

FCC Test Report

FCC ID : 2ATD8-MN-01
Equipment : Mesh Node
Brand Name : Scandinavian Reach Technologies AS
Model Name : SRT MN-01
Applicant : Scandinavian Reach Technologies AS
Skjenet 11, 5354 Straume, Norway
Manufacturer : Topro Industri AS
Rambekkvegen 1, 2816 Gjøvik, Norway
Standard : 47 CFR FCC Part 15.247

The product was received on Sep. 10, 2019, and testing was started from Sep. 13, 2019 and completed on Oct. 14, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

HISTORY OF THIS TEST REPORT	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION	5
1.1 Information.....	5
1.2 Testing Applied Standards	7
1.3 Testing Location Information	7
1.4 Measurement Uncertainty	7
2 TEST CONFIGURATION OF EUT.....	8
2.1 Test Condition	8
2.2 Test Channel Mode	8
2.3 The Worst Case Measurement Configuration.....	9
2.4 Accessories and Support Equipment	10
2.5 Test Setup Diagram	11
3 TRANSMITTER TEST RESULT	13
3.1 AC Power-line Conducted Emissions	13
3.2 DTS Bandwidth.....	15
3.3 Maximum Conducted Output Power	16
3.4 Power Spectral Density	18
3.5 Emissions in Non-restricted Frequency Bands	19
3.6 Emissions in Restricted Frequency Bands.....	20
4 TEST EQUIPMENT AND CALIBRATION DATA	24
APPENDIX A. TEST RESULTS OF AC POWER-LINE CONDUCTED EMISSIONS	
APPENDIX B. TEST RESULTS OF DTS BANDWIDTH	
APPENDIX C. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D. TEST RESULTS OF POWER SPECTRAL DENSITY	
APPENDIX E. TEST RESULTS OF EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
APPENDIX F. TEST RESULTS OF EMISSIONS IN RESTRICTED FREQUENCY BANDS	
APPENDIX G. TEST PHOTOS	
PHOTOGRAPHS OF EUT V01	

History of this test report

Summary of Test Result

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.3	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and explanations:

None

Reviewed by: Jackson Tsai

Report Producer: Jenny Yang

1 General Description

1.1 Information

1.1.1 Abbreviation

EUT: Unit under test

BW: Bandwidth

BWch: Bandwidth per channel

1.1.2 RF General Information

Frequency Range (MHz)	Modulation	Channel Frequency (MHz)	Channel Spacing (MHz)	Channel Number
2400-2483.5	QPSK-DSSS	2405-2475	5	0-14 [15]

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	2.4GHz Prop	5	1TX

Note:

- 2.4GHz Prop mode uses a combination of QPSK-DSSS modulation.
- BWch is the nominal channel bandwidth.
- Nant is the number of outputs.

1.1.3 Antenna Information

Antenna	Brand	Model Name	Antenna Type	Connector
1	Texas Instruments	DN007	PCB	N/A
2	Texas Instruments	DN007	PCB	N/A
3	Texas Instruments	DN038	PCB	N/A
4	pulseLarsen	W5017	Dipole	I-Pex

Antenna	Port	Gain (dBi)		
		2.4G Prop	BT	Sub-1GHz
1	1	-	3.3	-
2	1	3.3	-	-
3	1	-	-	0.01
4	2	-	-	0.9

Note 1: The EUT has four antennas.

For 2.4GHz Prop function:

For 2.4GHz Prop mode (1TX/1RX)

Ant. 2 (port 1) can be used as transmitting/receiving antenna.

For BT function:

For IEEE 802.15.1 Bluetooth mode (1TX/1RX)

Ant. 1 (port 1) can be used as transmitting/receiving antenna.

For Sub-1GHz function:

For Sub-1GHz mode (1TX/1RX)

Ant. 3 (port 1) or Ant. 4 (port 2) can be used as transmitting/receiving antenna.

1.1.4 EUT Information

Operational Condition					
EUT Power Type		From AC Adapter / Form Battery / Form Host system			
EUT Function		<input checked="" type="checkbox"/> Point-to-multipoint <input type="checkbox"/> Point-to-point			
Beamforming Function		<input type="checkbox"/> With beamforming <input checked="" type="checkbox"/> Without beamforming			
Type of EUT					
<input checked="" type="checkbox"/> Stand-alone					
<input type="checkbox"/> Combined (EUT where the radio part is fully integrated within another device)					
Combined Equipment - Brand Name / Model No.:		...			
<input type="checkbox"/> Plug-in radio (EUT intended for a variety of host systems)					
Host System - Brand Name / Model No.:		...			
<input type="checkbox"/> Other:					

1.1.5 Mode Test Duty Cycle

Mode	Duty Cycle	Duty Cycle Factor (dB)	T(s)	VBW(Hz) $\geq 1/T$
2.4GHz Prop	1	0	n/a (Duty Cycle ≥ 0.98)	n/a (Duty Cycle ≥ 0.98)

Note. If Duty Cycle < 0.98 , the Duty Cycle Factor was added while measuring Output power and PSD.

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ 47 CFR FCC Part 15
- ♦ ANSI C63.10-2013
- ♦ KDB 558074 D01 v05r02
- ♦ KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location				
<input checked="" type="checkbox"/> HWA YA	ADD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)			
	TEL : 886-3-327-3456		FAX : 886-3-327-0973	
Test site Designation No. TW1190 with FCC.				
<input type="checkbox"/> JHUBEI	ADD : No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County, Taiwan (R.O.C.)			
	TEL : 886-3-656-9065		FAX : 886-3-656-9085	
Test site Designation No. TW0006 with FCC.				

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
AC Conduction	CO04-HY	Edward Wang	22.3~23.8°C / 64.3~66.2%	13/Sep/2019
RF Conducted	TH06-HY	Gary Wang	23.1~26°C / 61~67%	19/Sep/2019~01/Oct/2019
Radiated	03CH02-HY	Edward Wang	22.3~23.7°C / 65.3~69.2%	13/Sep/2019~14/Oct/2019

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.54 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	1.6 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.9 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Condition

RF Conducted	Abbreviation	Remark
T _{nom} V _{nom}	T _{nom}	20°C
-	V _{nom}	3.6V

2.2 Test Channel Mode

Test Software	Command
Mode	Power Setting
2.4GHz Prop	-
2405MHz	default
2440MHz	default
2475MHz	default

2.3 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests	
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral
Operating Mode	CTX
1	Adapter mode

The Worst Case Mode for Following Conformance Tests	
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands
Test Condition	Conducted measurement at transmit chains

The Worst Case Mode for Following Conformance Tests							
Tests Item	Emissions in Restricted Frequency Bands						
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.						
Operating Mode < 1GHz	CTX/CRX						
1	Adapter mode						
Operating Mode > 1GHz	CTX/CRX						
Orthogonal Planes of EUT	<table border="1"><thead><tr><th>X Plane</th><th>Y Plane</th><th>Z Plane</th></tr></thead><tbody><tr><td></td><td></td><td></td></tr></tbody></table>	X Plane	Y Plane	Z Plane			
X Plane	Y Plane	Z Plane					
Worst Planes of EUT	V						

The Worst Case Mode for Following Conformance Tests	
Tests Item	Simultaneous Transmission Analysis
Operating Mode	CTX
1	Sub-1GHz + 2.4G Prop + Bluetooth

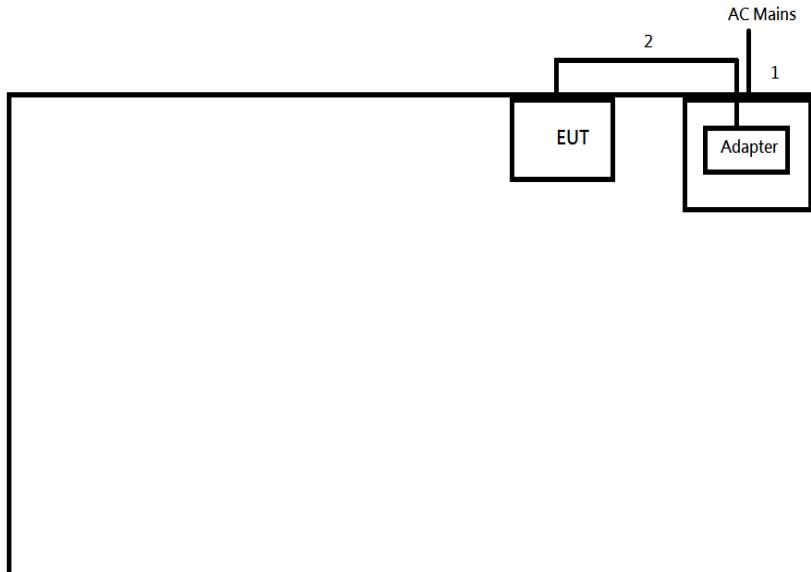
Refer to Sporton Test Report No.: FA990210 for Co-location RF Exposure Evaluation.

2.4 Accessories and Support Equipment

Support Equipment – AC Conduction				
No.	Equipment	Brand Name	Model Name	FCC ID
1	AC adapter	ARTESYN	DA10-050EU	-

Note: Support equipment No.1 was provided by customer.

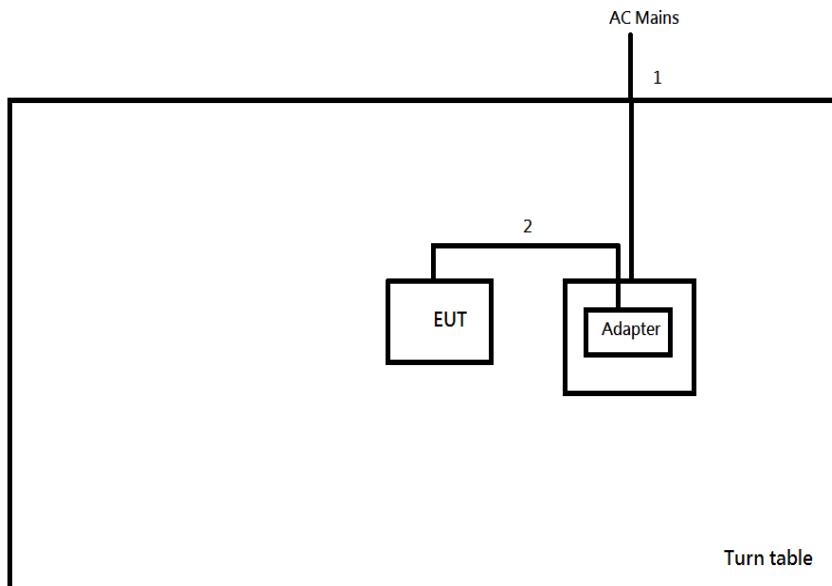
Support Equipment – RF Conducted				
No.	Equipment	Brand Name	Model Name	FCC ID
1	Laptop	HP	EliteBook 820	-
2	Adapter for Laptop	HP	HSTNN-DA40	-


Note: Support equipment No.1 & 2 were provided by customer.

Support Equipment – Radiated Emission				
No.	Equipment	Brand Name	Model Name	FCC ID
1	AC adapter	ARTESYN	DA10-050EU	-

Note: Support equipment No.1 was provided by customer.

2.5 Test Setup Diagram


Test Setup Diagram – AC Line Conducted Emission Test

Item	Connection	Shielded	Length(m)	Remark
1	AC Power Cable	No	1.8	-
2	USB Cable	No	1.0	-

Test Setup Diagram - Radiated Test

Item	Connection	Shielded	Length(m)	Remark
1	AC Power Cable	No	1.8	-
2	USB Cable	No	1.0	-

3 Transmitter Test Result

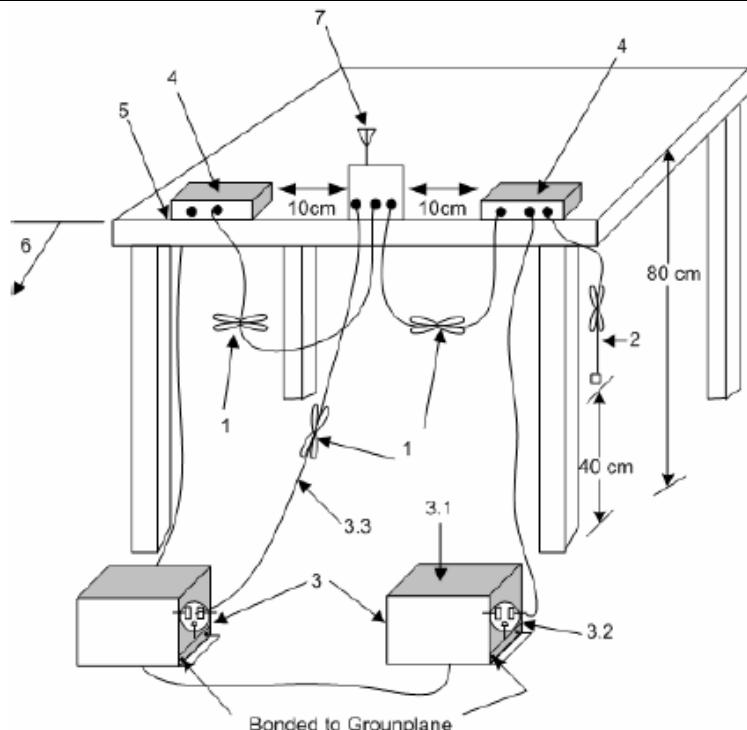
3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit		
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50

Note 1: * Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
<input checked="" type="checkbox"/> Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

AC Power-line Conducted Emissions

1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.

3.1—All other equipment powered from additional LISN(s).

3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.

3.3—LISN at least 80 cm from nearest part of EUT chassis.

4—Non-EUT components of EUT system being tested.

5—Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.

6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

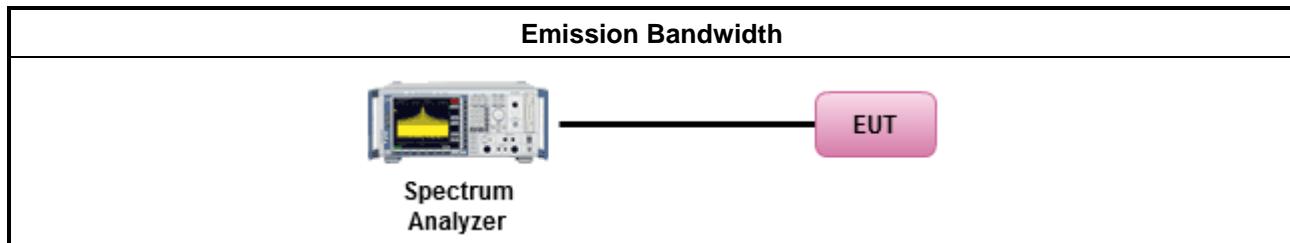
3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit
Systems using digital modulation techniques:
▪ 6 dB bandwidth \geq 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method
▪ For the emission bandwidth shall be measured using one of the options below:
<input checked="" type="checkbox"/> Refer as KDB 558074. clause 8.2 (11.8 of ANSI C63.10) DTS bandwidth measurement.
<input type="checkbox"/> Refer as RSS-Gen, clause 6.7 for occupied bandwidth testing.
<input type="checkbox"/> Refer as ANSI C63.10, clause 6.9.3 for occupied bandwidth testing.

3.2.4 Test Setup

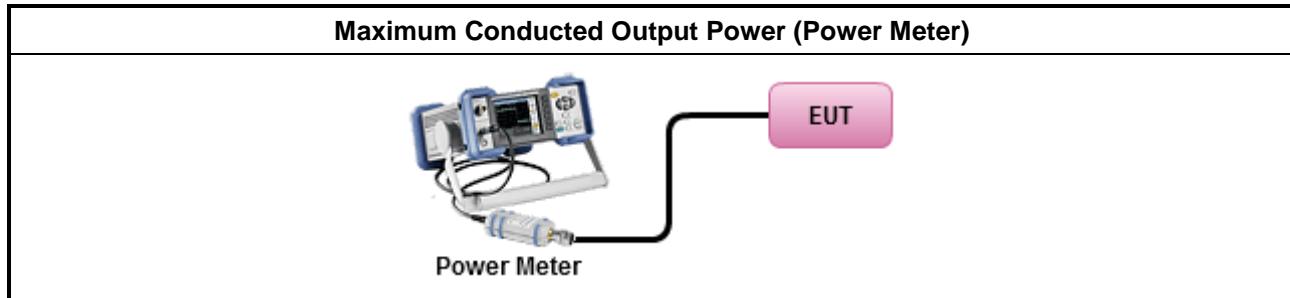
3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit	
	<ul style="list-style-type: none">▪ If $G_{TX} \leq 6 \text{ dBi}$, then $P_{Out} \leq 30 \text{ dBm}$ (1 W)
	<ul style="list-style-type: none">▪ Point-to-multipoint systems (P2M): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6) \text{ dBm}$
	<ul style="list-style-type: none">▪ Point-to-point systems (P2P): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$
	<ul style="list-style-type: none">▪ Smart antenna system (SAS):<ul style="list-style-type: none">- Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$- Overlap beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$- Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{ dB dBm}$
e.i.r.p. Power Limit:	
	<ul style="list-style-type: none">▪ 2400-2483.5 MHz Band
	<ul style="list-style-type: none">▪ Point-to-multipoint systems (P2M): $P_{eirp} \leq 36 \text{ dBm}$ (4 W)
	<ul style="list-style-type: none">▪ Point-to-point systems (P2P): $P_{eirp} \leq \text{MAX}(36, [P_{Out} + G_{TX}]) \text{ dBm}$
	<ul style="list-style-type: none">▪ Smart antenna system (SAS)<ul style="list-style-type: none">- Single beam: $P_{eirp} \leq \text{MAX}(36, P_{Out} + G_{TX}) \text{ dBm}$- Overlap beam: $P_{eirp} \leq \text{MAX}(36, P_{Out} + G_{TX}) \text{ dBm}$- Aggregate power on all beams: $P_{eirp} \leq \text{MAX}(36, [P_{Out} + G_{TX} + 8]) \text{ dBm}$
P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.	


3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

Test Method
▪ Maximum Peak Conducted Output Power
<input type="checkbox"/> Refer as KDB 558074, clause 8.3.1.1 (11.9.1.1 of ANSI C63.10) RBW \geq EBW method.
<input type="checkbox"/> Refer as KDB 558074, clause 8.3.1.2 (11.9.1.2 of ANSI C63.10) integrated band power method.
<input type="checkbox"/> Refer as KDB 558074, clause 8.3.1.3 (11.9.1.3 of ANSI C63.10) peak power meter.
▪ Maximum Average Conducted Output Power
<input type="checkbox"/> Refer as KDB 558074, clause 8.3.2.2 (11.9.2.2 of ANSI C63.10) using a spectrum analyzer.
<input checked="" type="checkbox"/> Refer as KDB 558074, clause 8.3.2.3 (11.9.2.3 of ANSI C63.10) using a power meter.
▪ For conducted measurement.
<ul style="list-style-type: none">▪ If the EUT supports multiple transmit chains using options given below: Refer as KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.▪ If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + \dots + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$

3.3.4 Test Setup

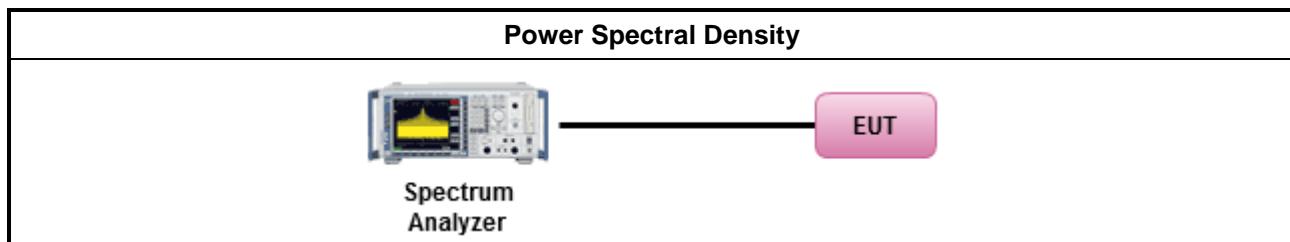
3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit
▪ Power Spectral Density (PSD) \leq 8 dBm/3kHz


3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Test Method
▪ Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).
<input checked="" type="checkbox"/> Refer as KDB 558074, clause 8.4 (11.10 of ANSI C63.10) Method PKPSD.
▪ For conducted measurement.
▪ If The EUT supports multiple transmit chains using options given below:
▪ Measure and sum the spectra across the outputs. Refer as KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

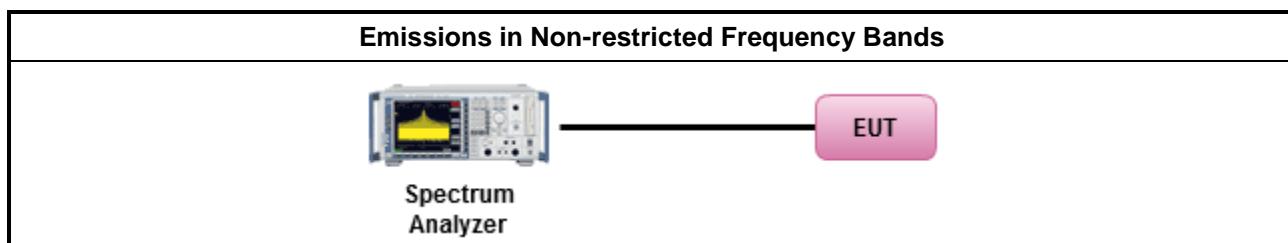
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit	
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method
▪ Refer as KDB 558074, clause 8.5 (11.11 of ANSI C63.10) for non-restricted frequency bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

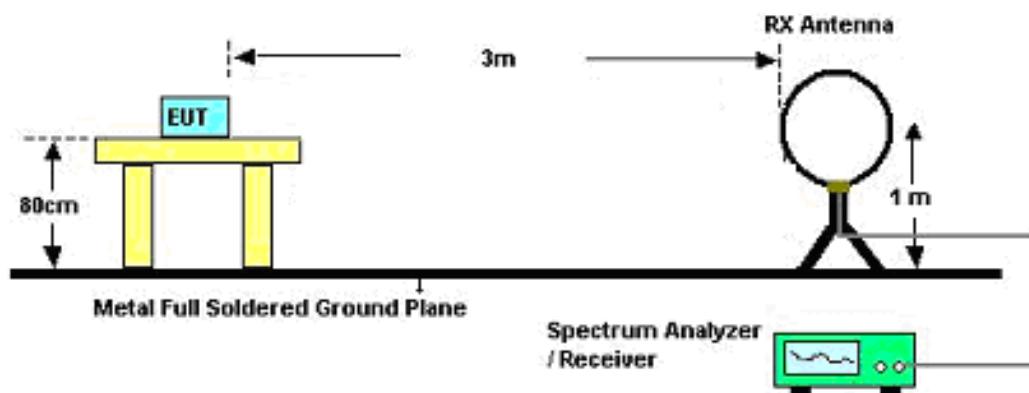
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

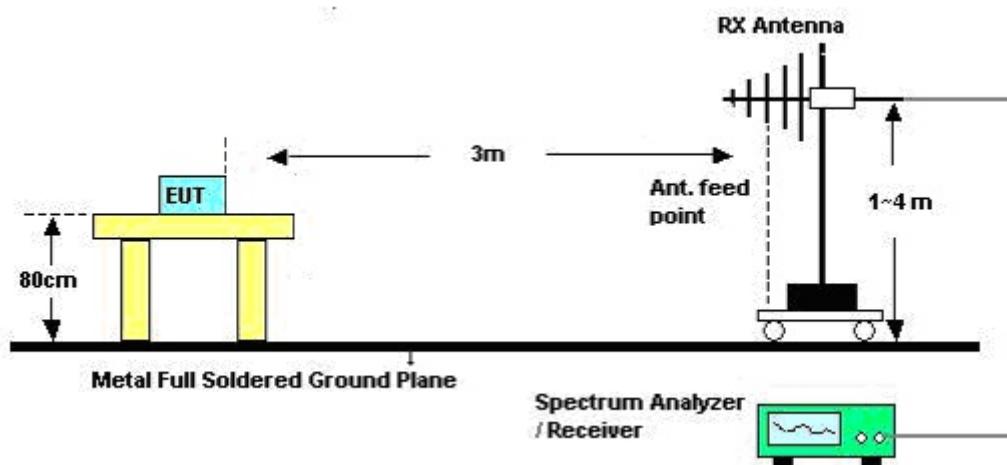
Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

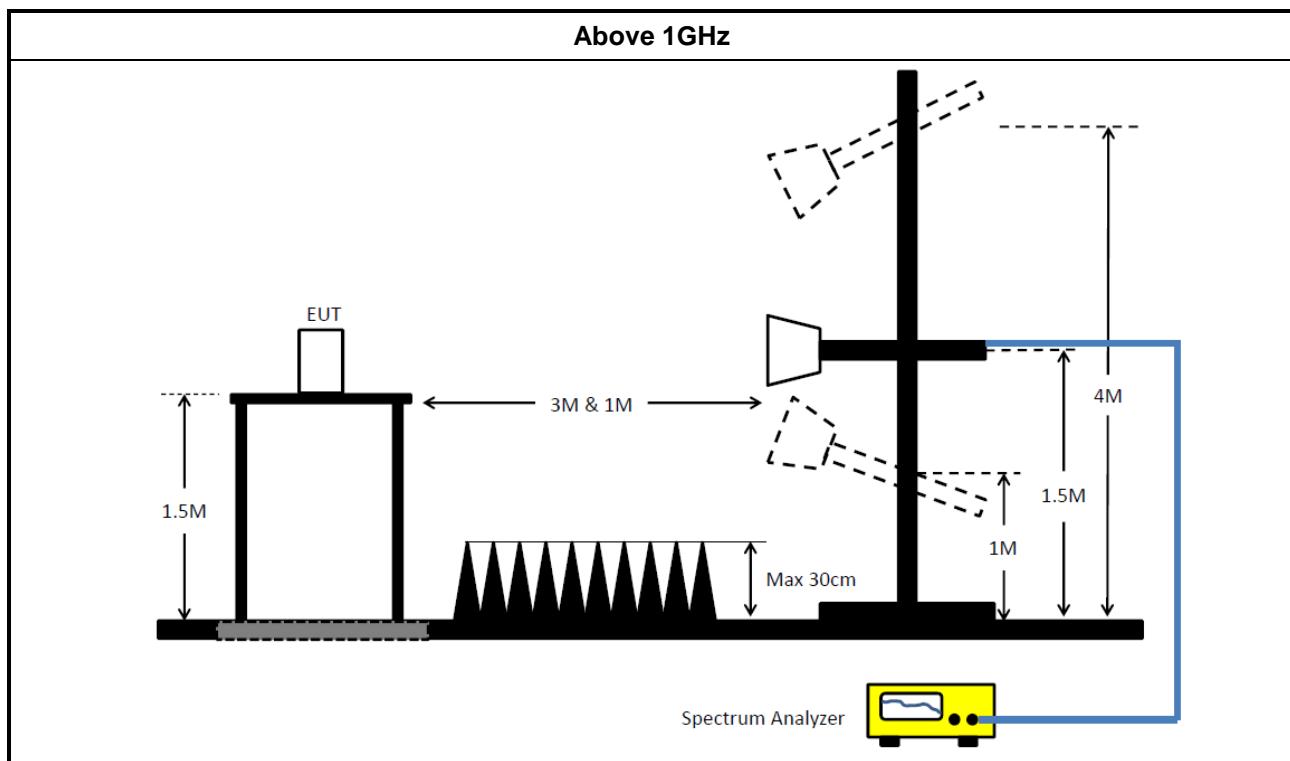
3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.6.3 Test Procedures

Test Method	
▪ The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].	
▪ Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.	
▪ For the transmitter unwanted emissions shall be measured using following options below:	
▪ ▪ Refer as KDB 558074, clause 8.6 (11.12 of ANSI C63.10) for restricted frequency bands.	
▪ For the transmitter band-edge emissions shall be measured using following options below:	
▪ ▪ Refer as KDB 558074 clause 8.7.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.	
▪ ▪ Refer as KDB 558074, clause 8.7.2 (6.10.6 of ANSI C63.10) for marker-delta method for band-edge measurements.	
▪ ▪ Refer as KDB 558074, clause 8.7.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels.	
▪ Use the following spectrum analyzer settings:	
▪ ▪ Set RBW=100 kHz for $f < 1$ GHz; VBW=3 * RBW; Sweep = auto; Detector function = peak; Trace = max hold.	
▪ ▪ Set RBW = 1 MHz, VBW= 3MHz for $f \geq 1$ GHz for peak measurement. For average measurement, refer as 1.1.4.	
▪ KDB 414788 Open-Field Test Sites and Chamber Correlation Justification.	
▪ ▪ Based on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in regulations; however, an attempt should be made to avoid making measurements in the near field.	
▪ ▪ Open-field site and chamber correlation testing had been performed and chamber measured test result is the worst case test result.	


3.6.4 Test Setup


Emissions in Restricted Frequency Bands

9kHz ~30MHz

30MHz~1GHz

3.6.5 Test Result of Emissions in Restricted Frequency Bands (Below 30MHz)

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.6.6 Test Result of Emissions in Restricted Frequency Bands

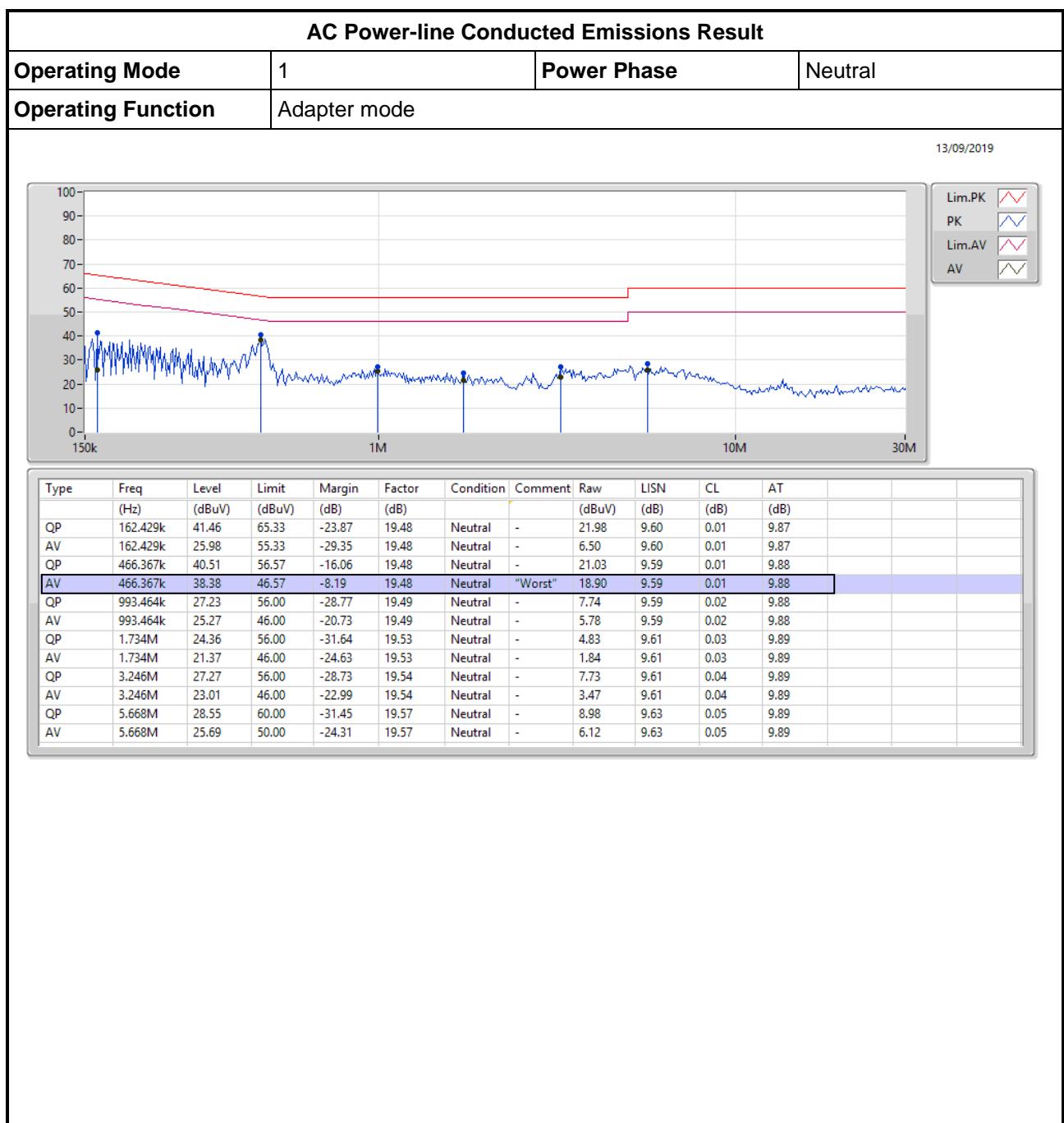
Refer as Appendix F

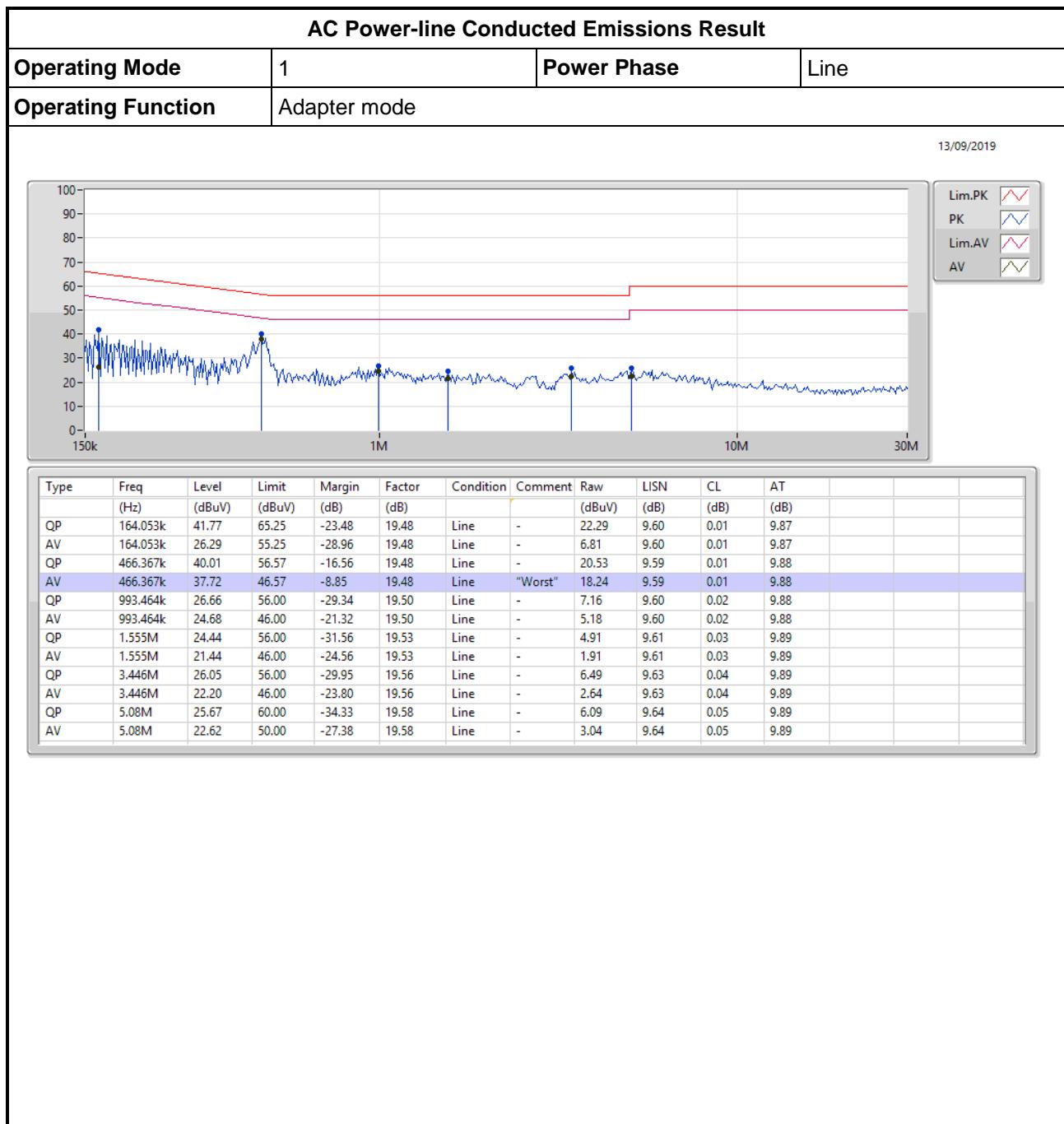
4 Test Equipment and Calibration Data

Instrument for AC Conduction

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
EMC Receiver	R&S	ESR3	102052	9kHz ~ 3.6GHz	09/Apr/2019	08/Apr/2020
LISN	R&S	ENV216	101295	9kHz ~ 30MHz	08/Nov/2018	07/Nov/2019
RF Cable-CON	MTJ	RG142	CB002-CO	9kHz ~ 200MHz	17/Sep/2018	16/Sep/2019
AC POWER	APC	AFC-11005G	F310050055	47Hz~63Hz 5~300V	NCR	NCR
Impuls Begrenzer Pulse Limiter	SCHWARZBECK	VTSD 9561-F	9561-F041	9 kHz ~ 30 MHz	12/Oct/2018	11/Oct/2019

NCR : Non-Calibration Require


Instrument for Conducted Test


Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101013	10Hz~40GHz	13/Mar/2019	12/Mar/2020
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	19/Feb/2019	18/Feb/2020
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	19/Feb/2019	18/Feb/2020
Cable 0.2m	HUBER	MY10710/4	RF Cable - 01	30MHz ~18G	10/Jan/2019	09/Jan/2020
Cable 0.2m	HUBER	MY10711/4	RF Cable - 02	30MHz ~18G	10/Jan/2019	09/Jan/2020
Cable 0.5m	HUBER	MY10714/4	RF Cable - 05	30MHz~1G	10/Jan/2019	09/Jan/2020
SMB100A Signal Generator	R&S	SMB100A03	181147	100kHz~40GHz	12/Nov/2018	10/Nov/2020

Instrument for Radiated Test

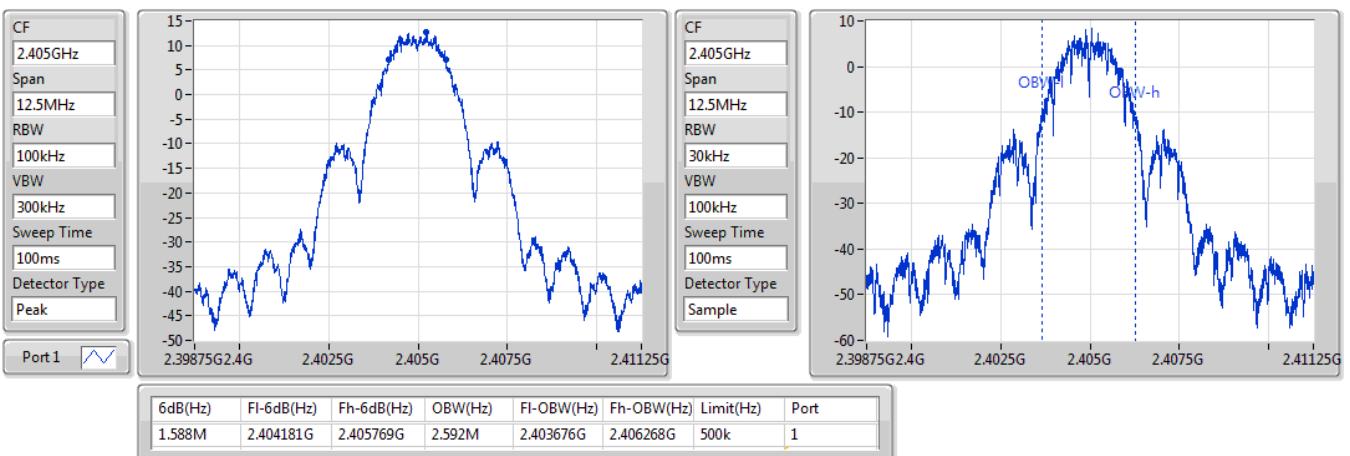
Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	19/Oct/2018	18/Oct/2019
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	1GHz ~ 18GHz 3m	17/Oct/2018	16/Oct/2019
Amplifier	Agilent	8447D	2944A11149	100kHz ~ 1.3GHz	02Jul/2019	01/Jul/2020
Microwave Preamplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	23/Oct/2018	22/Oct/2019
Spectrum Analyzer	Rohde & Schwarz	FSP40	100593	9KHz - 40GHz	27/Dec/2018	26/Dec/2019
EMI Test Receiver	R&S	ESR3	102052	9kHz ~ 3.6GHz	09/Apr/2019	08/Apr/2020
RF Cable-R03m	Jye Bao	RG142	CB017	9kHz ~ 1GHz	26/Mar/2019	25/Mar/2020
RF Cable-high 6m	SUHNER	SUCOFLEX104	10567868 / SN805193/4	1GHz~40GHz	09/Apr/2019	08/Apr/2020
RF Cable-high 7m	SUHNER	SUCOFLEX104	10567868 / SN805192/4	1GHz~40GHz	09/Apr/2019	08/Apr/2020
Bilog Antenna & 5dB Attenuator	SCHAFFNER / MTJ	CBL 6112B / MTJ6102-05	2723 / 2	30MHz ~ 1GHz	08/Sep/2019	07/Sep/2020
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA 9170221	15GHz ~ 40GHz	22/Mar2019	21/Mar2020
Preamplifier	MITEQ	TTA1840-35-HG	1864481	18GHz ~ 40GHz	05/Aug/2019	04/Aug/2020
Loop Antenna	TESEQ	HLA 6120	31244	9k-30MHz	15/Mar/2019	14/Mar/2020
Double Ridged Guide Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 01543	1GHz ~ 18GHz	03/Jun/2019	02/Jun/2020

Summary

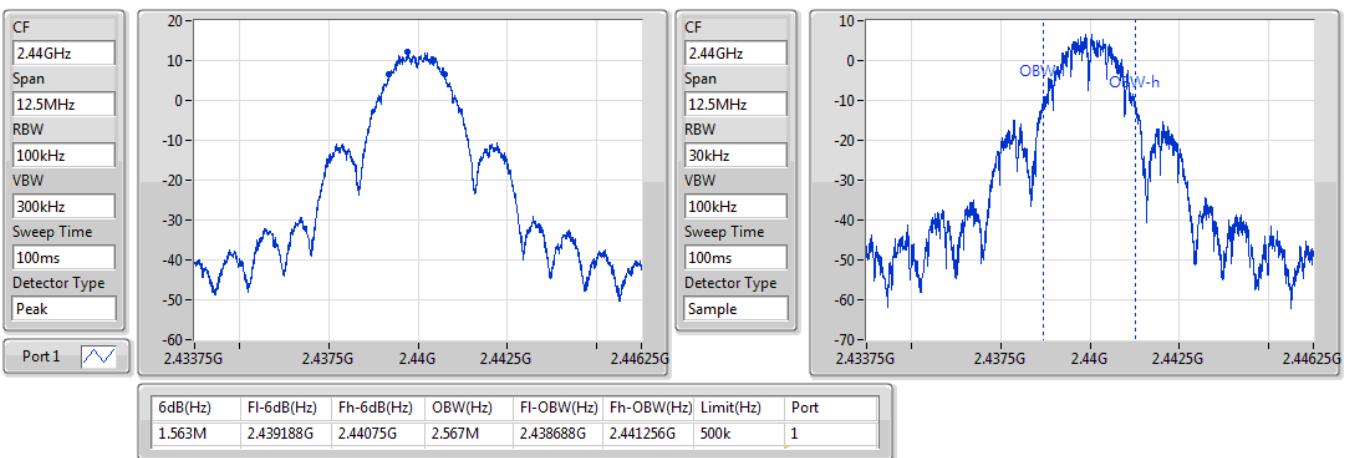
Mode	Max-N dB (Hz)	Max-OBW (Hz)	ITU-Code	Min-N dB (Hz)	Min-OBW (Hz)
2.4-2.4835GHz	-	-	-	-	-
2.4GHz Prop	1.588M	2.592M	2M59G1D	1.563M	2.549M

Max-N dB = Maximum 6dB down bandwidth; **Max-OBW** = Maximum 99% occupied bandwidth;

Min-N dB = Minimum 6dB down bandwidth; **Min-OBW** = Minimum 99% occupied bandwidth;

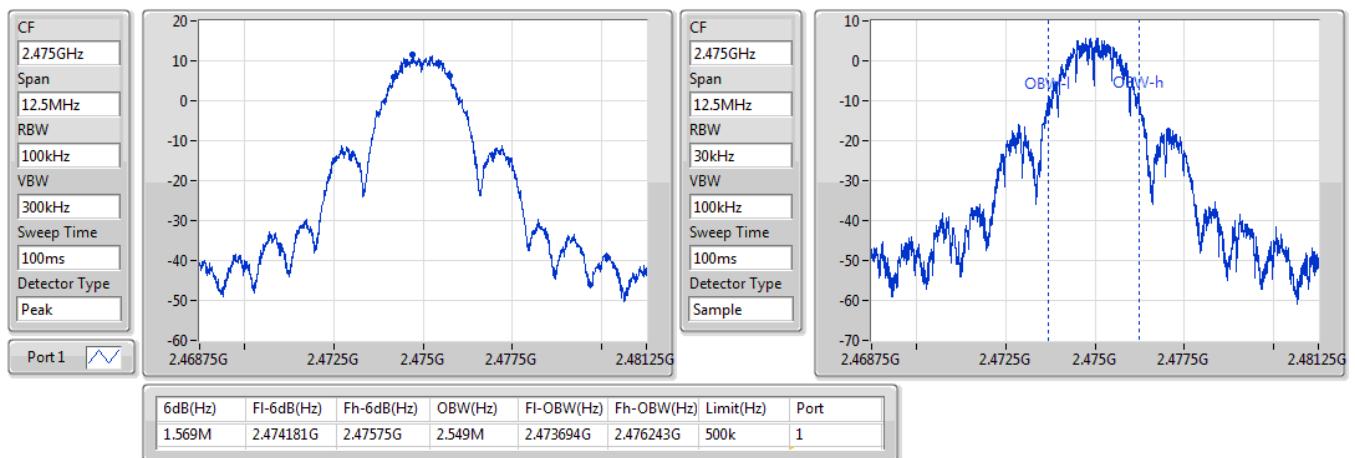

Result

Mode	Result	Limit (Hz)	Port 1-N dB (Hz)	Port 1-OBW (Hz)
2.4GHz Prop	-	-	-	-
2405MHz_TnomVnom	Pass	500k	1.588M	2.592M
2440MHz_TnomVnom	Pass	500k	1.563M	2.567M
2475MHz_TnomVnom	Pass	500k	1.569M	2.549M


Port X-N dB = Port X 6dB down bandwidth; **Port X-OBW** = Port X 99% occupied bandwidth;

2.4GHz Prop
EBW
2405MHz

27/09/2019



2.4GHz Prop
EBW
2440MHz

27/09/2019

2.4GHz Prop
EBW
2475MHz

27/09/2019

MAXIMUM CONDUCTED OUTPUT POWER

Appendix C

Summary

Mode	Total Power (dBm)	Total Power (W)
2.4-2.4835GHz	-	-
2.4GHz Prop	16.00	0.03981

MAXIMUM CONDUCTED OUTPUT POWER

Appendix C

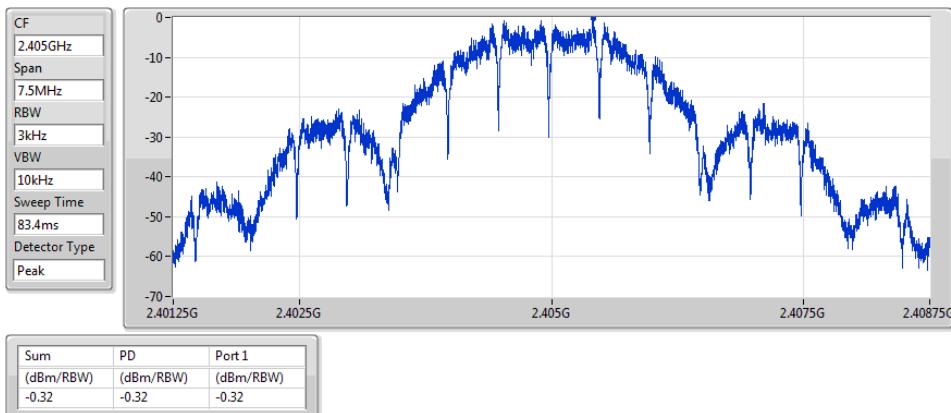
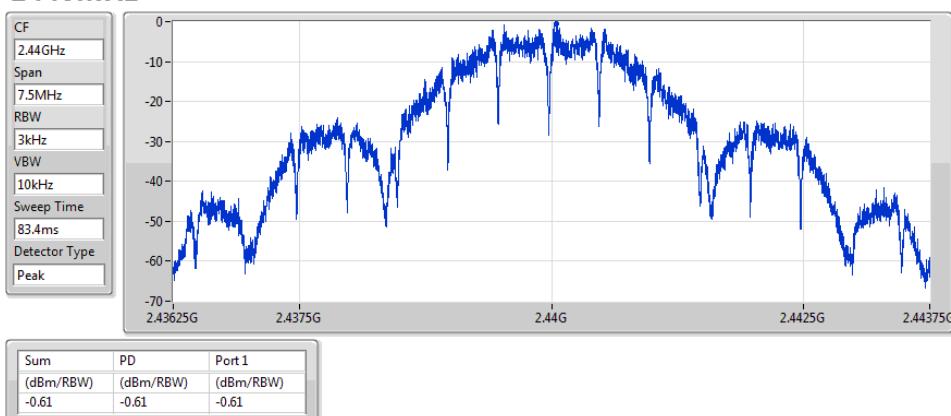
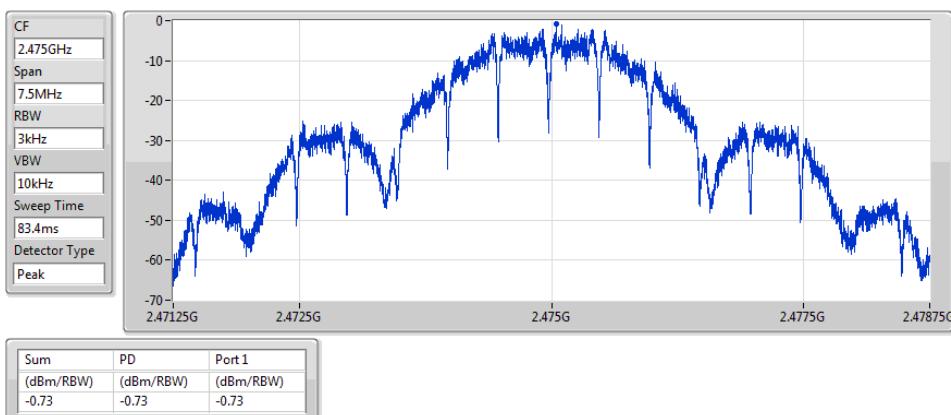
Result

Mode	Result	DG (dBi)	Port 1 (dBm)	Total Power (dBm)	Power Limit (dBm)
2.4GHz Prop	-	-	-	-	-
2405MHz_TnomVnom	Pass	3.30	16.00	16.00	30.00
2440MHz_TnomVnom	Pass	3.30	15.43	15.43	30.00
2475MHz_TnomVnom	Pass	3.30	15.03	15.03	30.00

DG = Directional Gain; **Port X** = Port X output power

Summary

Mode	PD (dBm/RBW)
2.4-2.4835GHz	-
2.4GHz Prop	-0.32

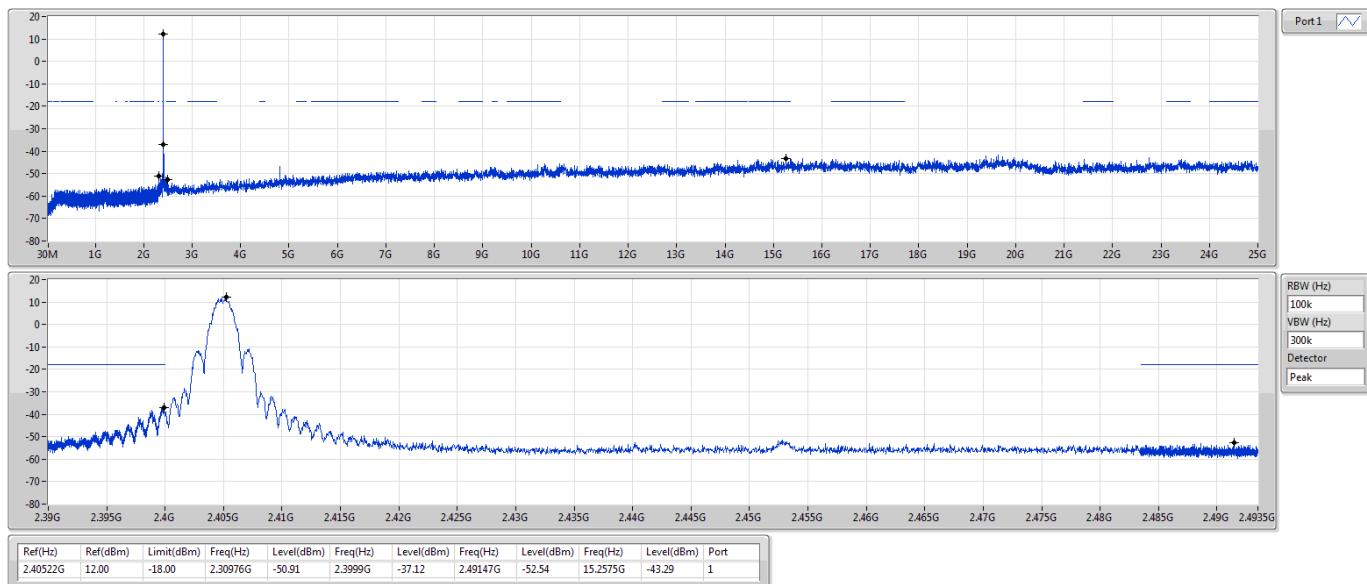
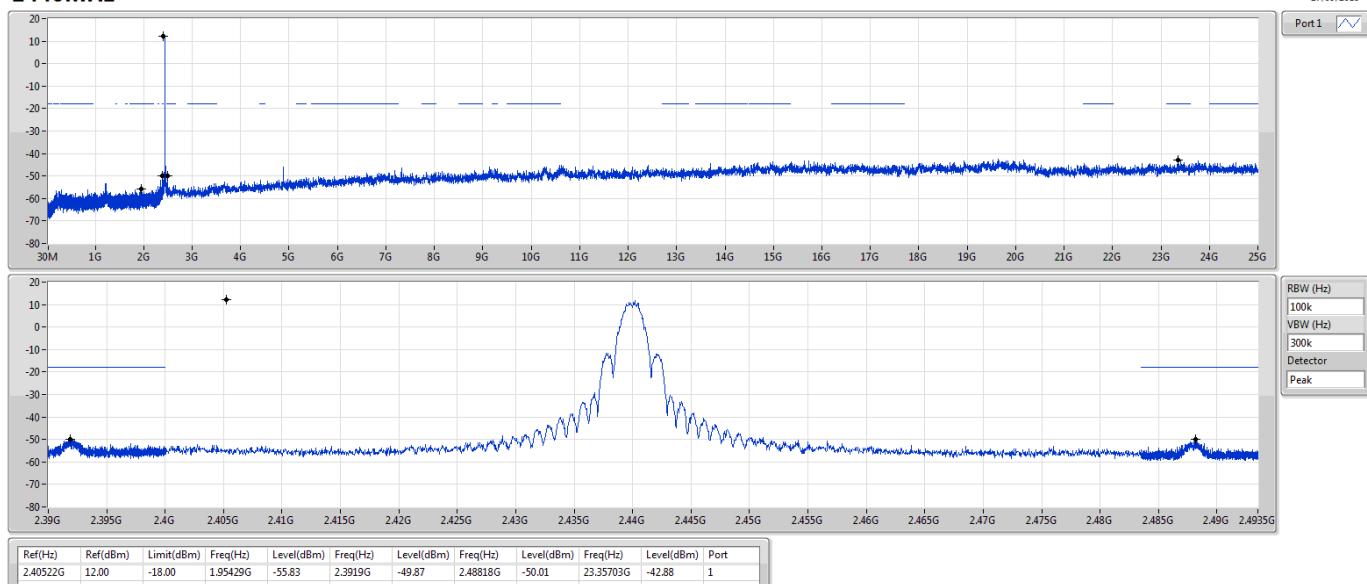



RBW=3 kHz.

Result

Mode	Result	DG (dBi)	Port 1 (dBm/RBW)	PD (dBm/RBW)	PD Limit (dBm/RBW)
2.4GHz Prop	-	-	-	-	-
2405MHz_TnomVnom	Pass	3.30	-0.32	-0.32	8.00
2440MHz_TnomVnom	Pass	3.30	-0.61	-0.61	8.00
2475MHz_TnomVnom	Pass	3.30	-0.73	-0.73	8.00

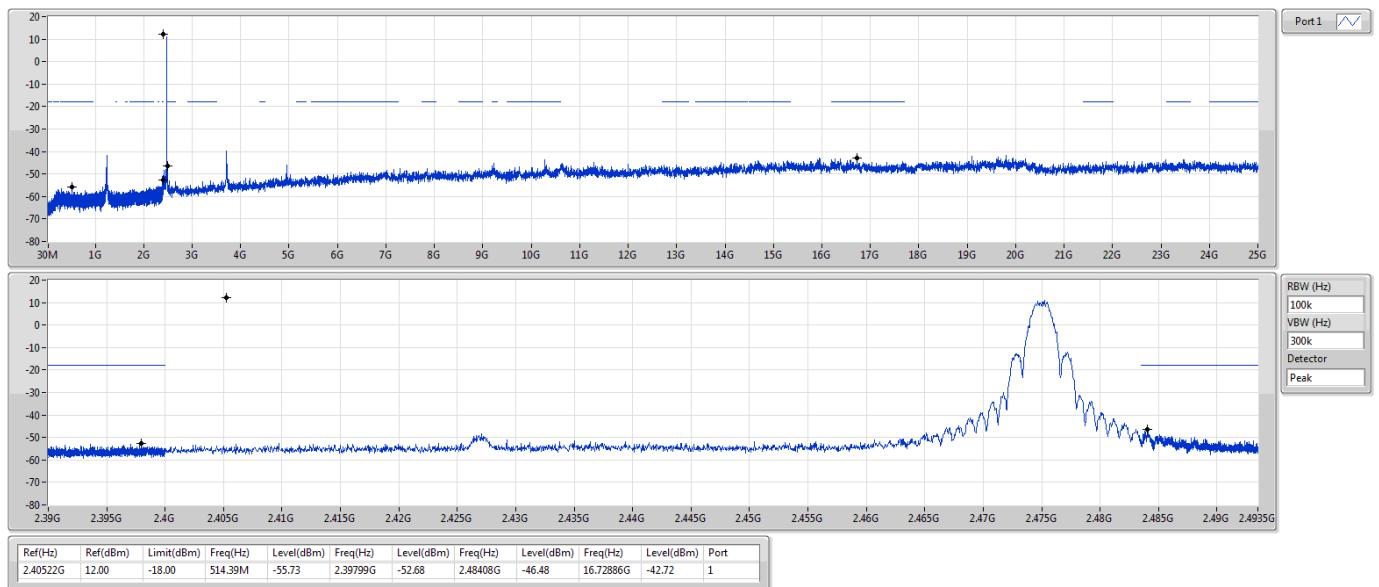
DG = Directional Gain; RBW=3 kHz;

PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; **Port X** = Port X power density;



2.4GHz Prop
2405MHz

2.4GHz Prop
2440MHz

2.4GHz Prop
2475MHz


Summary

Mode	Result	Ref (Hz)	Ref (dBm)	Limit (dBm)	Freq (Hz)	Level (dBm)	Freq (Hz)	Level (dBm)	Freq (Hz)	Level (dBm)	Freq (Hz)	Level (dBm)	Port
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-
2.4GHz Prop	Pass	2.40522G	12.00	-18.00	2.30976G	-50.91	2.3999G	-37.12	2.49147G	-52.54	15.2575G	-43.29	1

Result

Mode	Result	Ref (Hz)	Ref (dBm)	Limit (dBm)	Freq (Hz)	Level (dBm)	Freq (Hz)	Level (dBm)	Freq (Hz)	Level (dBm)	Freq (Hz)	Level (dBm)	Port
2.4GHz Prop	-	-	-	-	-	-	-	-	-	-	-	-	-
2405MHz_TnomVnom	Pass	2.40522G	12.00	-18.00	2.30976G	-50.91	2.3999G	-37.12	2.49147G	-52.54	15.2575G	-43.29	1
2440MHz_TnomVnom	Pass	2.40522G	12.00	-18.00	1.95429G	-55.83	2.3919G	-49.87	2.48818G	-50.01	23.35703G	-42.88	1
2475MHz_TnomVnom	Pass	2.40522G	12.00	-18.00	514.39M	-55.73	2.39799G	-52.68	2.48408G	-46.48	16.72886G	-42.72	1

2.4GHz Prop
2405MHz

2.4GHz Prop
2440MHz

2.4GHz Prop
2475MHz

**EMISSIONS IN RESTRICTED FREQUENCY BANDS
(below 1GHz)**

Appendix F.1

Summary

Mode	Result	Type	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
2.4GHz Prop	Pass	PK	934.04M	36.92	46.00	-9.08	3	Vertical	0	1.00	-

Remark :

Page No. : F1 of F4

Level (dBuV/m) = Raw(Read Level) + AF(Antenna Factor) + CL(Cable Loss) - PA(Preamp Factor)

990210

**EMISSIONS IN RESTRICTED FREQUENCY BANDS
(below 1GHz)**

Appendix F.1

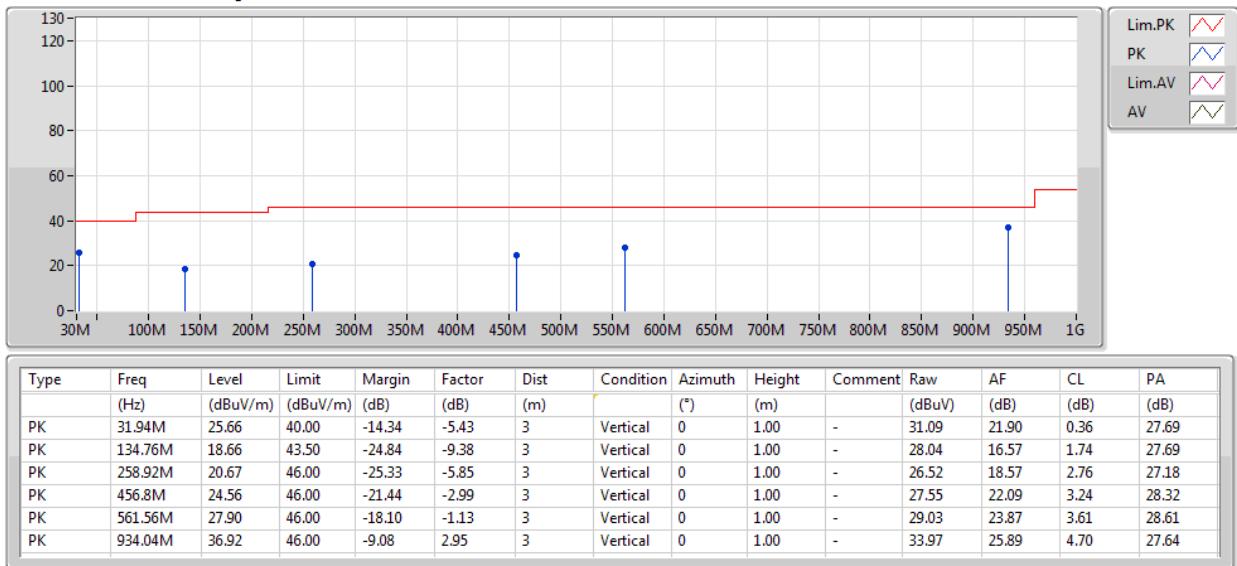
Result

Mode	Result	Type	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4GHz Prop	-	-	-	-	-	-	-	-	-	-	-
2440MHz	Pass	PK	31.94M	25.66	40.00	-14.34	3	Vertical	0	1.00	-
2440MHz	Pass	PK	134.76M	18.66	43.50	-24.84	3	Vertical	0	1.00	-
2440MHz	Pass	PK	258.92M	20.67	46.00	-25.33	3	Vertical	0	1.00	-
2440MHz	Pass	PK	456.8M	24.56	46.00	-21.44	3	Vertical	0	1.00	-
2440MHz	Pass	PK	561.56M	27.90	46.00	-18.10	3	Vertical	0	1.00	-
2440MHz	Pass	PK	934.04M	36.92	46.00	-9.08	3	Vertical	0	1.00	-
2440MHz	Pass	PK	30M	22.54	40.00	-17.46	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	134.76M	19.54	43.50	-23.96	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	272.5M	22.30	46.00	-23.70	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	478.14M	26.02	46.00	-19.98	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	769.14M	30.55	46.00	-15.45	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	926.28M	36.04	46.00	-9.96	3	Horizontal	360	1.00	-

Remark :

Level (dBuV/m) = Raw(Read Level) + AF(Antenna Factor) + CL(Cable Loss) - PA(Preamp Factor)

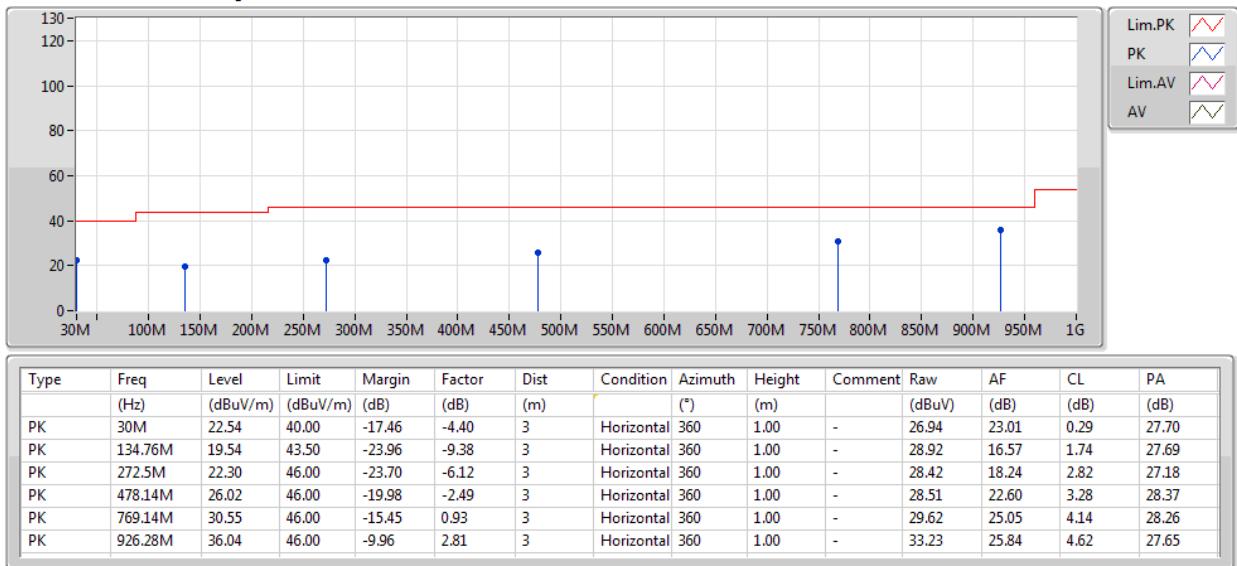
Page No. : F2 of F4


990210

2.4GHz Prop

14/10/2019

2440MHz_Adapter



2.4GHz Prop

14/10/2019

2440MHz_Adapter

**EMISSIONS IN RESTRICTED FREQUENCY BANDS
(above 1GHz)**

Appendix F.2

Summary

Mode	Result	Type	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
2.4GHz Prop	Pass	AV	4.95094G	48.53	54.00	-5.47	3	Vertical	332	2.54	-

Remark :

Level (dBuV/m) = Raw(Read Level) + AF(Antenna Factor) + CL(Cable Loss) - PA(Preamp Factor)

Page No. : F1 of F15

990210

**EMISSIONS IN RESTRICTED FREQUENCY BANDS
(above 1GHz)**

Appendix F.2

Result

Mode	Result	Type	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4GHz Prop	-	-	-	-	-	-	-	-	-	-	-
2405MHz	Pass	AV	2.355G	45.50	54.00	-8.50	3	Vertical	298	1.06	-
2405MHz	Pass	AV	2.405G	100.42	Inf	-Inf	3	Vertical	298	1.06	-
2405MHz	Pass	PK	2.3708G	57.38	74.00	-16.62	3	Vertical	298	1.06	-
2405MHz	Pass	PK	2.4044G	104.80	Inf	-Inf	3	Vertical	298	1.06	-
2405MHz	Pass	AV	2.3628G	44.40	54.00	-9.60	3	Horizontal	353	1.00	-
2405MHz	Pass	AV	2.405G	96.80	Inf	-Inf	3	Horizontal	353	1.00	-
2405MHz	Pass	PK	2.3636G	56.72	74.00	-17.28	3	Horizontal	353	1.00	-
2405MHz	Pass	PK	2.4054G	101.17	Inf	-Inf	3	Horizontal	353	1.00	-
2405MHz	Pass	AV	4.80892G	46.20	54.00	-7.80	3	Vertical	328	2.27	-
2405MHz	Pass	PK	4.80899G	54.38	74.00	-19.62	3	Vertical	328	2.27	-
2405MHz	Pass	AV	4.80895G	40.56	54.00	-13.44	3	Horizontal	6	1.21	-
2405MHz	Pass	PK	4.80891G	49.89	74.00	-24.11	3	Horizontal	6	1.21	-
2440MHz	Pass	AV	2.3436G	44.86	54.00	-9.14	3	Vertical	305	1.21	-
2440MHz	Pass	AV	2.44G	95.34	Inf	-Inf	3	Vertical	305	1.21	-
2440MHz	Pass	AV	2.4992G	44.42	54.00	-9.58	3	Vertical	305	1.21	-
2440MHz	Pass	PK	2.3732G	57.20	74.00	-16.80	3	Vertical	305	1.21	-
2440MHz	Pass	PK	2.4396G	99.79	Inf	-Inf	3	Vertical	305	1.21	-
2440MHz	Pass	PK	2.494G	56.27	74.00	-17.73	3	Vertical	305	1.21	-
2440MHz	Pass	AV	2.366G	44.01	54.00	-9.99	3	Horizontal	23	1.25	-
2440MHz	Pass	AV	2.44G	94.14	Inf	-Inf	3	Horizontal	23	1.25	-
2440MHz	Pass	AV	2.4984G	44.43	54.00	-9.57	3	Horizontal	23	1.25	-
2440MHz	Pass	PK	2.3588G	55.99	74.00	-18.01	3	Horizontal	23	1.25	-
2440MHz	Pass	PK	2.4396G	98.50	Inf	-Inf	3	Horizontal	23	1.25	-
2440MHz	Pass	PK	2.4852G	55.88	74.00	-18.12	3	Horizontal	23	1.25	-
2440MHz	Pass	AV	4.88094G	45.79	54.00	-8.21	3	Vertical	298	1.20	-
2440MHz	Pass	AV	7.3187G	45.54	54.00	-8.46	3	Vertical	270	2.15	-
2440MHz	Pass	PK	4.88086G	54.08	74.00	-19.92	3	Vertical	298	1.20	-
2440MHz	Pass	PK	7.3184G	56.29	74.00	-17.71	3	Vertical	270	2.15	-
2440MHz	Pass	AV	4.87893G	47.03	54.00	-6.97	3	Horizontal	0	1.18	-
2440MHz	Pass	AV	7.31864G	43.31	54.00	-10.69	3	Horizontal	160	1.10	-
2440MHz	Pass	PK	4.87898G	55.17	74.00	-18.83	3	Horizontal	0	1.18	-
2440MHz	Pass	PK	7.31858G	54.52	74.00	-19.48	3	Horizontal	160	1.10	-
2475MHz	Pass	AV	2.475G	89.98	Inf	-Inf	3	Vertical	122	1.23	-
2475MHz	Pass	AV	2.4835G	44.45	54.00	-9.55	3	Vertical	122	1.23	-
2475MHz	Pass	PK	2.4754G	94.34	Inf	-Inf	3	Vertical	122	1.23	-
2475MHz	Pass	PK	2.4948G	56.23	74.00	-17.77	3	Vertical	122	1.23	-
2475MHz	Pass	AV	2.475G	93.35	Inf	-Inf	3	Horizontal	26	2.96	-
2475MHz	Pass	AV	2.4835G	44.47	54.00	-9.53	3	Horizontal	26	2.96	-
2475MHz	Pass	PK	2.4744G	97.74	Inf	-Inf	3	Horizontal	26	2.96	-
2475MHz	Pass	PK	2.4842G	57.53	74.00	-16.47	3	Horizontal	26	2.96	-
2475MHz	Pass	AV	4.95094G	48.53	54.00	-5.47	3	Vertical	332	2.54	-
2475MHz	Pass	AV	7.42361G	45.23	54.00	-8.77	3	Vertical	15	1.00	-
2475MHz	Pass	PK	4.94894G	56.64	74.00	-17.36	3	Vertical	332	2.54	-
2475MHz	Pass	PK	7.42635G	56.64	74.00	-17.36	3	Vertical	15	1.00	-
2475MHz	Pass	AV	4.94893G	45.37	54.00	-8.63	3	Horizontal	26	1.29	-
2475MHz	Pass	AV	7.42621G	41.61	54.00	-12.39	3	Horizontal	0	1.90	-
2475MHz	Pass	PK	4.94895G	53.80	74.00	-20.20	3	Horizontal	26	1.29	-

Remark :

Level (dBuV/m) = Raw(Read Level) + AF(Antenna Factor) + CL(Cable Loss) - PA(Preamp Factor)

Page No. : F2 of F15

990210

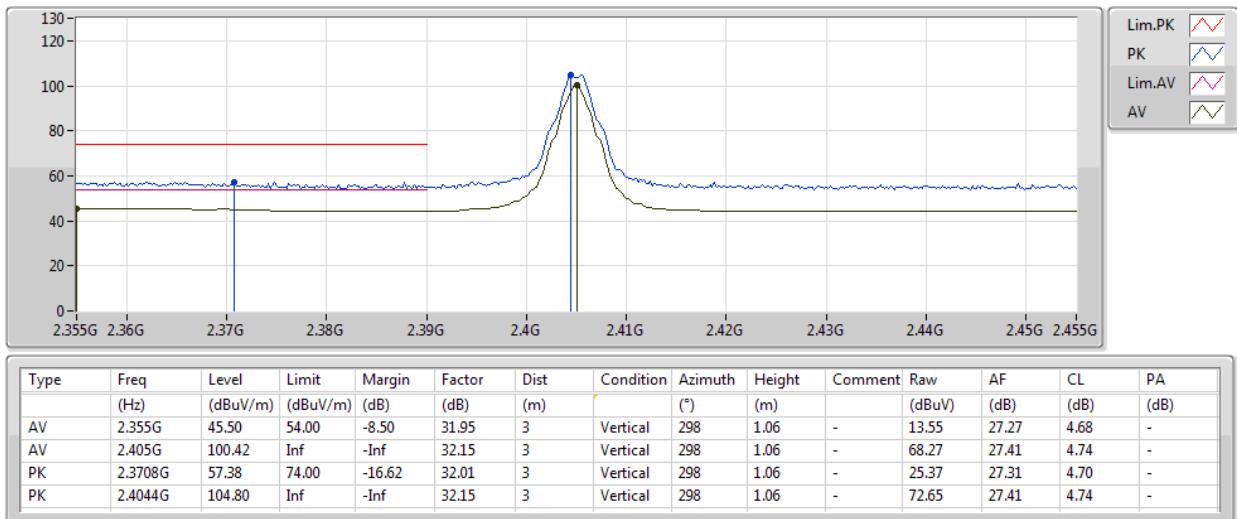
**EMISSIONS IN RESTRICTED FREQUENCY BANDS
(above 1GHz)**

Appendix F.2

Mode	Result	Type	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2475MHz	Pass	PK	7.42642G	53.60	74.00	-20.40	3	Horizontal	0	1.90	-

Remark :

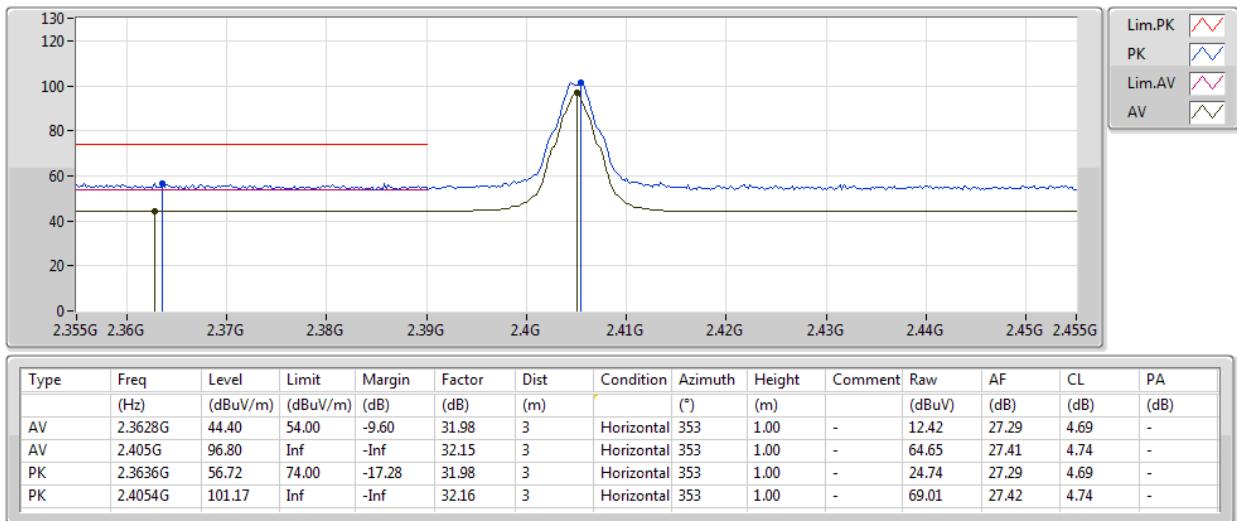
Level (dBuV/m) = Raw(Read Level) + AF(Antenna Factor) + CL(Cable Loss) - PA(Preamp Factor)


Page No. : F3 of F15

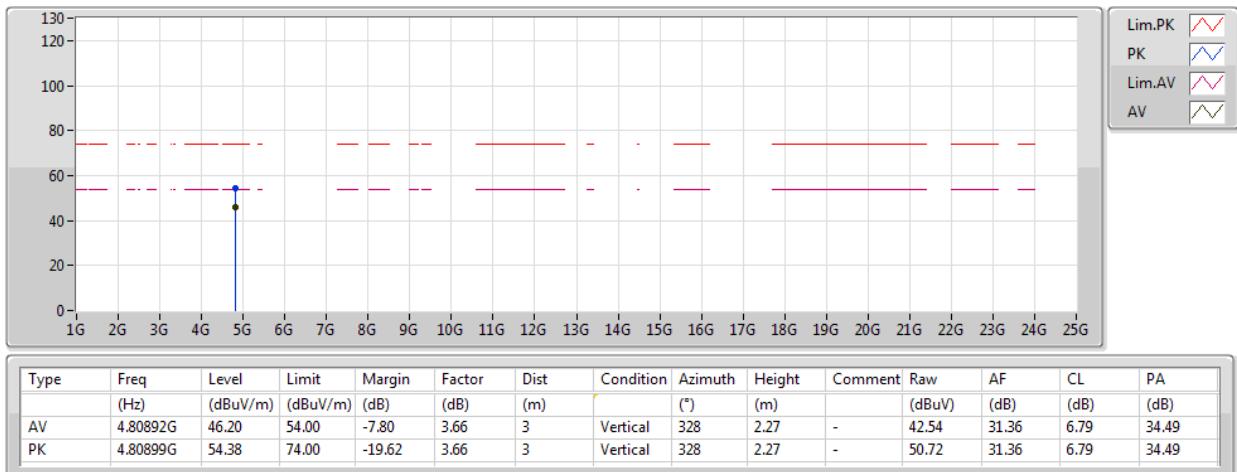
990210

2.4GHz Prop

14/10/2019

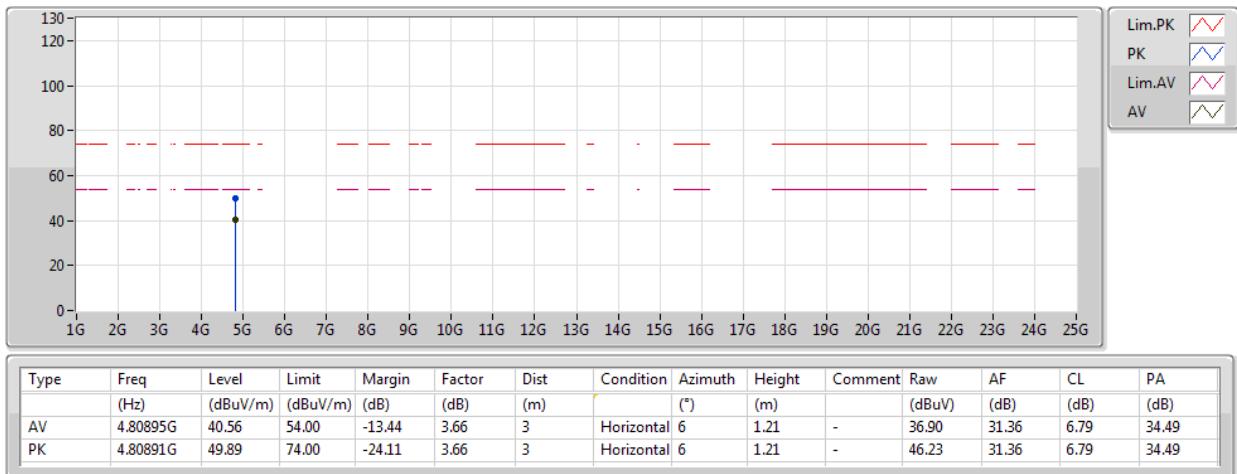

2405MHz_TX

2.4GHz Prop


14/10/2019

2405MHz_TX

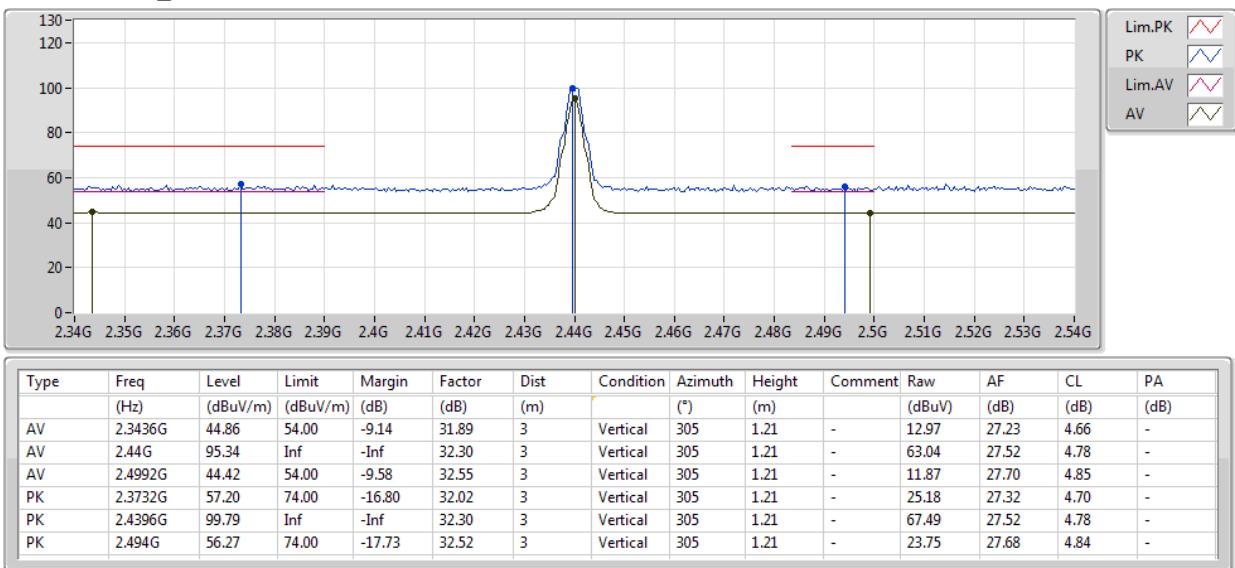
2.4GHz Prop_Nss1_1TX


14/10/2019

2405MHz_TX

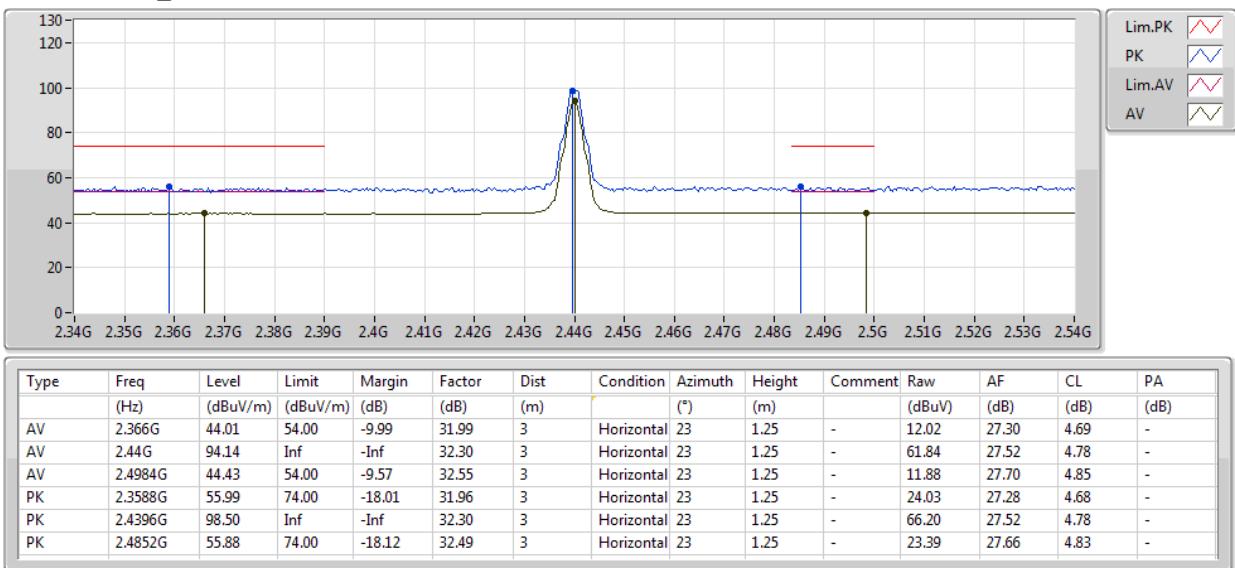
2.4GHz Prop

14/10/2019


2405MHz_TX

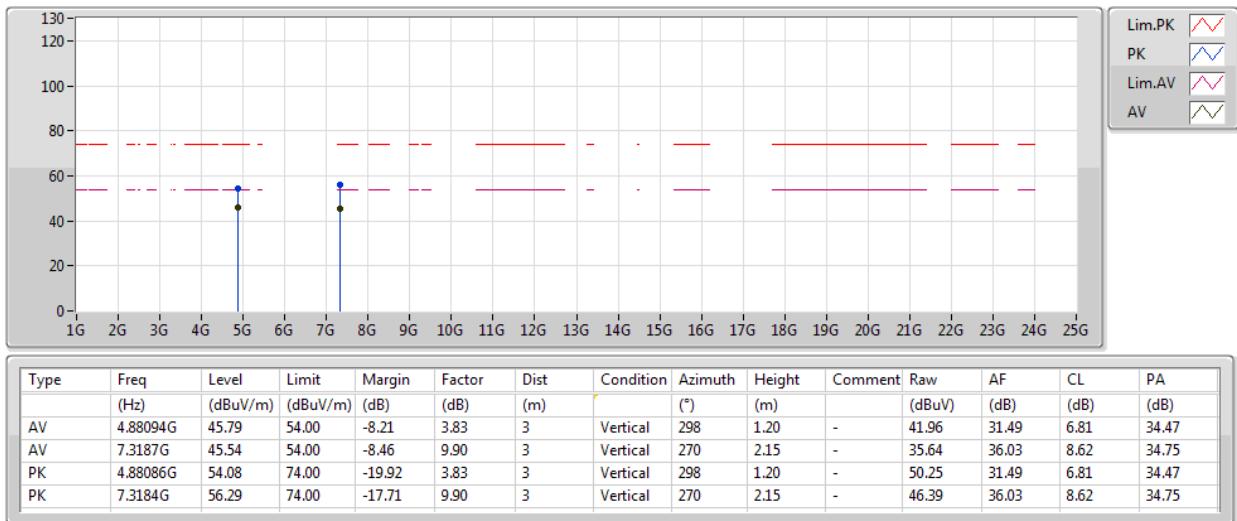
2.4GHz Prop

14/10/2019


2440MHz_TX

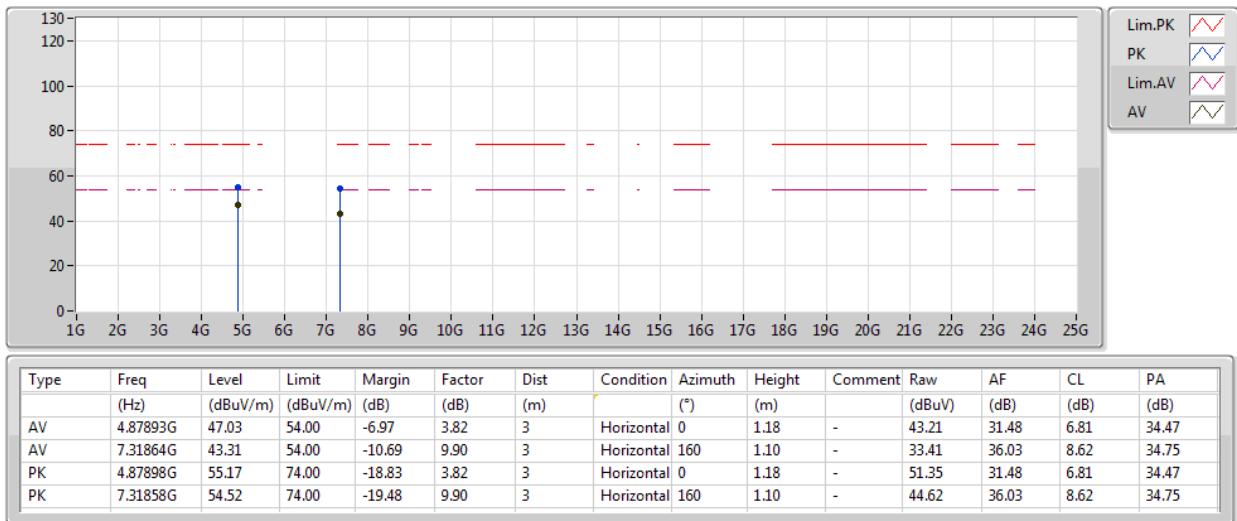
2.4GHz Prop

14/10/2019


2440MHz_TX

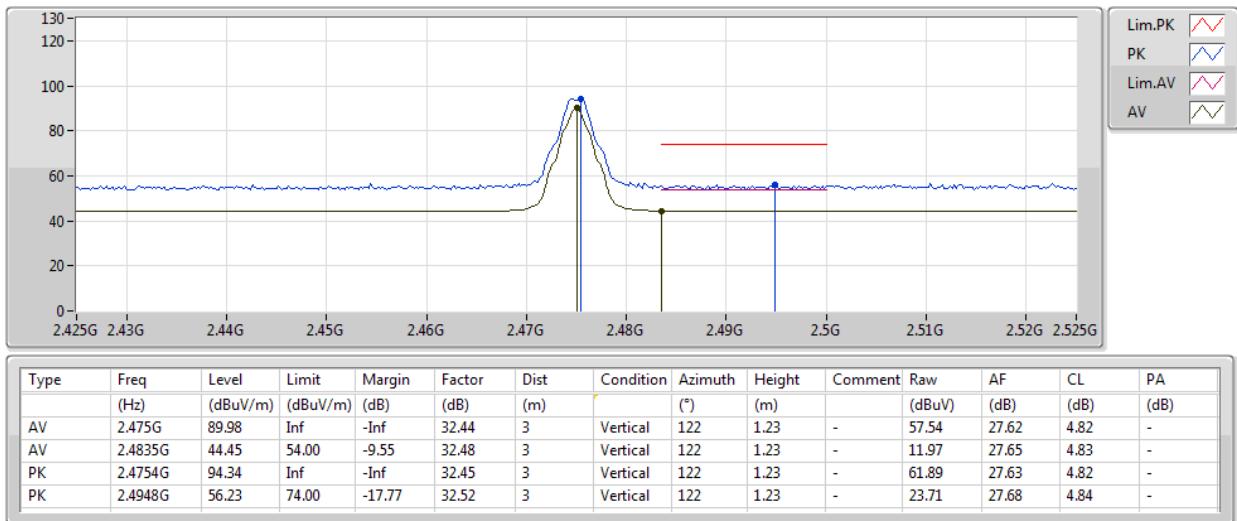
2.4GHz Prop

14/10/2019


2440MHz_TX

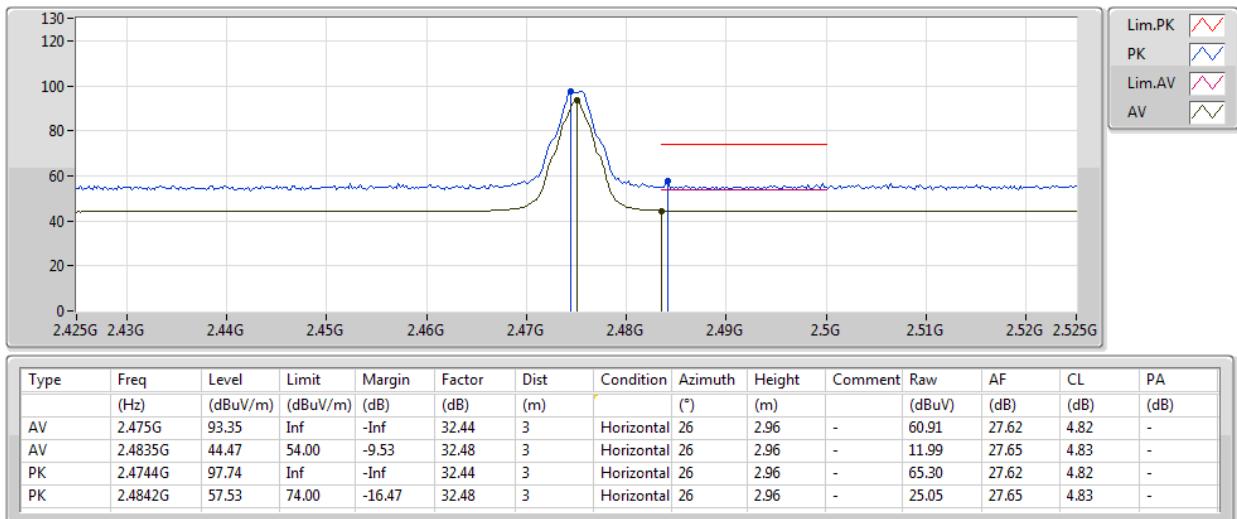
2.4GHz Prop

14/10/2019


2440MHz_TX

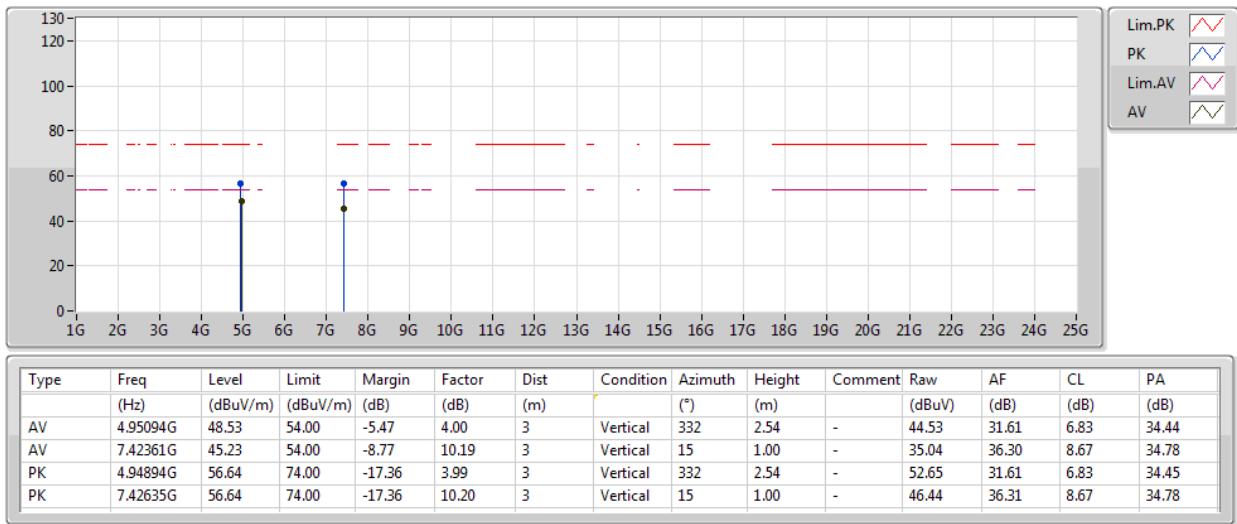
2.4GHz Prop

14/10/2019


2475MHz_TX

2.4GHz Prop

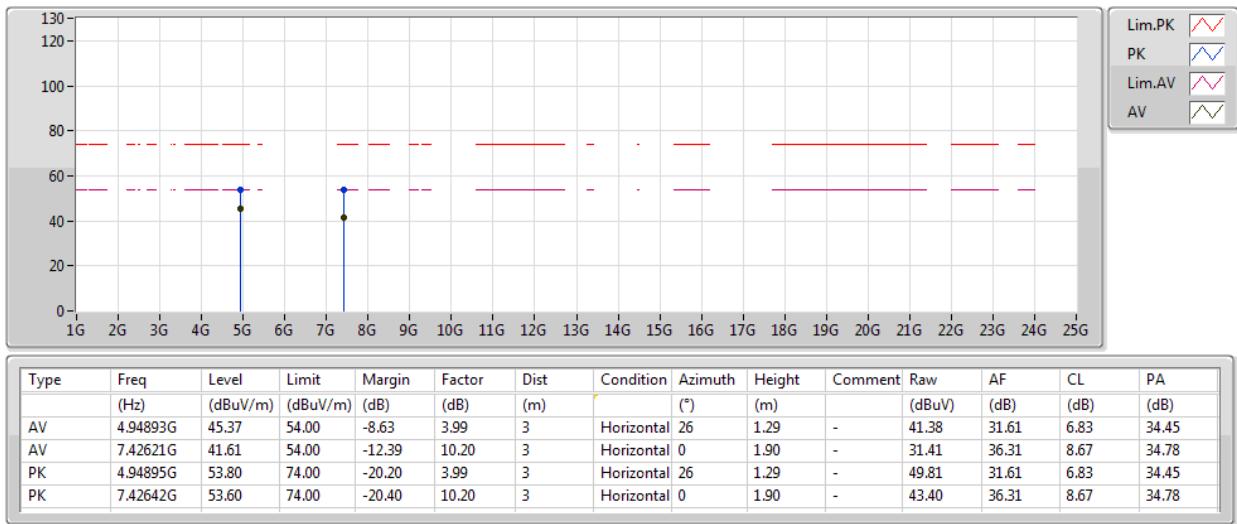
14/10/2019


2475MHz_TX

2.4GHz Prop

14/10/2019

2475MHz_TX



2.4GHz Prop

14/10/2019

2475MHz_TX

