx slot) 28.39 28.31 28.48 19.36 19.28 19.45 GPRS (GMSK, 1 Tx slot) – CS1 27.65 27.76 27.09 18.62 18.73 18.06 24.30 24.28 18.35 18.28 18.26 GPRS (GMSK, 2 Tx slots) – CS1 24.37 18.72 18.79 GPRS (GMSK, 3 Tx slots) – CS1 22.98 23.05 23.17 18.91 GPRS (GMSK, 4 Tx slots) - CS1 22.79 22.47 22.33 19.78 19.46 19.32

<GSM Conducted power>

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) – 9.03 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) – 6.02 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) – 3.01 dB

Note:

- 1. Per KDB 447498 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction
- For Head SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850and PCS1900.
- 3. For Body SAR testing, GPRS should be evaluated, therefore the EUT was set inGPRS 4 Tx slots for GSM850and PCS1900 due to its highest frame-average power.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190415002-01 <Bluetooth Conducted Power>

FCC ID: 2ATE7-S600/

Page 33 of 85

Mode	Channel	Frequency (MHz)	Conducted Average Power (dBm)
	00	2402	4.056
GFSK	39	2441	3.591
	78	2480	3.260
	00	2402	5.166
π/4DQPSK	39	2441	4.644
	78	2480	3.789
	00	2402	5.383
8DPSK	39	2441	4.852
	78	2480	3.992

Note:

Per KDB 447498 D01Chapter 4.3.1, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

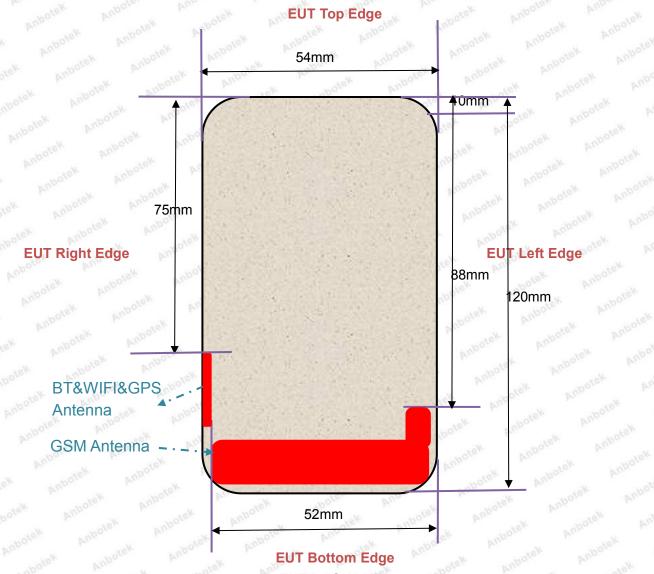
Bluetooth Max Power	Separation Distance	Frequency	exclusion
(dBm)	(mm)	(GHz)	thresholds
5.383	Ashore 0 Automatick	2.402	1.071

- 2. Per KDB 447498 D01Chapter 4.3.1, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 1.071 which is<= 3, SAR test for BT mode is not required.
- Per KDB 447498 D01Chapter 4.3.2b), When an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance mm)] $\left[\sqrt{f(GHz)/x}\right]$ W/kg, for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is > 50 mm.


Test position		Bluetooth Max Power (dBm)	Separation Distance (mm)	Frequency (GHz)	Scaled SAR value (W/kg)	
	Head	5.383	ootek Ari5ote P	2.402	0.356	
tex.	Body	5.383	10	2402	0.178	

Shenzhen Anbotek Compliance Laboratory Limited

 Report No.: SZAWW190415002-01
 FCC ID: 2ATE7-S600A
 Page 34 of 85

11. Antenna Location

EUT BACK VIEW

Distance of The Antenna to the EUT surface and edge												
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side						
WWAN	ten Anbor	I note	>25mm	<25mm	<25mm	<25mm						
BT	botek / Anb	Pres / Ame	>25mm	>25mm	>25mm	<25mm						

General Note: Referring to KDB 941225 D06, When the overall device length and width are ≥9cm*5cm, the test distance is 10mm, SAR must be measured for all sides and surfaces with a transmitting antenna located with 25mm from that surface or edge.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ATE7-S600A Page 35 of 85

12. SAR Test Results Summary

General Note:

- 1. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor
- 2. Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

12.1. Head SAR Results

<GSM for Sample1>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Avera ge Power (dBm)		Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
#1	GSM850	GSM Voice	Right Cheek	0	190	836.4	31.35	31.50	1.04	-0.15	0.207	0.214
otok	GSM850	GSM Voice	Right Tilt	0	190	836.4	31.35	31.50	1.04	-0.07	0.113	0.117
Un Van	GSM850	GSM Voice	Left Cheek	0	190	836.4	31.35	31.50	1.04	-0.17	0.183	0.189
200	GSM850	GSM Voice	Left Tilt	0	190	836.4	31.35	31.50	1.04	-0.03	0.0914	0.095
Pul	PCS1900	GSM Voice	Right Cheek	0	661	1880.0	28.31	28.50	1.04	-0.03	0.189	0.197
	PCS1900	GSM Voice	Right Tilt	0	661	1880.0	28.31	28.50	1.04	0.04	0.127	0.133
#2	PCS1900	GSM Voice	Left Cheek	0	661	1880.0	28.31	28.50	1.04	-0.04	0.209	0.218
Noto	PCS1900	GSM Voice	Left Tilt	0	661	1880.0	28.31	28.50	1.04	-0.09	0.114	0.119

<Worst case for Sample2>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	ge Power	Tune-U p Limit (dBm)	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
#3	GSM850	GSM Voice	Right Cheek	0	190	836.4	31.35	31.50	1.04	-0.06	0.161	0.168
#4	PCS1900	GSM Voice	Right Cheek	0	661	1880.0	28.31	28.50	1.04	-0.06	0.195	0.204

Note:

Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is $\geq 0.8W/Kg$; if the deviation among the repeated measurement is $\leq 20\%$, and the measured SAR <1.45W/Kg, only one repeated measurement is required.

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ATE7-S600A

Page 36 of 85

12. 2. Body SAR Results

<GSM for Sample1>

							Avera	Tune-U	Scalin	Powe	Measure	Reported
Plot	Band	Mode	Test	Gap	Ch.	Freq.	ge	р		r	d	SAR _{1a}
No.	Dana	Mode	Position	(mm)	011.	(MHz)	Power	Limit	g Factor	Drift	SAR _{1g}	(W/kg)
							(dBm)	(dBm)		(dB)	(W/kg)	(w /kg)
poto	GSM850	GPRS 4TX	Front	10	190	836.4	25.47	26	1.13	-0.06	0.191	0.216
#5	GSM850	GPRS 4TX	Back	10	190	836.4	25.47	26	1.13	0.03	0.591	0.668
	PCS1900	GPRS 4TX	Front	10	661	1880.0	22.47	23	1.13	-0.08	0.234	0.264
#6	PCS1900	GPRS 4TX	Back	10	661	1880.0	22.47	23	1.13	-0.00	0.276	0.312

<GSM for Sample2>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	(MHz)	Avera ge Power (dBm)	p Limit	Scalin g Factor	r Drift	Measure d SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
#7	GSM850	GPRS 4TX	Back	10	190	836.4	25.47	26	1.13	-0.05	0.531	0.600
#8	PCS1900	GPRS 4TX	Back	10	661	1880.0	22.47	23	1.13	0.07	0.167	0.189

Note:

1. Per IEC62209-2:2010 Chapter 6.1.4.2, only Back and Front of the mobile phone are required for test. The mobile do not support Hotspot mode and other surfaces are not need to be tested

2. Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg, only one repeated measurement is required.

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 37 of 85

13. Simultaneous Transmission Analysis

13.1. Simultaneous TX SAR Considerations

No.	Applicable S	imultane	eous Transm	nission		
1. 20	GSM+ BT	dek	- nbotek	Anboto	Andmotek	Anbolek

13. 2. Evaluation of Simultaneous SAR

< Head Exposure Conditions>

Simultaneous transmission SAR for WLAN and GSM/WCDMA

Test Position	GSM850 SAR _{1-g} (W/Kg)	GSM1900 SAR _{1-g} (W/Kg)	BT SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Right Cheek	0.214	0.197	0.356	0.570	1.6 mar 1.6	NO
Right Tilt	0.117	0.133	0.356	0.489	1.6	NO
Left Cheek	0.189	0.218	0.356	0.574	1.6	NO participant
Left Tilt	0.095	0.119	0.356	0.475	1.6	NO

<Body Exposure Conditions>

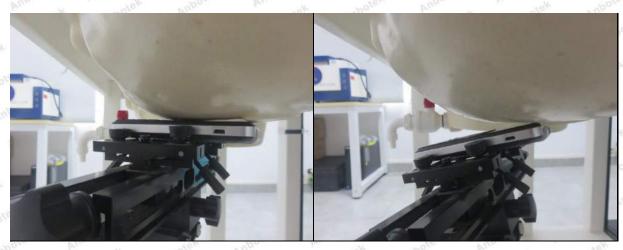
Test Position	GSM850 SAR _{1-g} (W/Kg)	GSM1900 SAR _{1-g} (W/Kg)	BT SAR _{1-g} (W/Kg)	MAX. ΣSAR _{1-g} (W/Kg)	SAR _{1-g} Limit (W/Kg)	Simut. Meas. Required
Front	0.216	0.264	0.178	0.442	1.6	NO
Back	0.668	0.312	0.178	0.980	1.6	NO

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 38 of 85

14. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is< 1.5 W/Kg, the extensive SAR measurement uncertainty analysis described in IEC 62209-2:2010 is not required in SAR reports submitted for equipment approval.


Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A Page 39 of 85

Appendix A. EUT Photos and Test Setup Photos

Left Cheek

Left Tilt 15°

Right Cheek

Right Tilt 15°

Body Front(10mm)

Shenzhen Anbotek Compliance Laboratory Limited

Body Back(10mm)

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

FCC ID: 2ATE7-S600A Page 40 of 85

Appendix B. Plots of SAR System Check

Date: 04/16/2019

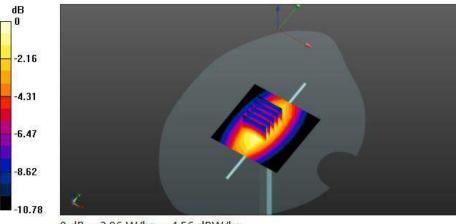
835MHz Head System Check DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d160

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.96 S/m; ϵ_r = 41.68; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.80 W/kg


Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 56.553 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.39 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 2.86 W/kg

0 dB = 2.86 W/kg = 4.56 dBW/kg

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 41 of 85 Date: 04/17/2019

835MHz Body System Check

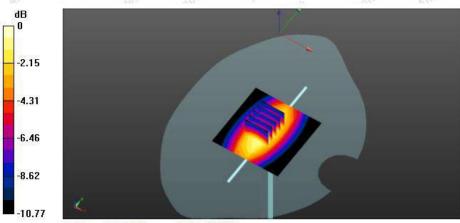
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d160

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 1.06 S/m; ϵ_r = 55.26; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.97 W/kg


Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 60.007 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 4.02 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.75 W/kg

Maximum value of SAR (measured) = 3.58 W/kg

0 dB = 3.01 W/kg = 4.79 dBW/kg

Shenzhen Anbotek Compliance Laboratory Limited

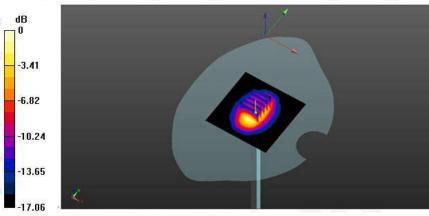
FCC ID: 2ATE7-S600A

Page 42 of 85

Date: 04/18/2019

1900MHz Head System Check DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d179

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.43 S/m; ϵ_r = 40.19; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 11.3 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 100.5 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.12 W/kg Maximum value of SAR (measured) = 15.3 W/kg

0 dB = 15.3 W/kg = 11.85 dBW/kg

Shenzhen Anbotek Compliance Laboratory Limited

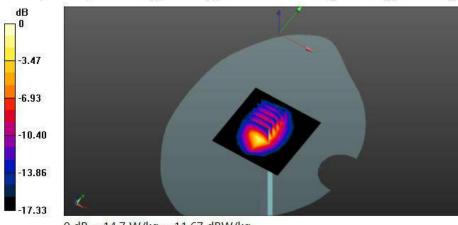
FCC ID: 2ATE7-S600A

Page 43 of 85

Date: 04/19/2019

1900MHz Body System Check DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d179

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.53 S/m; ϵ_r = 53.41; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Configuration/Pin=250mW/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 10.7 W/kg

Configuration/Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 86.92 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.84 W/kg Maximum value of SAR (measured) = 10.4 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

Shenzhen Anbotek Compliance Laboratory Limited

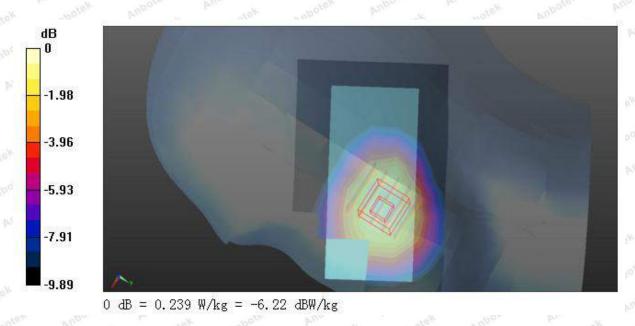
FCC ID: 2ATE7-S600A Page 44 of 85

Appendix C. Plots of SAR Test Data

#1

Date: 04/16/2019

GSM850_GSM Voice_Right Cheek_Ch190


Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.96 S/m; ϵ_r = 41.68; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

RIGHT/R-C/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.218 W/kg

RIGHT/R-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.341 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.261 W/kg SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.148 W/kg Maximum value of SAR (measured) = 0.239 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

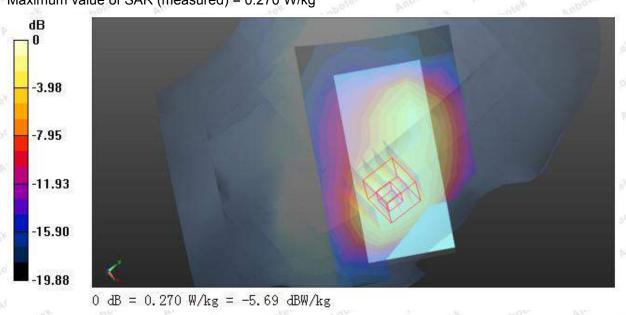
Report No.: SZAWW190415002-01 **#2**

FCC ID: 2ATE7-S600A Page 45 of 85 Date: 04/18/2019

PCS1900_GSM Voice_Left Cheek_Ch661

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.43 S/m; ϵ_r = 40.19; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:


- Probe: EX3DV4 SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

LEFT/L-C/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.242 W/kg

LEFT/L-C/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.096 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.329 W/kg

SAR(1 g) = 0.209 W/kg; SAR(10 g) = 0.119 W/kg Maximum value of SAR (measured) = 0.270 W/kg

#3

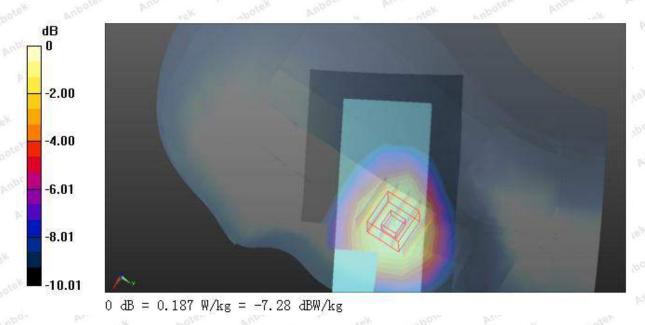
Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

Date: 04/16/2019

Report No.: SZAWW190415002-01FCC ID: 2ATE7-S600AGSM850_GSM Voice_Right Cheek_Ch190

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.96 S/m; ϵ_r = 41.68; ρ = 1000 kg/m³ Phantom section: Right Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(9.71, 9.71, 9.71); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

RIGHT/R-C 2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.179 W/kg

RIGHT/R-C 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.234 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.205 W/kg SAR(1 g) = 0.161 W/kg; SAR(10 g) = 0.116 W/kg

Maximum value of SAR (measured) = 0.187 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

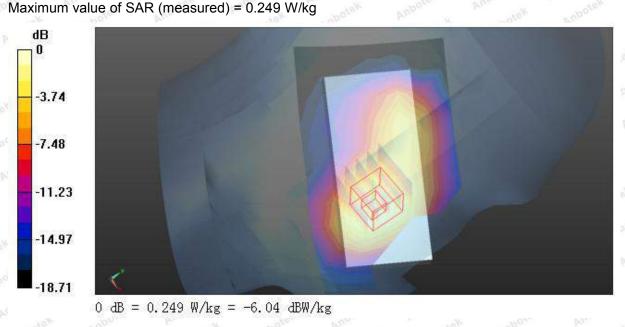
Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

Page 46 of 85

Report No.: SZAWW190415002-01 #4

FCC ID: 2ATE7-S600A Page 47 of 85 Date: 04/18/2019

PCS1900_GSM Voice_Left Cheek_Ch661


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.43 S/m; ϵ_r = 40.19; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(8.13, 8.13, 8.13); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM1; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

LEFT/L-C 2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.234 W/kg

LEFT/L-C 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.877 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.303 W/kg SAR(1 g) = 0.195 W/kg; SAR(10 g) = 0.115 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

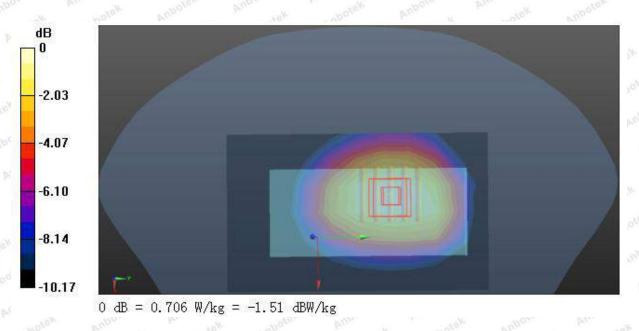
Report No.: SZAWW190415002-01 **#5**

FCC ID: 2ATE7-S600A Page 48 of 85

Date: 04/17/2019

GSM850_GSM Voice_Body Back_Ch190

Communication System: UID 0, Generic GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:1.99986 Medium parameters used (interpolated): f = 836.6 MHz; σ = 1.06 S/m; ϵ_r = 55.32; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.662 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.155 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.790 W/kg

SAR(1 g) = 0.591 W/kg; SAR(10 g) = 0.422 W/kg Maximum value of SAR (measured) = 0.706 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

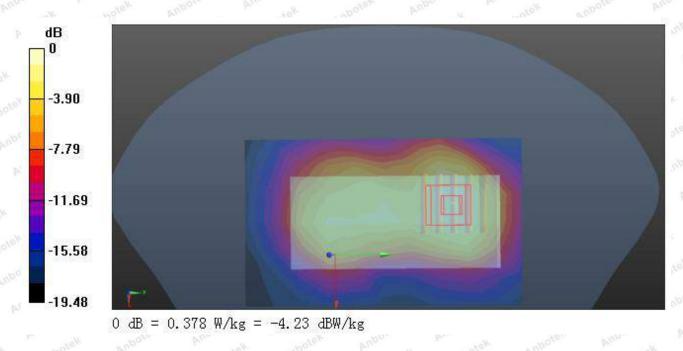
Report No.: SZAWW190415002-01 #6

FCC ID: 2ATE7-S600A Pag

Page 49 of 85 Date: 04/19/2019

PCS1900_GSM Voice_Body Back_Ch661

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz;Duty Cycle: 1:1.99986 Medium parameters used: f = 1880 MHz; σ = 1.53 S/m; ϵ_r = 53.41; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.322 W/kg

BODY/BACK/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.872 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 0.481 W/kg SAR(1 g) = 0.276 W/kg; SAR(10 g) = 0.154 W/kg

Maximum value of SAR (measured) = 0.378 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

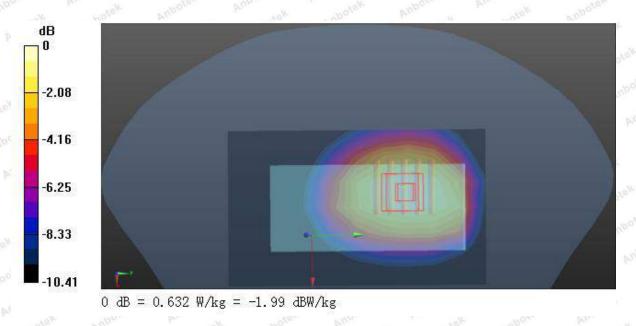
Report No.: SZAWW190415002-01 **#7**

FCC ID: 2ATE7-S600A Page 50 of 85

Date: 04/17/2019

GSM850_GSM Voice_Body Back_Ch190

Communication System: UID 0, Generic GSM (0); Frequency: 836.6 MHz;Duty Cycle: 1:1.99986 Medium parameters used (interpolated): f = 836.6 MHz; σ = 1.06 S/m; ϵ_r = 55.32; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(9.88, 9.88, 9.88); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK 2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.627 W/kg

BODY/BACK 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.088 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.707 W/kg

SAR(1 g) = 0.531 W/kg; SAR(10 g) = 0.379 W/kg Maximum value of SAR (measured) = 0.632 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

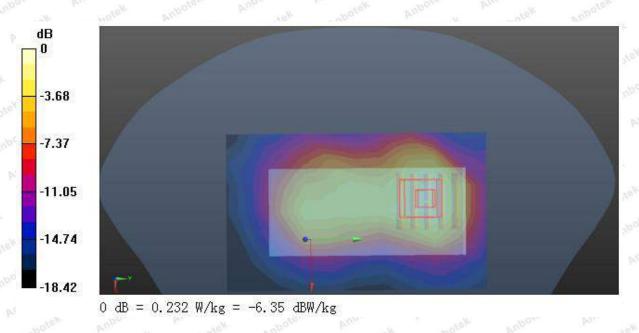
Report No.: SZAWW190415002-01 #8

FCC ID: 2ATE7-S600A

Page 51 of 85 Date: 04/19/2019

PCS1900_GSM Voice_Body Back_Ch661

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz;Duty Cycle: 1:1.99986 Medium parameters used: f = 1880 MHz; σ = 1.53 S/m; ϵ_r = 53.41; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.97, 7.97, 7.97); Calibrated: 12.5.2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn387; Calibrated: 6.9.2018
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

BODY/BACK 2/Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.206 W/kg

BODY/BACK 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.090 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.300 W/kg SAR(1 g) = 0.167 W/kg; SAR(10 g) = 0.093 W/kg

Maximum value of SAR (measured) = 0.232 W/kg

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 52 of 85

Appendix D. DASY System Calibration Certificate

In District, Beijing, 100191, China Fax: +86-10-62304633-2209 Http://www.chinattl.cn en) Ce SATE (3DV4 - SN:7396 5-Z12-006-08 alibration Procedures for Dos ay12, 2018 the traceability to national and the uncertainties with c	imetric E-field Probes standards, which reali	98671
ATE (3DV4 - SN:7396 -Z12-006-08 alibration Procedures for Dos ay12, 2018 the traceability to national	imetric E-field Probes standards, which reali	98671
(3DV4 - SN:7396 Z12-006-08 alibration Procedures for Dos ay12, 2018 the traceability to national	standards, which reali	
-Z12-006-08 alibration Procedures for Dos ay12, 2018 the traceability to national	standards, which reali	
alibration Procedures for Dos ay12, 2018 the traceability to national	standards, which reali	
ay12, 2018 the traceability to national	standards, which reali	
the traceability to national		
d in the closed laboratory		
	y, Certificate No.)	Scheduled Calibration
20-Jun-17 (CTTL, N	o.J17X07447)	Jun-18
		Jun-18
		Jun-18
		Mar-19
	and a second	Mar-19
26-Sep-17(SPEAG.)	No.EX3-7433_Sep17)	Sep-18
	No.DAE4-549_Dec17)	Dec -18
		Dec -18 Scheduled Calibration
13-Dec-17(SPEAG,	by, Certificate No.)	
13-Dec-17(SPEAG, Cal Date(Calibrated 605 27-Jun-17 (CTTL, N 0673 13-Jan-18 (CTTL, N	by, Certificate No.) o.J17X04776)	Scheduled Calibration
13-Dec-17(SPEAG, Cal Date(Calibrated 605 27-Jun-17 (CTTL, N	by, Certificate No.) o.J17X04776)	Scheduled Calibration Jun-18
13-Dec-17(SPEAG, Cal Date(Calibrated 605 27-Jun-17 (CTTL, N 0673 13-Jan-18 (CTTL, N	by, Certificate No.) o.J17X04776) o.J18X00285)	Scheduled Calibration Jun-18 Jan -19
13-Dec-17(SPEAG, Cal Date(Calibrated 605 27-Jun-17 (CTTL, N 0673 13-Jan-18 (CTTL, N Function	by, Certificate No.) o.J17X04776) o.J18X00285) neer	Scheduled Calibration Jun-18 Jan -19
t	tical for calibration) Cal Date(Calibrated by 20-Jun-17 (CTTL, N 20-Jun-17 (CTTL, N 20-Jun-17 (CTTL, N /-10dB 13-Mar-18(CTTL, No	tical for calibration) Cal Date(Calibrated by, Certificate No.) 20-Jun-17 (CTTL, No.J17X07447) 20-Jun-17 (CTTL, No.J17X07447) 20-Jun-17 (CTTL, No.J17X07447) /-10dB 13-Mar-18(CTTL,No.J18X01547)

Certificate No: Z18-98671

Page 1 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com

Anbotek Testing

Http://www.chinattl.cn

TSL NORMx,y,z ConvF DCP CF A,B,C,D Polarization Φ Polarization 0

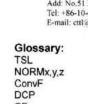
tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx, y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Φ rotation around probe axis $\boldsymbol{\theta}$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Anale Calibration is Performed According to the Following Standards:

FCC ID: 2ATE7-S600A

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication
- devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- Methods Applied and Interpretation of Parameters:
- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-98671


Page 2 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 53 of 85

Anbotek 安博检测

Product Safety

FCC ID: 2ATE7-S600A

Add: No.51 Xueyuan Road, Haid Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

an Road, Haidian District, Beijing, 100191, China 633-2218 Fax: +86-10-62304633-2209 ttl.com <u>Http://www.chinattl.cn</u>

Probe EX3DV4

SN: 7396

Calibrated: May 12, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z18-98671

Page 3 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 54 of 85

FCC ID: 2ATE7-S600A

Page 55 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.54	0.53	0.50	±10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc [∈] (k=2)
0	cw	X	0.0	0.0	1.0	0.00	199.9	±2.4%
		Y	0.0	0.0	1.0		203.3	
		Z	0.0	0.0	1.0		195.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z18-98671

Page 4 of 11

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

400-003-0500 www.anbotek.com

FCC ID: 2ATE7-S600A

Page 56 of 85

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	±12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	±12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	±12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	±12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	±12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	±12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	±12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	±12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	±13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	±13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z18-98671

Page 5 of 11

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600/

Page 57 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	±12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	±12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	±12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	±12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	±12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	±12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	±12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	±12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	±13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	±13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z18-98671

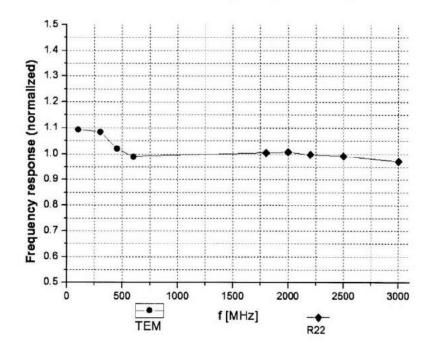
Page 6 of 11

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

400-003-0500 www.anhotek.com

Report No.: SZAWW190415002-01

Page 58 of 85



 Add. No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

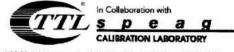
 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Certificate No: Z18-98671

Page 7 of 11

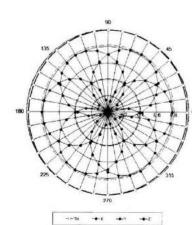

Shenzhen Anbotek Compliance Laboratory Limited

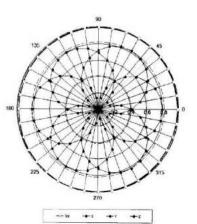
Report No.: SZAWW190415002-01

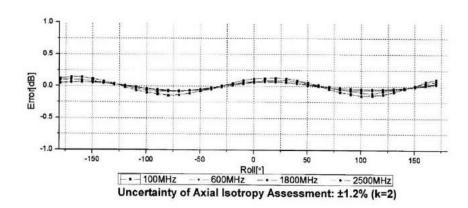
FCC ID: 2ATE7-S600A

Page 59 of 85

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209


 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>


Receiving Pattern (Φ), θ=0°

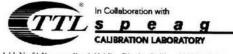
f=600 MHz, TEM

f=1800 MHz, R22

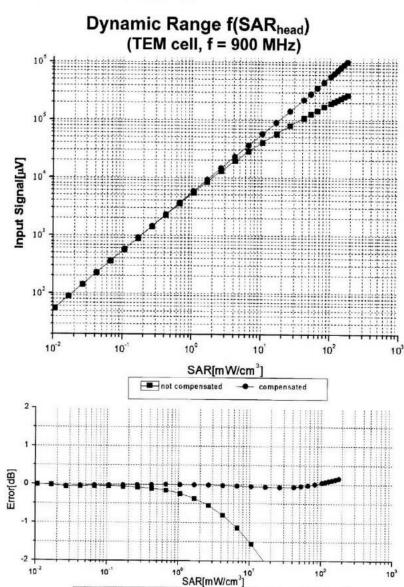
Certificate No: Z18-98671

Page 8 of 11

Shenzhen Anbotek Compliance Laboratory Limited



安博检测 Anbotek Testing Anbotek **Product Safety**


Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 60 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Http://www.chinattl.cn

compensated

Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z18-98671

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

- not compensated

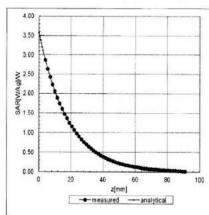
Page 9 of 11

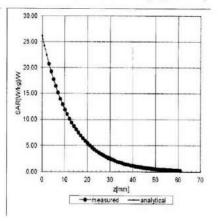
Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

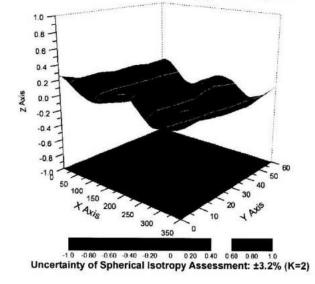
Page 61 of 85

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209


 E-mail: ettl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z18-98671

Page 10 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek **Product Safety Anbotek Testing**

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinatl.com
 <u>Http://www.chinattl.cn</u>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z18-98671

Page 11 of 11

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 63 of 85

		ION LABORATORY	NA5 校准 CALIBRATI
Tel: +86-10-623046	533-2079 Fax: +8	rict, Beijing, 100191, China 36-10-62304633-2504	CNAS L05
E-mail: cttl@china	ttl.com <u>Http://v</u> ek (Auden)	Certificate No: Z18	8-97089
Client Anbot	ek (Auden)	Certificate No: 218	5-97069
CALIBRATION C	ERTIFICAT	E	
Object	D835V2	- SN: 4d154	
Calibration Procedure(s)			
		2-003-01	
	Calibrati	ion Procedures for dipole validation kits	
Calibration date:	Jun 16,	2018	
			tomporoturo(22,2)%
humidity<70%.	ertificate.	he closed laboratory facility: environment	temperature(22±3)℃ a
All calibrations have beer humidity<70%. Calibration Equipment used	ertificate. n conducted in ti d (M&TE critical fo	he closed laboratory facility: environment	
All calibrations have beer humidity<70%. Calibration Equipment used	ertificate.	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.)	
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards	ertificate.	he closed laboratory facility: environment	Scheduled Calibration
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	ertificate. 1 conducted in t 4 (M&TE critical fo ID # 101919 101547	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256)	Scheduled Calibration Jun-18
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ertificate. 1 conducted in t 4 (M&TE critical fo ID # 101919 101547	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256)	Scheduled Calibration Jun-18 Jun-18
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ertificate. 1 conducted in the c	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256) 19-Feb-18(SPEAG,No.EX3-7307_Feb18) 02-Feb-18(CTTL-SPEAG,No.Z18-97011)	Scheduled Calibration Jun-18 Jun-18 Feb-19 Feb-19
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	ertificate. a conducted in t a (M&TE critical for ID # 101919 101547 SN 7307 SN 771 ID #	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256) 19-Feb-18(SPEAG,No.EX3-7307_Feb18) 02-Feb-18(CTTL-SPEAG,No.Z18-97011) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-18 Jun-18 Feb-19 Feb-19 Scheduled Calibratio
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4	ertificate. a conducted in t a (M&TE critical for ID # 101919 101547 SN 7307 SN 771 ID # ID # MY49071430	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256) 19-Feb-18(SPEAG,No.EX3-7307_Feb18) 02-Feb-18(CTTL-SPEAG,No.Z18-97011)	Scheduled Calibration Jun-18 Jun-18 Feb-19 Feb-19
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. a conducted in t a (M&TE critical for ID # 101919 101547 SN 7307 SN 771 ID # ID # MY49071430	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256) 19-Feb-18(SPEAG,No.EX3-7307_Feb18) 02-Feb-18(CTTL-SPEAG,No.Z18-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-18 (CTTL, No.J18X00893)	Scheduled Calibration Jun-18 Jun-18 Feb-19 Feb-19 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ertificate. a conducted in ti d (M&TE critical for ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256) 19-Feb-18(SPEAG,No.EX3-7307_Feb18) 02-Feb-18(CTTL-SPEAG,No.Z18-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-18 (CTTL, No.J18X00893) 26-Jan-18 (CTTL, No.J18X00894) Function	Scheduled Calibration Jun-18 Jun-18 Feb-19 Feb-19 Scheduled Calibration Jan-19
All calibrations have beer humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	ertificate. a conducted in t a (M&TE critical for ID # 101919 101547 SN 7307 SN 7711 ID # MY49071430 MY46110673	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256) 19-Feb-18(SPEAG,No.EX3-7307_Feb18) 02-Feb-18(CTTL-SPEAG,No.Z18-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-18 (CTTL, No.J18X00893) 26-Jan-18 (CTTL, No.J18X00894)	Scheduled Calibration Jun-18 Jun-18 Feb-19 Feb-19 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	ertificate. a conducted in ti d (M&TE critical for ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	he closed laboratory facility: environment r calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-17 (CTTL, No.J17X04256) 01-Jul-17 (CTTL, No.J17X04256) 19-Feb-18(SPEAG,No.EX3-7307_Feb18) 02-Feb-18(CTTL-SPEAG,No.Z18-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-18 (CTTL, No.J18X00893) 26-Jan-18 (CTTL, No.J18X00894) Function	Scheduled Calibration Jun-18 Jun-18 Feb-19 Feb-19 Scheduled Calibration Jan-19 Jan-19

Certificate No: Z18-97089

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 64 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-97089

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

In Collaboration with p е а q

FCC ID: 2ATE7-S600A

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Measurement Conditions

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following	parameters	and	calculations	were	applied
ine renorming	parametere	01110	ourourorrorro		erp prine er

ALC: NOT THE REAL PROPERTY OF THE REAL PROPERTY	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C 41.0 ± 6 %		0.89 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		
R result with Head TSL	State of the second		
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condi	tion	
SAR measured	250 mW input power 2.30		2.30 mW / g

SA

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.24 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	1
SAR measured	250 mW input power	1.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.02 mW /g ± 20.4 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Tem	perature	Permitti	vity	Conductivity	
Nominal Body TSL parameters	22	2.0 °C	55.2		0.97 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C		55.4 ± 6	6 %	0.99 mho/m ± 6 %	
Body TSL temperature change during test	<1.0 °C					
R result with Body TSL						
SAR averaged over 1 cm^3 (1 g) of Body TSL		Condit	tion			
AR measured		250 mW input power		2.43 mW / g		
SAR for nominal Body TSL parameters		normalized to 1W		9.57 mW /g ± 20.8 % (k=2)		
SAR averaged over 10 cm^3 (10 g) of Body T	SL	Condit	tion			
SAR measured		250 mW input power		1.61 mW/g		
SAR for nominal Body TSL parameters		normalized to 1W		6.36 mW /g ± 20.4 % (k=2)		

Certificate No: Z18-97089

Page 3 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

Page 65 of 85

FCC ID: 2ATE7-S600A

Page 66 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.2Ω- 3.11jΩ		
Return Loss	- 29.8dB		

a

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6Ω- 2.33jΩ	
Return Loss	- 27.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.508 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z18-97089

Page 4 of 8

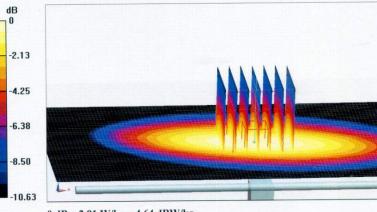
Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 67 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China


Date: 06.16.2018

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.891$ S/m; $\varepsilon_r = 40.97$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(10.01, 10.01, 10.01); Calibrated: 2/19/2018;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2018-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

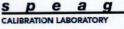
dy=5mm, dz=5mm Reference Value = 58.14V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.41 W/kg SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.5 W/kg Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg

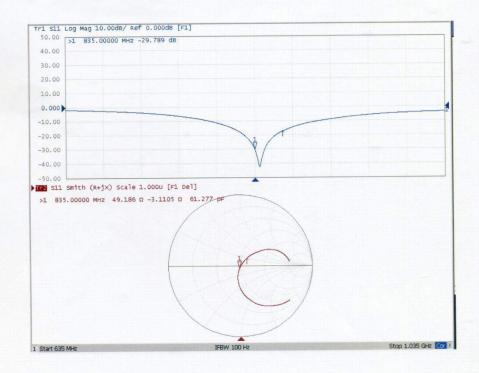
Certificate No: Z18-97089

Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited



FCC ID: 2ATE7-S600A


Page 68 of 85

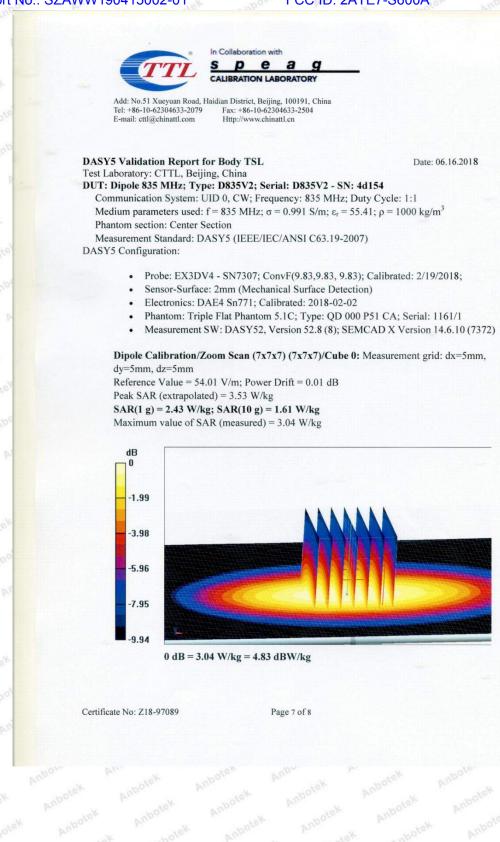
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z18-97089

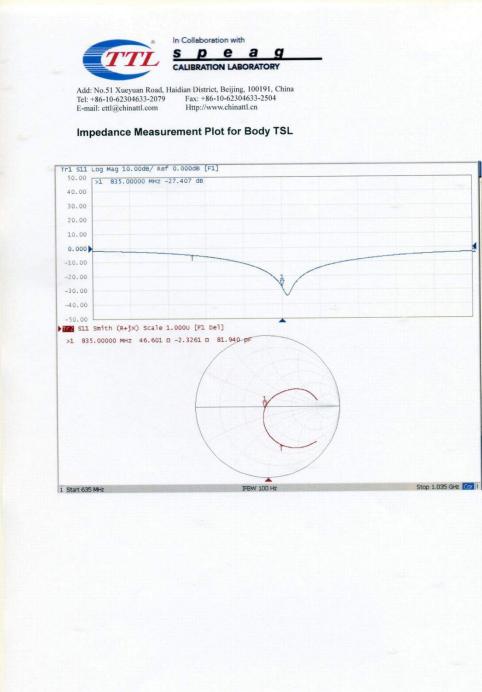
Page 6 of 8

Shenzhen Anbotek Compliance Laboratory Limited


Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Email:service@anbotek.com Tel:(86)755-26066440 Fax:(86)755-26014772

FCC ID: 2ATE7-S600A

Page 69 of 85


Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 70 of 85

Certificate No: Z18-97089 Page 8 of 8

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 71 of 85

Schmid & Partner Engineering AG

<u>speag</u>

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 72 of 85

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage ilac-MR/ C Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Anbotek (Auden) Certificate No: DAE4-387_Sep08 **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 387 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 06, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 15-Aug-18 (No:21092) Aug-19 Secondary Standards 1D # Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 05-Jan-18 (in house check) In house check: Jan-19 Calibrator Box V2.1 SE UMS 006 AA 1002 05-Jan-18 (in house check) In house check: Jan-19 Name Function Signature Calibrated by: Dominique Steffen Laboratory Technician

Approved by: Sven Kühn Deputy Manager IV BR JUW Issued: September 03, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-387 Sep18

Page 1 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 73 of 85

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Sch C Sen S Sen S Swi
 - Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE c Connector angle ii

data acquisition electronics ngle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-387_Sep18

Page 2 of 5

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek Product Safety Product Safety

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 74 of 85

DC Voltage Measurement

A/D - Converter Reso	lution nominal	
LU-L D		1923-1511

High Hange:	1LSB =	6.1µV.	full range =	-100+300 mV	
Low Range:	1LSB =	61nV ,	full range =	-1+3mV	
DASY measurement	parameters: Aut	to Zero Time: 3	sec; Measuring	time: 3 sec	

Calibration Factors	x	Y	Z
High Range	404.489 ± 0.02% (k=2)	404.852 ± 0.02% (k=2)	404.862 ± 0.02% (k=2)
Low Range	3.97827 ± 1.50% (k=2)	3.95875 ± 1.50% (k=2)	3.97982 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	53.0 ° ± 1 °

Certificate No: DAE4-387_Sep18

Page 3 of 5

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 75 of 85

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200032.85	-3.31	-0.00
Channel X + Input	20007.64	1.88	0.01
Channel X - Input	-20003.48	1.18	-0.01
Channel Y + Input	200034.23	-1.43	-0.00
Channel Y + Input	20006.60	0.91	0.00
Channel Y - Input	-20004.04	0.72	-0.00
Channel Z + Input	200035.38	-0.83	-0.00
Channel Z + Input	20003.69	-2.11	-0.01
Channel Z - Input	-20006.38	-1.59	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.63	0.08	0.00
Channel X + Input	202.29	0.70	0.35
Channel X - Input	-197.90	0.60	-0.30
Channel Y + Input	2001.33	-0.07	-0.00
Channel Y + Input	200.86	-0.60	-0.30
Channel Y - Input	-199.87	-1.23	0.62
Channel Z + Input	2001.61	0.27	0.01
Channel Z + Input	200.60	-0.70	-0.35
Channel Z - Input	-199.51	-0.85	0.43

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	13.50	11.56
	- 200	-8.64	-11.18
Channel Y	200	-0.81	-1.28
	- 200	1.05	0.09
Channel Z	200	7.17	6.91
	- 200	-9.46	-9.01

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	*	-1.70	0.33
Channel Y	200	10.70	-	-0.38
Channel Z	200	7.11	7.89	1.00

Certificate No: DAE4-387_Sep18

Page 4 of 5

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 76 of 85

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15969	17466
Channel Y	15661	16162
Channel Z	15990	16190

5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.73	-2.58	3.29	0.62
Channel Y	0.41	-0.49	1.23	0.40
Channel Z	-0.80	-1.88	0.30	0.42

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-387_Sep18

Page 5 of 5

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 77 of 85

	V. S D	e a d	中国认可国际互动
	A Reserve And		NAS 校准
Add: No.51 Xueyua Tel: +86-10-623046 E-mail: cttl@chinat	533-2079 Fax: +	trict, Beijing, 100191, China 86-10-62304633-2504 //www.chinattl.en	CALIBRAT CNAS L05
Client Anbo	tek (Auden)	Certificate No: Z	16-97090
CALIBRATION CI	ERTIFICAT	Е	
Object	D1900	V2 - SN: 5d175	
Calibration Procedure(s)			
Calibration Procedure(a)		1-2-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Jun 15,	, 2016	
		traceability to national standards, which re	
measurements(SI). The me pages and are part of the ce		the uncertainties with confidence probability	are given on the followi
pages and are part of the ce	ennicate.		
All calibrations have been		the closed laboratory facility: environmen	t temperature(22±3)℃ a
All calibrations have been		the closed laboratory facility: environmen	t temperature(22±3)で a
All calibrations have been humidity<70%.	conducted in		t temperature(22±3)℃ a
	conducted in		t temperature(22±3)℃ a
All calibrations have been humidity<70%. Calibration Equipment used	conducted in		
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	Conducted in (M&TE critical fe ID # 101919	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibratio Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibratio Jun-16 Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	Conducted in (M&TE critical fr ID # 101919 101547 SN 7307	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16)	Scheduled Calibratio Jun-16 Jun-16 Feb-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	ID # 101919 101547	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256)	Scheduled Calibratio Jun-16 Jun-16
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power Sensor NRP-Z91 Reference Probe EX3DV4 DAE4	Conducted in (M&TE critical for 101919 101547 SN 7307 SN 771	or calibration) Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Scheduled Calibratio Jun-16 Jun-16 Feb-17 Feb-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in (M&TE critical fr ID # 101919 101547 SN 7307	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibratio Jun-16 Jun-16 Feb-17 Feb-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power Sensor NRP-Z91 Reference Probe EX3DV4 DAE4	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893)	Scheduled Calibratio Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893)	Scheduled Calibratio Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894)	Scheduled Calibration Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by:	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894) Function	Scheduled Calibratio Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894) Function	Scheduled Calibratio Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C Network Analyzer E5071C Calibrated by:	(M&TE critical fo ID # 101919 101547 SN 7307 SN 771 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Jul-15 (CTTL, No.J15X04256) 01-Jul-15 (CTTL, No.J15X04256) 19-Feb-16(SPEAG,No.EX3-7307_Feb16) 02-Feb-16(CTTL-SPEAG,No.Z16-97011) Cal Date(Calibrated by, Certificate No.) 01-Feb-16 (CTTL, No.J16X00893) 26-Jan-16 (CTTL, No.J16X00894) Function SAR Test Engineer	Scheduled Calibratio Jun-16 Jun-16 Feb-17 Feb-17 Scheduled Calibration Jan-17 Jan-17

Certificate No: Z16-97090

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 78 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.en

Glossary: TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

- Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation: e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97090

Page 2 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Email:service@anbotek.com Tel:(86)755-26066440 Fax:(86)755-26014772

Anbotek 安博检测 Anbotek Testing **Product Safety**

Report No.: SZAWW190415002-01

FCC ID: 2ATE7-S600A

Page 79 of 85

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

	Ten	nperature	Permitti	vity	Conductivity
Nominal Head TSL parameters	23	2.0 °C	40.0		1.40 mho/m
Measured Head TSL parameters	(22.0	± 0.2) °C	40.3 ± 0	8 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<	1.0 °C			
R result with Head TSL					
SAR averaged over 1 cm ³ (1 g) of Head TSL		Condi	tion		
SAR measured		250 mW in	put power		9.99 mW / g
SAR for nominal Head TSL parameters		normalize	d to 1W	40.4	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm^3 (10 g) of Head T	SL	Condi	lon		
SAR measured		250 mW in	put power		5.28 mW/g
SAR for nominal Head TSL parameters		normalize	d to 1W	21.3	mW /g ± 20.4 % (k=2

Body TSL parameters

	Temperature	Permitti	vity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3		1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ±	6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C			
AR result with Body TSL				
SAR averaged over 1 cm^3 (1 g) of Body TSI	Cond	ition		Sector Realized
SAR measured	250 mW ir	nput power		10.1 mW/g
SAR for nominal Body TSL parameters	normalize	ed to 1W	40.1	mW /g ± 20.8 % (k=2
SAR averaged over 10 cm ³ (10 g) of Body T	SL Cond	ition		
SAR measured	250 mW ir	250 mW input power		5.39 mW/g
SAR for nominal Body TSL parameters	normalize	ed to 1W	21.5	mW /g ± 20.4 % (k=2)

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 80 of 85

· ·	In Co	ollabora	tion wit	th		
TTT	S	p	e	a	g	
	CAL	IBRATIO	ON LAI	BORAT	ORY	

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.en

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2Ω+ 5.44jΩ	
Return Loss	- 24.3dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9Ω+ 5.75jΩ	
Return Loss	- 24.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.304 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z16-97090

Page 4 of 8

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

Page 81 of 85

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

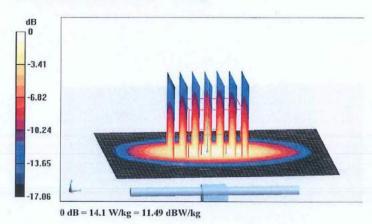
 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 06.15.2016

Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

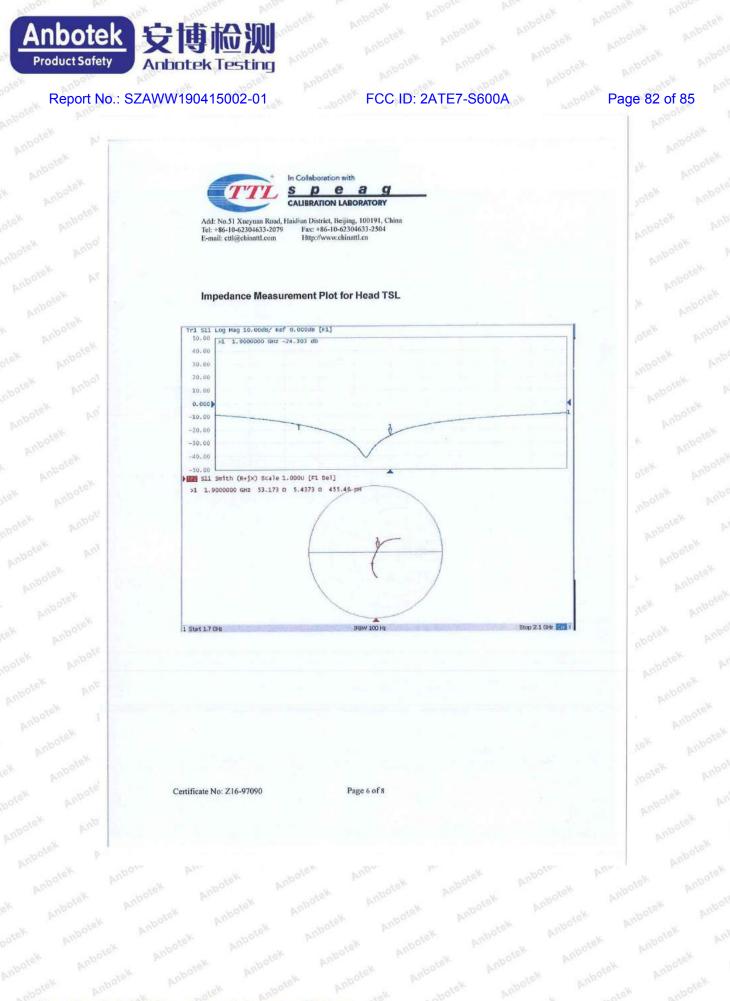

Medium parameters used: f = 1900 MHz; $\sigma = 1.381 \text{ S/m}$; $\epsilon r = 40.33$; $\rho = 1000 \text{ kg/m3}$ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(8.1, 8.1, 8.1); Calibrated: 2/19/2016; .
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016 .
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.5V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 18.0W/kg SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 14.1 W/kg



Certificate No: Z16-97090

Page 5 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: 2ATE7-S600A

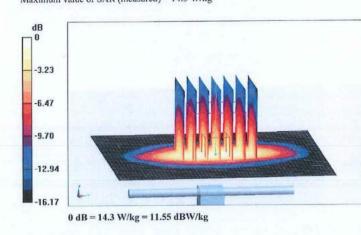
Page 83 of 85

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: + 86-10-62304633-2079
 Fax: + 86-10-62304633-2504

 E-mail: ettl@chinattl.com
 Http://www.chinattl.cn

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China


Date: 06.15.2016

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.537$ S/m; $\varepsilon_r = 53.34$; $\rho = 1000$ kg/m³ Phantom section: Center Section

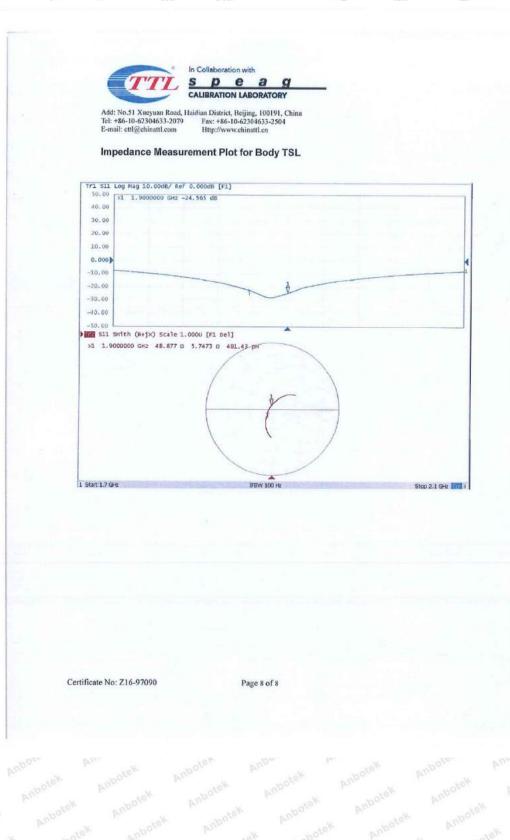
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(7.67, 7.67, 7.67); Calibrated: 2/19/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.11 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.39 W/kg Maximum value of SAR (measured) = 14.3 W/kg

Certificate No: Z16-97090

Page 7 of 8


Shenzhen Anbotek Compliance Laboratory Limited

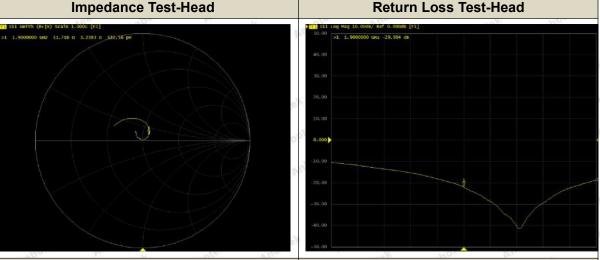
FCC ID: 2ATE7-S600A

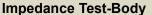
Page 84 of 85

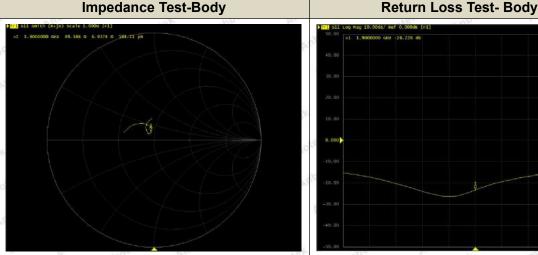
Shenzhen Anbotek Compliance Laboratory Limited

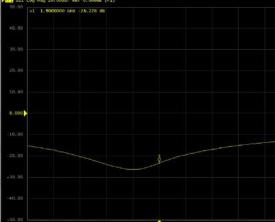
安博检测 Anbotek Testing Anbotek Product Safety

Report No.: SZAWW190415002-01


FCC ID: 2ATE7-S600A


Page 85 of 85


Justification of the extended calibration of Dipole D1900V2 SN: 5d179


Per KDB 865664, we have Measured the Impedance and Return Loss as below, and the return lossis <-20dB, with 20% of prior calibration; the real or imaginary parts of the impedance is with 5 ohm ofprior calibration. Therefore the verification result should support extended calibration.

Dipole 1900 Head TST	Target Value	Measured Value	Difference
Impedance transformed tofeed point	51.54Ω+3.07jΩ	51.72Ω+3.24jΩ	R=0.18Ω,X=0.17Ω
Return Loss	-29.42dB	-30.00dB	1.97%
Dipole 1900 Body TST	Target Value	Measured Value	Difference
Impedance transformed tofeed point	48.35Ω+4.32jΩ	49.59Ω+6.94jΩ	R=1.24Ω,X=2.62Ω
Return Loss	-26.55dB	-26.23dB	1.21%
Measured Date	2016-06-15	2018-06-04	olen Anon dek
Measured Date	2016-06-15	2018-06-04	

*****END OF REPORT*****

Shenzhen Anbotek Compliance Laboratory Limited

